xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 7e0f64b082c1a723b90b720cc41cdfc5f5885444)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.backend._
31import xiangshan.backend.rob.{RobLsqIO, RobPtr}
32import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
34import xiangshan.backend.fu.FuConfig._
35import xiangshan.backend.fu.FuType
36import xiangshan.ExceptionNO._
37
38class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
39  p => p(XSCoreParamsKey).StoreQueueSize
40){
41}
42
43object SqPtr {
44  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
45    val ptr = Wire(new SqPtr)
46    ptr.flag := f
47    ptr.value := v
48    ptr
49  }
50}
51
52class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
53  val canAccept = Output(Bool())
54  val lqCanAccept = Input(Bool())
55  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
56  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
57  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
58}
59
60class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
61  val addr   = UInt(PAddrBits.W)
62  val vaddr  = UInt(VAddrBits.W)
63  val data   = UInt(VLEN.W)
64  val mask   = UInt((VLEN/8).W)
65  val wline = Bool()
66  val sqPtr  = new SqPtr
67  val prefetch = Bool()
68  val vecValid = Bool()
69}
70
71class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
72  val io = IO(new Bundle() {
73    val redirect = Flipped(ValidIO(new Redirect))
74    val storeAddrIn = Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle())))
75    val flushFrmMaBuf = Input(Bool())
76    val exceptionAddr = new ExceptionAddrIO
77  })
78
79  val req_valid = RegInit(false.B)
80  val req = Reg(new LsPipelineBundle())
81
82  // enqueue
83  // S1:
84  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
85  val s1_valid = VecInit(io.storeAddrIn.map(_.valid))
86
87  // S2: delay 1 cycle
88  val s2_req = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i =>
89    RegEnable(s1_req(i), s1_valid(i)))
90  val s2_valid = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i =>
91    RegNext(s1_valid(i)) &&
92      !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
93      !s2_req(i).uop.robIdx.needFlush(io.redirect)
94  )
95  val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR)
96
97  val s2_enqueue = Wire(Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Bool()))
98  for (w <- 0 until StorePipelineWidth * 2 + VecStorePipelineWidth) {
99    s2_enqueue(w) := s2_valid(w) && s2_has_exception(w)
100  }
101
102  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
103    req_valid := s2_enqueue.asUInt.orR
104  }.elsewhen (s2_enqueue.asUInt.orR) {
105    req_valid := req_valid || true.B
106  }
107
108  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
109    assert(valid.length == bits.length)
110    if (valid.length == 0 || valid.length == 1) {
111      (valid, bits)
112    } else if (valid.length == 2) {
113      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
114      for (i <- res.indices) {
115        res(i).valid := valid(i)
116        res(i).bits := bits(i)
117      }
118      val oldest = Mux(valid(0) && valid(1),
119        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
120          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
121        Mux(valid(0) && !valid(1), res(0), res(1)))
122      (Seq(oldest.valid), Seq(oldest.bits))
123    } else {
124      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
125      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
126      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
127    }
128  }
129
130  val reqSel = selectOldest(s2_enqueue, s2_req)
131
132  when (req_valid) {
133    req := Mux(
134      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
135      reqSel._2(0),
136      req)
137  } .elsewhen (s2_enqueue.asUInt.orR) {
138    req := reqSel._2(0)
139  }
140
141  io.exceptionAddr.vaddr  := req.vaddr
142  io.exceptionAddr.gpaddr := req.gpaddr
143  io.exceptionAddr.vstart := req.uop.vpu.vstart
144  io.exceptionAddr.vl     := req.uop.vpu.vl
145
146  when(req_valid && io.flushFrmMaBuf) {
147    req_valid := false.B
148  }
149}
150
151// Store Queue
152class StoreQueue(implicit p: Parameters) extends XSModule
153  with HasDCacheParameters
154  with HasCircularQueuePtrHelper
155  with HasPerfEvents
156  with HasVLSUParameters {
157  val io = IO(new Bundle() {
158    val hartId = Input(UInt(hartIdLen.W))
159    val enq = new SqEnqIO
160    val brqRedirect = Flipped(ValidIO(new Redirect))
161    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
162    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
163    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
164    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
165    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
166    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
167    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
168    val uncacheOutstanding = Input(Bool())
169    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
170    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
171    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
172    // TODO: scommit is only for scalar store
173    val rob = Flipped(new RobLsqIO)
174    val uncache = new UncacheWordIO
175    // val refill = Flipped(Valid(new DCacheLineReq ))
176    val exceptionAddr = new ExceptionAddrIO
177    val sqEmpty = Output(Bool())
178    val stAddrReadySqPtr = Output(new SqPtr)
179    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
180    val stDataReadySqPtr = Output(new SqPtr)
181    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
182    val stIssuePtr = Output(new SqPtr)
183    val sqDeqPtr = Output(new SqPtr)
