1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(DataBits.W) 56 val mask = UInt((DataBits/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59} 60 61// Store Queue 62class StoreQueue(implicit p: Parameters) extends XSModule 63 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(8.W)) 66 val enq = new SqEnqIO 67 val brqRedirect = Flipped(ValidIO(new Redirect)) 68 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 69 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 70 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 71 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 72 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 73 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 74 val rob = Flipped(new RobLsqIO) 75 val uncache = new DCacheWordIO 76 // val refill = Flipped(Valid(new DCacheLineReq )) 77 val exceptionAddr = new ExceptionAddrIO 78 val sqempty = Output(Bool()) 79 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 80 val sqFull = Output(Bool()) 81 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 82 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 83 }) 84 85 println("StoreQueue: size:" + StoreQueueSize) 86 87 // data modules 88 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 89 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 90 val dataModule = Module(new SQDataModule( 91 numEntries = StoreQueueSize, 92 numRead = EnsbufferWidth, 93 numWrite = StorePipelineWidth, 94 numForward = StorePipelineWidth 95 )) 96 dataModule.io := DontCare 97 val paddrModule = Module(new SQAddrModule( 98 dataWidth = PAddrBits, 99 numEntries = StoreQueueSize, 100 numRead = EnsbufferWidth, 101 numWrite = StorePipelineWidth, 102 numForward = StorePipelineWidth 103 )) 104 paddrModule.io := DontCare 105 val vaddrModule = Module(new SQAddrModule( 106 dataWidth = VAddrBits, 107 numEntries = StoreQueueSize, 108 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 109 numWrite = StorePipelineWidth, 110 numForward = StorePipelineWidth 111 )) 112 vaddrModule.io := DontCare 113 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 114 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 115 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 116 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 117 118 // state & misc 119 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 120 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 121 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 122 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 123 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 124 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 125 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 126 127 // ptr 128 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 129 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 130 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 131 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 132 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 133 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 134 135 val enqPtr = enqPtrExt(0).value 136 val deqPtr = deqPtrExt(0).value 137 val cmtPtr = cmtPtrExt(0).value 138 139 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 140 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 141 142 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 143 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 144 145 val commitCount = RegNext(io.rob.scommit) 146 147 // Read dataModule 148 // rdataPtrExtNext to rdataPtrExtNext+StorePipelineWidth entries will be read from dataModule 149 val rdataPtrExtNext = PriorityMuxDefault(Seq.tabulate(EnsbufferWidth)(i => 150 dataBuffer.io.enq(i).fire -> VecInit(rdataPtrExt.map(_ + (i + 1).U)) 151 ).reverse :+ (io.mmioStout.fire -> VecInit(deqPtrExt.map(_ + 1.U))), rdataPtrExt) 152 // deqPtrExtNext traces which inst is about to leave store queue 153 val deqPtrExtNext = PriorityMuxDefault(Seq.tabulate(EnsbufferWidth)(i => 154 io.sbuffer(i).fire -> VecInit(deqPtrExt.map(_ + (i + 1).U)) 155 ).reverse :+ (io.mmioStout.fire -> VecInit(deqPtrExt.map(_ + 1.U))), deqPtrExt) 156 io.sqDeq := RegNext(PriorityMuxDefault(Seq.tabulate(EnsbufferWidth)(i => 157 io.sbuffer(i).fire -> (i + 1).U 158 ).reverse :+ (io.mmioStout.fire -> 1.U), 0.U)) 159 for (i <- 0 until EnsbufferWidth) { 160 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 161 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 162 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 163 } 164 165 // no inst will be committed 1 cycle before tval update 166 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 167 168 /** 169 * Enqueue at dispatch 170 * 171 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 172 */ 173 io.enq.canAccept := allowEnqueue 174 val canEnqueue = io.enq.req.map(_.valid) 175 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 176 for (i <- 0 until io.enq.req.length) { 177 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 178 val sqIdx = enqPtrExt(offset) 179 val index = io.enq.req(i).bits.sqIdx.value 180 when (canEnqueue(i) && !enqCancel(i)) { 181 uop(index).robIdx := io.enq.req(i).bits.robIdx 182 allocated(index) := true.B 183 datavalid(index) := false.B 184 addrvalid(index) := false.B 185 committed(index) := false.B 186 pending(index) := false.B 187 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 188 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 189 } 190 io.enq.resp(i) := sqIdx 191 } 192 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 193 194 /** 195 * Update issuePtr when issue from rs 196 */ 197 // update issuePtr 198 val IssuePtrMoveStride = 4 199 require(IssuePtrMoveStride >= 2) 200 201 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 202 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 203 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 204 issuePtrExt := nextIssuePtr 205 206 when (io.brqRedirect.valid) { 207 issuePtrExt := Mux( 208 isAfter(cmtPtrExt(0), deqPtrExt(0)), 209 cmtPtrExt(0), 210 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 211 ) 212 } 213 // send issuePtrExt to rs 214 // io.issuePtrExt := cmtPtrExt(0) 215 io.issuePtrExt := issuePtrExt 216 217 /** 218 * Writeback store from store units 219 * 220 * Most store instructions writeback to regfile in the previous cycle. 