1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 }) 47 48 // data modules 49 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 50 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 51 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 52 dataModule.io := DontCare 53 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 54 vaddrModule.io := DontCare 55 56 // state & misc 57 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 58 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 59 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 60 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 61 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 62 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 63 64 // ptr 65 require(StoreQueueSize > RenameWidth) 66 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 67 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 68 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 69 val allowEnqueue = RegInit(true.B) 70 71 val enqPtr = enqPtrExt(0).value 72 val deqPtr = deqPtrExt(0).value 73 74 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 75 val headMask = UIntToMask(enqPtr, StoreQueueSize) 76 77 // Read dataModule 78 // deqPtr and deqPtr+1 entry will be read from dataModule 79 val dataModuleRead = dataModule.io.rdata 80 for (i <- 0 until StorePipelineWidth) { 81 dataModule.io.raddr(i) := deqPtrExt(i).value 82 } 83 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 84 85 /** 86 * Enqueue at dispatch 87 * 88 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 89 */ 90 io.enq.canAccept := allowEnqueue 91 for (i <- 0 until RenameWidth) { 92 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 93 val sqIdx = enqPtrExt(offset) 94 val index = sqIdx.value 95 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 96 uop(index) := io.enq.req(i).bits 97 allocated(index) := true.B 98 datavalid(index) := false.B 99 writebacked(index) := false.B 100 commited(index) := false.B 101 pending(index) := false.B 102 } 103 io.enq.resp(i) := sqIdx 104 } 105 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 106 107 /** 108 * Writeback store from store units 109 * 110 * Most store instructions writeback to regfile in the previous cycle. 111 * However, 112 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 113 * (in this way it will trigger an exception when it reaches ROB's head) 114 * instead of pending to avoid sending them to lower level. 115 * (2) For an mmio instruction without exceptions, we mark it as pending. 116 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 117 * Upon receiving the response, StoreQueue writes back the instruction 118 * through arbiter with store units. It will later commit as normal. 119 */ 120 for (i <- 0 until StorePipelineWidth) { 121 dataModule.io.wen(i) := false.B 122 vaddrModule.io.wen(i) := false.B 123 when (io.storeIn(i).fire()) { 124 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 125 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 126 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 127 pending(stWbIndex) := io.storeIn(i).bits.mmio 128 129 val storeWbData = Wire(new SQDataEntry) 130 storeWbData := DontCare 131 storeWbData.paddr := io.storeIn(i).bits.paddr 132 storeWbData.mask := io.storeIn(i).bits.mask 133 storeWbData.data := io.storeIn(i).bits.data 134 dataModule.io.waddr(i) := stWbIndex 135 dataModule.io.wdata(i) := storeWbData 136 dataModule.io.wen(i) := true.B 137 138 vaddrModule.io.waddr(i) := stWbIndex 139 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 140 vaddrModule.io.wen(i) := true.B 141 142 mmio(stWbIndex) := io.storeIn(i).bits.mmio 143 144 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 145 io.storeIn(i).bits.uop.sqIdx.value, 146 io.storeIn(i).bits.uop.cf.pc, 147 io.storeIn(i).bits.vaddr, 148 io.storeIn(i).bits.paddr, 149 io.storeIn(i).bits.data, 150 io.storeIn(i).bits.mmio 151 ) 152 } 153 } 154 155 /** 156 * load forward query 157 * 158 * Check store queue for instructions that is older than the load. 159 * The response will be valid at the next cycle after req. 160 */ 161 // check over all lq entries and forward data from the first matched store 162 for (i <- 0 until LoadPipelineWidth) { 163 io.forward(i).forwardMask := 0.U(8.W).asBools 164 io.forward(i).forwardData := DontCare 165 166 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 167 // (1) if they have the same flag, we need to check range(tail, sqIdx) 168 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 169 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 170 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 171 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 172 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 173 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 174 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 175 for (j <- 0 until StoreQueueSize) { 176 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 177 } 178 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 179 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 180 181 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 182 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 183 ) 184 185 // do real fwd query 186 dataModule.io.forwardQuery( 187 numForward = i, 188 paddr = io.forward(i).paddr, 189 needForward1 = needForward1, 190 needForward2 = needForward2 191 ) 192 193 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 194 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 195 } 196 197 /** 198 * Memory mapped IO / other uncached operations 199 * 200 * States: 201 * (1) writeback from store units: mark as pending 202 * (2) when they reach ROB's head, they can be sent to uncache channel 203 * (3) response from uncache channel: mark as datavalid 204 * (4) writeback to ROB (and other units): mark as writebacked 205 * (5) ROB commits the instruction: same as normal instructions 206 */ 207 //(2) when they reach ROB's head, they can be sent to uncache channel 208 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 209 io.commits.info(0).commitType === CommitType.STORE && 210 io.roqDeqPtr === uop(deqPtr).roqIdx && 211 !io.commits.isWalk 212 213 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 214 io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0) 215 io.uncache.req.bits.data := dataModule.io.rdata(0).data 216 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 217 218 io.uncache.req.bits.id := DontCare 219 220 when(io.uncache.req.fire()){ 221 pending(deqPtr) := false.B 222 223 XSDebug( 224 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 225 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 226 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 227 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 228 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 229 ) 230 } 231 232 // (3) response from uncache channel: mark as datavalid 233 io.uncache.resp.ready := true.B 234 when (io.uncache.resp.fire()) { 235 datavalid(deqPtr) := true.B 236 } 237 238 // (4) writeback to ROB (and other units): mark as writebacked 239 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 240 io.mmioStout.bits.uop := uop(deqPtr) 241 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 242 io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr) 243 io.mmioStout.bits.redirectValid := false.B 244 io.mmioStout.bits.redirect := DontCare 245 io.mmioStout.bits.brUpdate := DontCare 246 io.mmioStout.bits.debug.isMMIO := true.B 247 io.mmioStout.bits.debug.isPerfCnt := false.B 248 io.mmioStout.bits.fflags := DontCare 249 when (io.mmioStout.fire()) { 250 writebacked(deqPtr) := true.B 251 allocated(deqPtr) := false.B 252 } 253 254 /** 255 * ROB commits store instructions (mark them as commited) 256 * 257 * (1) When store commits, mark it as commited. 258 * (2) They will not be cancelled and can be sent to lower level. 259 */ 260 for (i <- 0 until CommitWidth) { 261 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 262 when (storeCommit) { 263 commited(io.commits.info(i).sqIdx.value) := true.B 264 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 265 } 266 } 267 268 // Commited stores will not be cancelled and can be sent to lower level. 269 // remove retired insts from sq, add retired store to sbuffer 270 for (i <- 0 until StorePipelineWidth) { 271 val ptr = deqPtrExt(i).value 272 val ismmio = mmio(ptr) 273 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !ismmio 274 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 275 io.sbuffer(i).bits.addr := dataModuleRead(i).paddr 276 io.sbuffer(i).bits.data := dataModuleRead(i).data 277 io.sbuffer(i).bits.mask := dataModuleRead(i).mask 278 io.sbuffer(i).bits.id := DontCare 279 280 when (io.sbuffer(i).fire()) { 281 allocated(ptr) := false.B 282 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 283 } 284 } 285 when (io.sbuffer(1).fire()) { 286 assert(io.sbuffer(0).fire()) 287 } 288 289 if (!env.FPGAPlatform) { 290 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 291 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 292 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 293 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 294 295 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 296 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 297 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 298 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 299 } 300 301 // Read vaddr for mem exception 302 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 303 304 // misprediction recovery / exception redirect 305 // invalidate sq term using robIdx 306 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 307 for (i <- 0 until StoreQueueSize) { 308 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 309 when (needCancel(i)) { 310 allocated(i) := false.B 311 } 312 } 313 314 /** 315 * update pointers 316 */ 317 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 318 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 319 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 320 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 321 when (lastCycleRedirect) { 322 // we recover the pointers in the next cycle after redirect 323 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 324 }.otherwise { 325 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 326 } 327 328 deqPtrExt := Mux(io.sbuffer(1).fire(), 329 VecInit(deqPtrExt.map(_ + 2.U)), 330 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 331 VecInit(deqPtrExt.map(_ + 1.U)), 332 deqPtrExt 333 ) 334 ) 335 336 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 337 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 338 val trueValidCounter = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 339 validCounter := Mux(lastLastCycleRedirect, 340 trueValidCounter - dequeueCount, 341 validCounter + enqNumber - dequeueCount 342 ) 343 344 allowEnqueue := Mux(io.brqRedirect.valid, 345 false.B, 346 Mux(lastLastCycleRedirect, 347 trueValidCounter <= (StoreQueueSize - RenameWidth).U, 348 validCounter + enqNumber <= (StoreQueueSize - RenameWidth).U 349 ) 350 ) 351 352 // debug info 353 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 354 355 def PrintFlag(flag: Bool, name: String): Unit = { 356 when(flag) { 357 XSDebug(false, true.B, name) 358 }.otherwise { 359 XSDebug(false, true.B, " ") 360 } 361 } 362 363 for (i <- 0 until StoreQueueSize) { 364 if (i % 4 == 0) XSDebug("") 365 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 366 PrintFlag(allocated(i), "a") 367 PrintFlag(allocated(i) && datavalid(i), "v") 368 PrintFlag(allocated(i) && writebacked(i), "w") 369 PrintFlag(allocated(i) && commited(i), "c") 370 PrintFlag(allocated(i) && pending(i), "p") 371 XSDebug(false, true.B, " ") 372 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 373 } 374 375} 376