184    val sqFull = Output(Bool())
185    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
186    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
187    val force_write = Output(Bool())
188    val maControl   = Flipped(new StoreMaBufToSqControlIO)
189  })
190
191  println("StoreQueue: size:" + StoreQueueSize)
192
193  // data modules
194  val uop = Reg(Vec(StoreQueueSize, new DynInst))
195  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
196  val dataModule = Module(new SQDataModule(
197    numEntries = StoreQueueSize,
198    numRead = EnsbufferWidth,
199    numWrite = StorePipelineWidth,
200    numForward = LoadPipelineWidth
201  ))
202  dataModule.io := DontCare
203  val paddrModule = Module(new SQAddrModule(
204    dataWidth = PAddrBits,
205    numEntries = StoreQueueSize,
206    numRead = EnsbufferWidth,
207    numWrite = StorePipelineWidth,
208    numForward = LoadPipelineWidth
209  ))
210  paddrModule.io := DontCare
211  val vaddrModule = Module(new SQAddrModule(
212    dataWidth = VAddrBits,
213    numEntries = StoreQueueSize,
214    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
215    numWrite = StorePipelineWidth,
216    numForward = LoadPipelineWidth
217  ))
218  vaddrModule.io := DontCare
219  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
220  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
221  val exceptionBuffer = Module(new StoreExceptionBuffer)
222  exceptionBuffer.io.redirect := io.brqRedirect
223  exceptionBuffer.io.exceptionAddr.isStore := DontCare
224  // vlsu exception!
225  for (i <- 0 until VecStorePipelineWidth) {
226    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
227    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
228    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr          := io.vecFeedback(i).bits.vaddr
229    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
230    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
231    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
232    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
233    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec     := io.vecFeedback(i).bits.exceptionVec
234  }
235
236
237  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
238  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
239  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
240
241  // state & misc
242  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
243  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
244  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
245  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
246  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
247  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
248  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
249  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
250  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
251  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
252  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
253  //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction
254  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
255  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
256  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
257  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
258  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
259  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
260  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
261
262  // ptr
263  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
264  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
265  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
266  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
267  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
268  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
269
270  val enqPtr = enqPtrExt(0).value
271  val deqPtr = deqPtrExt(0).value
272  val cmtPtr = cmtPtrExt(0).value
273
274  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
275  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
276
277  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
278  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
279
280  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
281  val scommit = GatedRegNext(io.rob.scommit)
282
283  // RegNext misalign control for better timing
284  val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr))
285  val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException)
286  val misalignBlock = doMisalignSt && !finishMisalignSt
287
288  // store miss align info
289  io.maControl.storeInfo.data := dataModule.io.rdata(0).data
290  io.maControl.storeInfo.dataReady := doMisalignSt
291  io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire
292
293  // store can be committed by ROB
294  io.rob.mmio := DontCare
295  io.rob.uop := DontCare
296
297  // Read dataModule
298  assert(EnsbufferWidth <= 2)
299  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
300  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
301  rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire,
302    VecInit(rdataPtrExt.map(_ + 2.U)),
303    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire,
304      VecInit(rdataPtrExt.map(_ + 1.U)),
305      rdataPtrExt
306    )
307  ))
308
309  // deqPtrExtNext traces which inst is about to leave store queue
310  //
311  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
312  // Before data write finish, sbuffer is unable to provide store to load
313  // forward data. As an workaround, deqPtrExt and allocated flag update
314  // is delayed so that load can get the right data from store queue.