221 * However, 222 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 223 * (in this way it will trigger an exception when it reaches ROB's head) 224 * instead of pending to avoid sending them to lower level. 225 * (2) For an mmio instruction without exceptions, we mark it as pending. 226 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 227 * Upon receiving the response, StoreQueue writes back the instruction 228 * through arbiter with store units. It will later commit as normal. 229 */ 230 231 // Write addr to sq 232 for (i <- 0 until StorePipelineWidth) { 233 paddrModule.io.wen(i) := false.B 234 vaddrModule.io.wen(i) := false.B 235 dataModule.io.mask.wen(i) := false.B 236 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 237 when (io.storeIn(i).fire()) { 238 val addr_valid = !io.storeIn(i).bits.miss 239 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 240 // pending(stWbIndex) := io.storeIn(i).bits.mmio 241 242 dataModule.io.mask.waddr(i) := stWbIndex 243 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 244 dataModule.io.mask.wen(i) := addr_valid 245 246 paddrModule.io.waddr(i) := stWbIndex 247 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 248 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 249 paddrModule.io.wen(i) := addr_valid 250 251 vaddrModule.io.waddr(i) := stWbIndex 252 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 253 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 254 vaddrModule.io.wen(i) := addr_valid 255 256 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 257 258 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 259 260 uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl 261 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 262 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 263 io.storeIn(i).bits.uop.sqIdx.value, 264 io.storeIn(i).bits.uop.cf.pc, 265 io.storeIn(i).bits.miss, 266 io.storeIn(i).bits.vaddr, 267 io.storeIn(i).bits.paddr, 268 io.storeIn(i).bits.mmio 269 ) 270 } 271 272 // re-replinish mmio, for pma/pmp will get mmio one cycle later 273 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 274 val stWbIndexReg = RegNext(stWbIndex) 275 when (storeInFireReg) { 276 pending(stWbIndexReg) := io.storeInRe(i).mmio 277 mmio(stWbIndexReg) := io.storeInRe(i).mmio 278 } 279 280 when(vaddrModule.io.wen(i)){ 281 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 282 } 283 } 284 285 // Write data to sq 286 for (i <- 0 until StorePipelineWidth) { 287 dataModule.io.data.wen(i) := false.B 288 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 289 when (io.storeDataIn(i).fire()) { 290 datavalid(stWbIndex) := true.B 291 292 dataModule.io.data.waddr(i) := stWbIndex 293 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 294 0.U, 295 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 296 ) 297 dataModule.io.data.wen(i) := true.B 298 299 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 300 301 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 302 io.storeDataIn(i).bits.uop.sqIdx.value, 303 io.storeDataIn(i).bits.uop.cf.pc, 304 io.storeDataIn(i).bits.data, 305 dataModule.io.data.wdata(i) 306 ) 307 } 308 } 309 310 /** 311 * load forward query 312 * 313 * Check store queue for instructions that is older than the load. 314 * The response will be valid at the next cycle after req. 315 */ 316 // check over all lq entries and forward data from the first matched store 317 for (i <- 0 until LoadPipelineWidth) { 318 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 319 // (1) if they have the same flag, we need to check range(tail, sqIdx) 320 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 321 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 322 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 323 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 324 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 325 val forwardMask = io.forward(i).sqIdxMask 326 // all addrvalid terms need to be checked 327 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 328 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 329 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 330 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 331 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 332 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 333 334 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 335 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 336 ) 337 338 // do real fwd query (cam lookup in load_s1) 339 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 340 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 341 342 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 343 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 344 345 // vaddr cam result does not equal to paddr cam result 346 // replay needed 347 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 348 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 349 val vpmaskNotEqual = ( 350 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 351 RegNext(needForward) & 352 RegNext(addrValidVec.asUInt) 353 ) =/= 0.U 354 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 355 when (vaddrMatchFailed) { 356 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 357 RegNext(io.forward(i).uop.cf.pc), 358 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 359 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 