315  //
316  // Modify deqPtrExtNext and io.sqDeq with care!
317  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
318  deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire),
319    VecInit(deqPtrExt.map(_ + 2.U)),
320    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire,
321      VecInit(deqPtrExt.map(_ + 1.U)),
322      deqPtrExt
323    )
324  )
325
326  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U,
327    Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U)
328  ))
329  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
330
331  for (i <- 0 until EnsbufferWidth) {
332    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
333    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
334    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
335  }
336
337  /**
338    * Enqueue at dispatch
339    *
340    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
341    */
342  io.enq.canAccept := allowEnqueue
343  val canEnqueue = io.enq.req.map(_.valid)
344  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
345  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
346  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)}
347  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
348  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
349
350  for (i <- 0 until io.enq.req.length) {
351    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
352    val index = io.enq.req(i).bits.sqIdx
353    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
354    when (canEnqueue(i) && !enqCancel(i)) {
355      // The maximum 'numLsElem' number that can be emitted per dispatch port is:
356      //    16 2 2 2 2 2.
357      // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2)
358      for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) {
359        when (j.U < validVStoreOffset(i)) {
360          uop((index + j.U).value) := io.enq.req(i).bits
361          // NOTE: the index will be used when replay
362          uop((index + j.U).value).sqIdx := sqIdx + j.U
363          allocated((index + j.U).value) := true.B
364          datavalid((index + j.U).value) := false.B
365          addrvalid((index + j.U).value) := false.B
366          unaligned((index + j.U).value) := false.B
367          committed((index + j.U).value) := false.B
368          pending((index + j.U).value) := false.B
369          prefetch((index + j.U).value) := false.B
370          mmio((index + j.U).value) := false.B
371          isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst
372          vecMbCommit((index + j.U).value) := false.B
373          vecDataValid((index + j.U).value) := false.B
374          hasException((index + j.U).value) := false.B
375          waitStoreS2((index + j.U).value) := true.B
376          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
377          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
378        }
379      }
380    }
381    io.enq.resp(i) := sqIdx
382  }
383  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
384
385  /**
386    * Update addr/dataReadyPtr when issue from rs
387    */
388  // update issuePtr
389  val IssuePtrMoveStride = 4
390  require(IssuePtrMoveStride >= 2)
391
392  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
393  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
394   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
395    && ptr =/= enqPtrExt(0))
396  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
397  addrReadyPtrExt := nextAddrReadyPtr
398
399  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
400  (0 until StoreQueueSize).map(i => {
401    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
402  })
403  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
404
405  when (io.brqRedirect.valid) {
406    addrReadyPtrExt := Mux(
407      isAfter(cmtPtrExt(0), deqPtrExt(0)),
408      cmtPtrExt(0),
409      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
410    )
411  }
412
413  io.stAddrReadySqPtr := addrReadyPtrExt
414
415  // update
416  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
417  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
418   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
419    && ptr =/= enqPtrExt(0))
420  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
421  dataReadyPtrExt := nextDataReadyPtr
422
423  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
424  (0 until StoreQueueSize).map(i => {
425    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
426  })
427  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
428
429  when (io.brqRedirect.valid) {
430    dataReadyPtrExt := Mux(
431      isAfter(cmtPtrExt(0), deqPtrExt(0)),
432      cmtPtrExt(0),
433      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
434    )
435  }
436
437  io.stDataReadySqPtr := dataReadyPtrExt
438  io.stIssuePtr := enqPtrExt(0)
439  io.sqDeqPtr := deqPtrExt(0)
440
441  /**
442    * Writeback store from store units
443    *
444    * Most store instructions writeback to regfile in the previous cycle.
445    * However,
446    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
447    * (in this way it will trigger an exception when it reaches ROB's head)
448    * instead of pending to avoid sending them to lower level.
449    *   (2) For an mmio instruction without exceptions, we mark it as pending.
450    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
451    * Upon receiving the response, StoreQueue writes back the instruction
452    * through arbiter with store units. It will later commit as normal.
453    */
454
455  // Write addr to sq
456  for (i <- 0 until StorePipelineWidth) {
457    paddrModule.io.wen(i) := false.B
458    vaddrModule.io.wen(i) := false.B
459    dataModule.io.mask.wen(i) := false.B
460    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
461    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
462    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
463    // will re-enter exceptionbuffer at store_s2
464    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
465    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
466
467    when (io.storeAddrIn(i).fire) {
468      val addr_valid = !io.storeAddrIn(i).bits.miss
469      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
470      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
471      unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned)
472
473      paddrModule.io.waddr(i) := stWbIndex
474      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
475      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
476      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
477      paddrModule.io.wen(i) := true.B
478
479      vaddrModule.io.waddr(i) := stWbIndex
480      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
481      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
482      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
483      vaddrModule.io.wen(i) := true.B
484
485      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
486
487      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
488
489      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
490      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
491
492      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
493
494      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
495        io.storeAddrIn(i).bits.uop.sqIdx.value,
496        io.storeAddrIn(i).bits.uop.pc,
497        io.storeAddrIn(i).bits.miss,
498        io.storeAddrIn(i).bits.vaddr,
499        io.storeAddrIn(i).bits.paddr,
500        io.storeAddrIn(i).bits.mmio,
501        io.storeAddrIn(i).bits.isvec
502      )
503    }
504
505    // re-replinish mmio, for pma/pmp will get mmio one cycle later
506    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
507    //val stWbIndexReg = RegNext(stWbIndex)
508    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
509    when (storeAddrInFireReg) {
510      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
511      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
512      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
513      hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af
514      waitStoreS2(stWbIndexReg) := false.B
515    }
516    // dcache miss info (one cycle later than storeIn)
517    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
518    when (storeAddrInFireReg) {
519      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
520    }
521    // enter exceptionbuffer again
522    when (storeAddrInFireReg) {
523      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af
524      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
525      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
526    }
527
528    when(vaddrModule.io.wen(i)){
529      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
530    }
531  }
532
533  // Write data to sq
534  // Now store data pipeline is actually 2 stages
535  for (i <- 0 until StorePipelineWidth) {
536    dataModule.io.data.wen(i) := false.B
537    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
538    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
539    // sq data write takes 2 cycles:
540    // sq data write s0
541    when (io.storeDataIn(i).fire) {
542      // send data write req to data module
543      dataModule.io.data.waddr(i) := stWbIndex
544      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
545        0.U,
546        Mux(isVec,
547          io.storeDataIn(i).bits.data,
548          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
549      )
550      dataModule.io.data.wen(i) := true.B
551
552      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
553
554      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
555        io.storeDataIn(i).bits.uop.sqIdx.value,
556        io.storeDataIn(i).bits.uop.pc,
557        io.storeDataIn(i).bits.data,
558        dataModule.io.data.wdata(i)
559      )
560    }
561    // sq data write s1
562    when (
563      RegNext(io.storeDataIn(i).fire)
564      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
565    ) {
566      datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B
567    }
568  }
569
570  // Write mask to sq
571  for (i <- 0 until StorePipelineWidth) {
572    // sq mask write s0
573    when (io.storeMaskIn(i).fire) {
574      // send data write req to data module
575      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
576      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
577      dataModule.io.mask.wen(i) := true.B
578    }
579  }
580
581  /**
582    * load forward query
583    *
584    * Check store queue for instructions that is older than the load.
585    * The response will be valid at the next cycle after req.