360 ); 361 } 362 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 363 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 364 365 // Fast forward mask will be generated immediately (load_s1) 366 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 367 368 // Forward result will be generated 1 cycle later (load_s2) 369 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 370 io.forward(i).forwardData := dataModule.io.forwardData(i) 371 372 // If addr match, data not ready, mark it as dataInvalid 373 // load_s1: generate dataInvalid in load_s1 to set fastUop 374 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 375 val dataInvalidSqIdxReg = RegNext(PriorityEncoder(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward)) 376 // load_s2 377 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 378 379 // load_s2 380 // check if vaddr forward mismatched 381 io.forward(i).matchInvalid := vaddrMatchFailed 382 io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg 383 } 384 385 /** 386 * Memory mapped IO / other uncached operations 387 * 388 * States: 389 * (1) writeback from store units: mark as pending 390 * (2) when they reach ROB's head, they can be sent to uncache channel 391 * (3) response from uncache channel: mark as datavalidmask.wen 392 * (4) writeback to ROB (and other units): mark as writebacked 393 * (5) ROB commits the instruction: same as normal instructions 394 */ 395 //(2) when they reach ROB's head, they can be sent to uncache channel 396 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 397 val uncacheState = RegInit(s_idle) 398 switch(uncacheState) { 399 is(s_idle) { 400 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 401 uncacheState := s_req 402 } 403 } 404 is(s_req) { 405 when(io.uncache.req.fire()) { 406 uncacheState := s_resp 407 } 408 } 409 is(s_resp) { 410 when(io.uncache.resp.fire()) { 411 uncacheState := s_wb 412 } 413 } 414 is(s_wb) { 415 when (io.mmioStout.fire()) { 416 uncacheState := s_wait 417 } 418 } 419 is(s_wait) { 420 when(commitCount > 0.U) { 421 uncacheState := s_idle // ready for next mmio 422 } 423 } 424 } 425 io.uncache.req.valid := uncacheState === s_req 426 427 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 428 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 429 io.uncache.req.bits.data := dataModule.io.rdata(0).data 430 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 431 432 // CBO op type check can be delayed for 1 cycle, 433 // as uncache op will not start in s_idle 434 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 435 val cbo_mmio_op = 0.U //TODO 436 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 437 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 438 io.uncache.req.bits.addr := DontCare // TODO 439 io.uncache.req.bits.data := paddrModule.io.rdata(0) 440 io.uncache.req.bits.mask := DontCare // TODO 441 } 442 443 io.uncache.req.bits.id := DontCare 444 io.uncache.req.bits.instrtype := DontCare 445 446 when(io.uncache.req.fire()){ 447 // mmio store should not be committed until uncache req is sent 448 pending(deqPtr) := false.B 449 450 XSDebug( 451 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 452 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 453 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 454 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 455 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 456 ) 457 } 458 459 // (3) response from uncache channel: mark as datavalid 460 io.uncache.resp.ready := true.B 461 462 // (4) writeback to ROB (and other units): mark as writebacked 463 io.mmioStout.valid := uncacheState === s_wb 464 io.mmioStout.bits.uop := uop(deqPtr) 465 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 466 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 467 io.mmioStout.bits.redirectValid := false.B 468 io.mmioStout.bits.redirect := DontCare 469 io.mmioStout.bits.debug.isMMIO := true.B 470 io.mmioStout.bits.debug.paddr := DontCare 471 io.mmioStout.bits.debug.isPerfCnt := false.B 472 io.mmioStout.bits.fflags := DontCare 473 io.mmioStout.bits.debug.vaddr := DontCare 474 // Remove MMIO inst from store queue after MMIO request is being sent 475 // That inst will be traced by uncache state machine 476 when (io.mmioStout.fire()) { 477 allocated(deqPtr) := false.B 478 } 479 480 /** 481 * ROB commits store instructions (mark them as committed) 482 * 483 * (1) When store commits, mark it as committed. 484 * (2) They will not be cancelled and can be sent to lower level. 485 */ 486 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 487 "should not commit instruction when MMIO has not been finished\n") 488 for (i <- 0 until CommitWidth) { 489 when (commitCount > i.U) { // MMIO inst is not in progress 490 if(i == 0){ 491 // MMIO inst should not update committed flag 492 // Note that commit count has been delayed for 1 cycle 493 when(uncacheState === s_idle){ 494 committed(cmtPtrExt(0).value) := true.B 495 } 496 } else { 497 committed(cmtPtrExt(i).value) := true.B 498 } 499 } 500 } 501 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 502 503 // committed stores will not be cancelled and can be sent to lower level. 504 // remove retired insts from sq, add retired store to sbuffer 505 506 // Read data from data module 507 // As store queue grows larger and larger, time needed to read data from data 508 // module keeps growing higher. Now we give data read a whole cycle. 