586    */
587  // check over all lq entries and forward data from the first matched store
588  for (i <- 0 until LoadPipelineWidth) {
589    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
590    // (1) if they have the same flag, we need to check range(tail, sqIdx)
591    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
592    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
593    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
594    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
595    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
596    val forwardMask = io.forward(i).sqIdxMask
597    // all addrvalid terms need to be checked
598    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
599    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
600    // vector store will consider all inactive || secondInvalid flows as valid
601    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
602    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
603    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
604
605    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
606    val storeSetHitVec = Mux(lfstEnable,
607      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
608      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
609    )
610
611    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
612    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
613    val canForward1 = forwardMask1 & allValidVec.asUInt
614    val canForward2 = forwardMask2 & allValidVec.asUInt
615    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
616
617    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
618      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
619    )
620
621    // do real fwd query (cam lookup in load_s1)
622    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
623    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
624
625    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
626    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
627    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
628    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
629
630    // vaddr cam result does not equal to paddr cam result
631    // replay needed
632    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
633    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
634    val vpmaskNotEqual = (
635      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
636      RegNext(needForward) &
637      GatedRegNext(addrRealValidVec.asUInt)
638    ) =/= 0.U
639    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
640    when (vaddrMatchFailed) {
641      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
642        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
643        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
644        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
645      );
646    }
647    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
648    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
649
650    // Fast forward mask will be generated immediately (load_s1)
651    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
652
653    // Forward result will be generated 1 cycle later (load_s2)
654    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
655    io.forward(i).forwardData := dataModule.io.forwardData(i)
656    // If addr match, data not ready, mark it as dataInvalid
657    // load_s1: generate dataInvalid in load_s1 to set fastUop
658    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
659    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
660    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
661    io.forward(i).dataInvalidFast := dataInvalidMask.orR
662
663    // make chisel happy
664    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
665    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
666    // make chisel happy
667    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
668    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
669    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
670
671    // If SSID match, address not ready, mark it as addrInvalid
672    // load_s2: generate addrInvalid
673    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
674    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
675    // make chisel happy
676    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
677    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
678    // make chisel happy
679    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
680    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
681    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
682
683    // load_s2
684    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
685    // check if vaddr forward mismatched
686    io.forward(i).matchInvalid := vaddrMatchFailed
687
688    // data invalid sq index
689    // check whether false fail
690    // check flag
691    val s2_differentFlag = RegNext(differentFlag)
692    val s2_enqPtrExt = RegNext(enqPtrExt(0))
693    val s2_deqPtrExt = RegNext(deqPtrExt(0))
694
695    // addr invalid sq index
696    // make chisel happy
697    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
698    addrInvalidMaskRegWire := addrInvalidMaskReg
699    val addrInvalidFlag = addrInvalidMaskRegWire.orR
700    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
701
702    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
703    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
704    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
705
706    // store-set content management
707    //                +-----------------------+
708    //                | Search a SSID for the |
709    //                |    load operation     |
710    //                +-----------------------+
711    //                           |
712    //                           V
713    //                 +-------------------+
714    //                 | load wait strict? |
715    //                 +-------------------+
716    //                           |
717    //                           V
718    //               +----------------------+
719    //            Set|                      |Clean
720    //               V                      V
721    //  +------------------------+   +------------------------------+
722    //  | Waiting for all older  |   | Wait until the corresponding |
723    //  |   stores operations    |   | older store operations       |
724    //  +------------------------+   +------------------------------+
725
726
727
728    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
729      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
730    } .elsewhen (addrInvalidFlag) {
731      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
732      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
733    } .otherwise {
734      // may be store inst has been written to sbuffer already.
735      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
736    }
737    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
738
739    // data invalid sq index
740    // make chisel happy
741    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
742    dataInvalidMaskRegWire := dataInvalidMaskReg
743    val dataInvalidFlag = dataInvalidMaskRegWire.orR
744
745    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
746    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
747    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
748
749    when (dataInvalidFlag) {
750      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
751      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
752    } .otherwise {
753      // may be store inst has been written to sbuffer already.
754      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
755    }
756  }
757
758  /**
759    * Memory mapped IO / other uncached operations
760    *
761    * States:
762    * (1) writeback from store units: mark as pending
763    * (2) when they reach ROB's head, they can be sent to uncache channel
764    * (3) response from uncache channel: mark as datavalidmask.wen
765    * (4) writeback to ROB (and other units): mark as writebacked
766    * (5) ROB commits the instruction: same as normal instructions
767    */
768  //(2) when they reach ROB's head, they can be sent to uncache channel
769  // TODO: CAN NOT deal with vector mmio now!
770  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
771  val uncacheState = RegInit(s_idle)
772  val uncacheUop = Reg(new DynInst)
773  switch(uncacheState) {
774    is(s_idle) {
775      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
776        uncacheState := s_req
777        uncacheUop := uop(deqPtr)
778      }
779    }
780    is(s_req) {
781      when (io.uncache.req.fire) {
782        when (io.uncacheOutstanding) {
783          uncacheState := s_wb
784        } .otherwise {
785          uncacheState := s_resp
786        }
787      }
788    }
789    is(s_resp) {
790      when(io.uncache.resp.fire) {
791        uncacheState := s_wb
792
793        when (io.uncache.resp.bits.nderr) {
794          uop(deqPtr).exceptionVec(storeAccessFault) := true.B
795        }
796      }
797    }
798    is(s_wb) {
799      when (io.mmioStout.fire || io.vecmmioStout.fire) {
800        uncacheState := s_wait
801      }
802    }
803    is(s_wait) {
804      // A MMIO store can always move cmtPtrExt as it must be ROB head
805      when(scommit > 0.U) {
806        uncacheState := s_idle // ready for next mmio
807      }
808    }
809  }
810  io.uncache.req.valid := uncacheState === s_req
811
812  io.uncache.req.bits := DontCare
813  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
814  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
815  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
816  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
817
818  // CBO op type check can be delayed for 1 cycle,
819  // as uncache op will not start in s_idle
820  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
821  val cbo_mmio_op = 0.U //TODO
822  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
823  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
824    io.uncache.req.bits.addr := DontCare // TODO
825    io.uncache.req.bits.data := paddrModule.io.rdata(0)
826    io.uncache.req.bits.mask := DontCare // TODO
827  }
828
829  io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
830
831  when(io.uncache.req.fire){
832    // mmio store should not be committed until uncache req is sent
833    pending(deqPtr) := false.B
834
835    XSDebug(
836      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
837      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
838      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
839      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
840      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
841    )
842  }
843
844  // (3) response from uncache channel: mark as datavalid
845  io.uncache.resp.ready := true.B
846
847  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
848  io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr)
849  io.mmioStout.bits.uop := uncacheUop
850  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
851  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
852  io.mmioStout.bits.debug.isMMIO := true.B
853  io.mmioStout.bits.debug.paddr := DontCare
854  io.mmioStout.bits.debug.isPerfCnt := false.B
855  io.mmioStout.bits.debug.vaddr := DontCare
856  // Remove MMIO inst from store queue after MMIO request is being sent
857  // That inst will be traced by uncache state machine
858  when (io.mmioStout.fire) {
859    allocated(deqPtr) := false.B
860  }
861
862  // (4) or vector store:
863  // TODO: implement it!
864  io.vecmmioStout := DontCare
865  io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr)
866  io.vecmmioStout.bits.uop := uop(deqPtr)
867  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
868  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
869  io.vecmmioStout.bits.debug.isMMIO := true.B
870  io.vecmmioStout.bits.debug.paddr := DontCare
871  io.vecmmioStout.bits.debug.isPerfCnt := false.B
872  io.vecmmioStout.bits.debug.vaddr := DontCare
873  // Remove MMIO inst from store queue after MMIO request is being sent
874  // That inst will be traced by uncache state machine
875  when (io.vecmmioStout.fire) {
876    allocated(deqPtr) := false.B
877  }
878
879  /**
880    * ROB commits store instructions (mark them as committed)
881    *
882    * (1) When store commits, mark it as committed.
883    * (2) They will not be cancelled and can be sent to lower level.
884    */
885  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
886   "should not commit instruction when MMIO has not been finished\n")
887
888  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
889  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
890  dontTouch(commitVec)
891  // TODO: Deal with vector store mmio
892  for (i <- 0 until CommitWidth) {
893    when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
894      // don't commit while doing misalign
895      if (i == 0){
896        // TODO: fixme for vector mmio
897        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
898          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
899            committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B)
900            commitVec(0) := Mux(misalignBlock, false.B, true.B)
901          }
902        }
903      } else {
904        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
905          committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value))
906          commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1))
907        }
908      }
909    }
910  }
911
912  commitCount := PopCount(commitVec)
913  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
914
915  // committed stores will not be cancelled and can be sent to lower level.
916  // remove retired insts from sq, add retired store to sbuffer
917
918  // Read data from data module
919  // As store queue grows larger and larger, time needed to read data from data
920  // module keeps growing higher. Now we give data read a whole cycle.