509 510 val mmioStall = mmio(rdataPtrExt(0).value) 511 for (i <- 0 until EnsbufferWidth) { 512 val ptr = rdataPtrExt(i).value 513 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 514 // Note that store data/addr should both be valid after store's commit 515 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 516 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 517 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 518 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 519 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 520 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 521 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 522 } 523 524 // Send data stored in sbufferReqBitsReg to sbuffer 525 for (i <- 0 until EnsbufferWidth) { 526 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 527 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 528 // Write line request should have all 1 mask 529 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 530 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 531 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 532 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 533 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 534 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 535 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 536 io.sbuffer(i).bits.id := DontCare 537 io.sbuffer(i).bits.instrtype := DontCare 538 539 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 540 when (io.sbuffer(i).fire()) { 541 allocated(ptr) := false.B 542 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 543 } 544 } 545 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 546 if (coreParams.dcacheParametersOpt.isEmpty) { 547 for (i <- 0 until EnsbufferWidth) { 548 val ptr = deqPtrExt(i).value 549 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 550 fakeRAM.clk := clock 551 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 552 fakeRAM.rIdx := 0.U 553 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 554 fakeRAM.wdata := dataModule.io.rdata(i).data 555 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 556 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 557 } 558 } 559 560 if (env.EnableDifftest) { 561 for (i <- 0 until EnsbufferWidth) { 562 val storeCommit = io.sbuffer(i).fire() 563 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 564 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 565 val wmask = io.sbuffer(i).bits.mask 566 567 val difftest = Module(new DifftestStoreEvent) 568 difftest.io.clock := clock 569 difftest.io.coreid := io.hartId 570 difftest.io.index := i.U 571 difftest.io.valid := RegNext(RegNext(storeCommit)) 572 difftest.io.storeAddr := RegNext(RegNext(waddr)) 573 difftest.io.storeData := RegNext(RegNext(wdata)) 574 difftest.io.storeMask := RegNext(RegNext(wmask)) 575 } 576 } 577 578 // Read vaddr for mem exception 579 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 580 581 // misprediction recovery / exception redirect 582 // invalidate sq term using robIdx 583 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 584 for (i <- 0 until StoreQueueSize) { 585 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 586 when (needCancel(i)) { 587 allocated(i) := false.B 588 } 589 } 590 591 /** 592 * update pointers 593 */ 594 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 595 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 596 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 597 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 598 when (lastCycleRedirect) { 599 // we recover the pointers in the next cycle after redirect 600 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 601 }.otherwise { 602 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 603 } 604 605 deqPtrExt := deqPtrExtNext 606 rdataPtrExt := rdataPtrExtNext 607 608 val dequeueCount = PriorityMuxDefault(Seq.tabulate(EnsbufferWidth)(i => io.sbuffer(i).fire -> (i + 1).U).reverse :+ (io.mmioStout.fire -> 1.U), 0.U) 609 610 // If redirect at T0, sqCancelCnt is at T2 611 io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 612 613 // io.sqempty will be used by sbuffer 614 // We delay it for 1 cycle for better timing 615 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 616 // for 1 cycle will also promise that sq is empty in that cycle 617 io.sqempty := RegNext( 618 enqPtrExt(0).value === deqPtrExt(0).value && 619 enqPtrExt(0).flag === deqPtrExt(0).flag 620 ) 621 622 // perf counter 623 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 624 io.sqFull := !allowEnqueue 625 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 626 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 627 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 628 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 629 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 630 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 631 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 632 633 val perfEvents = Seq( 634 ("mmioCycle ", uncacheState =/= s_idle ), 635 ("mmioCnt ", io.uncache.req.fire() ), 636 ("mmio_wb_success", io.mmioStout.fire() ), 637 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready ), 638 ("stq_1_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U)) ), 639 ("stq_2_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U)) ), 640 ("stq_3_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))), 641 ("stq_4_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U)) ), 642 ) 643 generatePerfEvent() 644 645 // debug info 646 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 647 648 def PrintFlag(flag: Bool, name: String): Unit = { 649 when(flag) { 650 XSDebug(false, true.B, name) 651 }.otherwise { 652 XSDebug(false, true.B, " ") 653 } 654 } 655 656 for (i <- 0 until StoreQueueSize) { 657 XSDebug(i + ": pc %x va %x pa %x data %x ", 658 uop(i).cf.pc, 659 debug_vaddr(i), 660 debug_paddr(i), 661 debug_data(i) 662 ) 663 PrintFlag(allocated(i), "a") 664 PrintFlag(allocated(i) && addrvalid(i), "a") 665 PrintFlag(allocated(i) && datavalid(i), "d") 666 PrintFlag(allocated(i) && committed(i), "c") 667 PrintFlag(allocated(i) && pending(i), "p") 668 PrintFlag(allocated(i) && mmio(i), "m") 669 XSDebug(false, true.B, "\n") 670 } 671 672} 673