921  for (i <- 0 until EnsbufferWidth) {
922    val ptr = rdataPtrExt(i).value
923    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
924    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
925      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
926    }
927    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
928    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
929    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
930    if (i == 0) {
931      // use dataBuffer write port 0 to writeback missaligned store out
932      dataBuffer.io.enq(i).valid := Mux(
933        doMisalignSt,
934        io.maControl.control.writeSb,
935        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
936      )
937    } else {
938      dataBuffer.io.enq(i).valid := Mux(
939        doMisalignSt,
940        false.B,
941        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
942      )
943    }
944    // Note that store data/addr should both be valid after store's commit
945    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr)))
946    dataBuffer.io.enq(i).bits.addr     := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i))
947    dataBuffer.io.enq(i).bits.vaddr    := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i))
948    dataBuffer.io.enq(i).bits.data     := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data)
949    dataBuffer.io.enq(i).bits.mask     := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask)
950    dataBuffer.io.enq(i).bits.wline    := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i))
951    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
952    dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr))
953    // when scalar has exception, will also not write into sbuffer
954    dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid)
955//    dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr)
956  }
957
958  // Send data stored in sbufferReqBitsReg to sbuffer
959  for (i <- 0 until EnsbufferWidth) {
960    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
961    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
962    // Write line request should have all 1 mask
963    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR))
964    io.sbuffer(i).bits := DontCare
965    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
966    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
967    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
968    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
969    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
970    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
971    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
972    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
973    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
974    // Before data write finish, sbuffer is unable to provide store to load
975    // forward data. As an workaround, deqPtrExt and allocated flag update
976    // is delayed so that load can get the right data from store queue.
977    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
978    when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) {
979      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
980      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
981    }
982  }
983
984  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
985  // Flags are used to record whether there are any exceptions when the queue is displayed.
986  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
987  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
988    val ptr                 = rdataPtrExt(i).value
989    val mmioStall           = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
990    val exceptionVliad      = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr)
991    (exceptionVliad, uop(ptr))
992  }
993
994  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
995  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
996  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
997  // Just select the last Uop tah has an exception.
998  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
999  // If the last Uop with an exception is the LastUop of this instruction, the flag is not set.
1000  val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop
1001
1002  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1003    val ptr                   = rdataPtrExt(i).value
1004    val mmioStall             = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1005    val vecLastUopCommit      = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) &&
1006                                allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr)
1007    vecLastUopCommit
1008  }.reduce(_ || _)
1009
1010  // When a LastUop with an exception instruction is commited, clear the flag.
1011  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) {
1012    vecExceptionFlag.valid  := true.B
1013    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1014  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1015    vecExceptionFlag.valid  := false.B
1016    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1017  }
1018
1019  // A dumb defensive code. The flag should not be placed for a long period of time.
1020  // A relatively large timeout period, not have any special meaning.
1021  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1022  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1023
1024  // Initialize when unenabled difftest.
1025  for (i <- 0 until EnsbufferWidth) {
1026    io.sbufferVecDifftestInfo(i) := DontCare
1027  }
1028  // Consistent with the logic above.
1029  // Only the vector store difftest required signal is separated from the rtl code.
1030  if (env.EnableDifftest) {
1031    for (i <- 0 until EnsbufferWidth) {
1032      val ptr = rdataPtrExt(i).value
1033      val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1034      difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall
1035      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1036    }
1037    for (i <- 0 until EnsbufferWidth) {
1038      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1039      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1040
1041      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1042    }
1043  }
1044
1045  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1046  if (coreParams.dcacheParametersOpt.isEmpty) {
1047    for (i <- 0 until EnsbufferWidth) {
1048      val ptr = deqPtrExt(i).value
1049      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1050      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1051      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1052      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1053      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1054      when (wen) {
1055        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1056      }
1057    }
1058  }
1059
1060  // Read vaddr for mem exception
1061  io.exceptionAddr.vaddr  := exceptionBuffer.io.exceptionAddr.vaddr
1062  io.exceptionAddr.gpaddr  := exceptionBuffer.io.exceptionAddr.gpaddr
1063  io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart
1064  io.exceptionAddr.vl     := exceptionBuffer.io.exceptionAddr.vl
1065
1066  // vector commit or replay from
1067  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1068  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1069  for (i <- 0 until StoreQueueSize) {
1070    val fbk = io.vecFeedback
1071    for (j <- 0 until VecStorePipelineWidth) {
1072      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1073        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1074    }
1075    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1076
1077    when (vecCommit(i)) {
1078      vecMbCommit(i) := true.B
1079    }
1080  }
1081
1082  // misprediction recovery / exception redirect
1083  // invalidate sq term using robIdx
1084  for (i <- 0 until StoreQueueSize) {
1085    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1086      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1087    when (needCancel(i)) {
1088      allocated(i) := false.B
1089    }
1090  }
1091
1092 /**
1093* update pointers
1094**/
1095  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1096    v && x.bits.robIdx.needFlush(io.brqRedirect)
1097  }
1098  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1099    Mux(v, req.bits.numLsElem, 0.U)
1100  }
1101  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1102
1103  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1104  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1105  val enqNumber = validVStoreFlow.reduce(_ + _)
1106
1107  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1108  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1109
1110  when (lastlastCycleRedirect) {
1111    // we recover the pointers in 2 cycle after redirect for better timing
1112    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1113  }.otherwise {
1114    // lastCycleRedirect.valid or nornal case
1115    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1116    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1117  }
1118  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1119
1120  exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt
1121  // special case (store miss align) in updating ptr
1122  when (doMisalignSt) {
1123    when (!finishMisalignSt) {
1124      // dont move deqPtr and rdataPtr until all split store has been written to sb
1125      deqPtrExtNext := deqPtrExt
1126      rdataPtrExtNext := rdataPtrExt
1127    } .otherwise {
1128      // remove this unaligned store from sq
1129      allocated(deqPtr) := false.B
1130      committed(deqPtr) := true.B
1131      cmtPtrExt := cmtPtrExt.map(_ + 1.U)
1132      deqPtrExtNext := deqPtrExt.map(_ + 1.U)
1133      rdataPtrExtNext := rdataPtrExt.map(_ + 1.U)
1134    }
1135  }
1136
1137  deqPtrExt := deqPtrExtNext
1138  rdataPtrExt := rdataPtrExtNext
1139
1140  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1141
1142  // If redirect at T0, sqCancelCnt is at T2
1143  io.sqCancelCnt := redirectCancelCount
1144  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1145  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1146  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1147  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1148
1149  val valid_cnt = PopCount(allocated)
1150  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1151
1152  // io.sqempty will be used by sbuffer
1153  // We delay it for 1 cycle for better timing
1154  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1155  // for 1 cycle will also promise that sq is empty in that cycle
1156  io.sqEmpty := RegNext(
1157    enqPtrExt(0).value === deqPtrExt(0).value &&
1158    enqPtrExt(0).flag === deqPtrExt(0).flag
1159  )
1160  // perf counter
1161  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1162  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1163  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1164  io.sqFull := !allowEnqueue
1165  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1166  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
1167  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1168  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1169  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1170  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1171  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1172
1173  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1174  val perfEvents = Seq(
1175    ("mmioCycle      ", uncacheState =/= s_idle),
1176    ("mmioCnt        ", io.uncache.req.fire),
1177    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1178    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1179    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1180    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1181    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1182    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1183  )
1184  generatePerfEvent()
1185
1186  // debug info
1187  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1188
1189  def PrintFlag(flag: Bool, name: String): Unit = {
1190    when(flag) {
1191      XSDebug(false, true.B, name)
1192    }.otherwise {
1193      XSDebug(false, true.B, " ")
1194    }
1195  }
1196
1197  for (i <- 0 until StoreQueueSize) {
1198    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1199      uop(i).pc,
1200      debug_vaddr(i),
1201      debug_paddr(i),
1202      debug_data(i)
1203    )
1204    PrintFlag(allocated(i), "a")
1205    PrintFlag(allocated(i) && addrvalid(i), "a")
1206    PrintFlag(allocated(i) && datavalid(i), "d")
1207    PrintFlag(allocated(i) && committed(i), "c")
1208    PrintFlag(allocated(i) && pending(i), "p")
1209    PrintFlag(allocated(i) && mmio(i), "m")
1210    XSDebug(false, true.B, "\n")
1211  }
1212
1213}
1214