1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqLsqIO 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Flipped(ValidIO(new Redirect)) 37 val flush = Input(Bool()) 38 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 39 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 40 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 41 val forward = Vec(LoadPipelineWidth, Flipped(new MaskedLoadForwardQueryIO)) 42 val roq = Flipped(new RoqLsqIO) 43 val uncache = new DCacheWordIO 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 }) 48 49 val difftestIO = IO(new Bundle() { 50 val storeCommit = Output(UInt(2.W)) 51 val storeAddr = Output(Vec(2, UInt(64.W))) 52 val storeData = Output(Vec(2, UInt(64.W))) 53 val storeMask = Output(Vec(2, UInt(8.W))) 54 }) 55 difftestIO <> DontCare 56 57 // data modules 58 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 59 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 60 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 61 dataModule.io := DontCare 62 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 63 paddrModule.io := DontCare 64 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 65 vaddrModule.io := DontCare 66 67 // state & misc 68 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 69 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 70 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 71 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 72 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 73 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 74 75 // ptr 76 require(StoreQueueSize > RenameWidth) 77 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 78 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 79 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 80 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 81 val allowEnqueue = RegInit(true.B) 82 83 val enqPtr = enqPtrExt(0).value 84 val deqPtr = deqPtrExt(0).value 85 val cmtPtr = cmtPtrExt(0).value 86 87 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 88 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 89 90 val commitCount = RegNext(io.roq.scommit) 91 92 // Read dataModule 93 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 94 // if !sbuffer.fire(), read the same ptr 95 // if sbuffer.fire(), read next 96 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 97 VecInit(deqPtrExt.map(_ + 2.U)), 98 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 99 VecInit(deqPtrExt.map(_ + 1.U)), 100 deqPtrExt 101 ) 102 )) 103 for (i <- 0 until StorePipelineWidth) { 104 dataModule.io.raddr(i) := deqPtrExtNext(i).value 105 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 106 } 107 108 // Note that both io.roq.scommit and RegNext(io.roq.scommit) should be take into consideration 109 vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount + io.roq.scommit).value 110 111 /** 112 * Enqueue at dispatch 113 * 114 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 115 */ 116 io.enq.canAccept := allowEnqueue 117 for (i <- 0 until RenameWidth) { 118 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 119 val sqIdx = enqPtrExt(offset) 120 val index = sqIdx.value 121 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 122 uop(index) := io.enq.req(i).bits 123 allocated(index) := true.B 124 datavalid(index) := false.B 125 writebacked(index) := false.B 126 commited(index) := false.B 127 pending(index) := false.B 128 } 129 io.enq.resp(i) := sqIdx 130 } 131 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 132 133 /** 134 * Writeback store from store units 135 * 136 * Most store instructions writeback to regfile in the previous cycle. 137 * However, 138 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 139 * (in this way it will trigger an exception when it reaches ROB's head) 140 * instead of pending to avoid sending them to lower level. 141 * (2) For an mmio instruction without exceptions, we mark it as pending. 142 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 143 * Upon receiving the response, StoreQueue writes back the instruction 144 * through arbiter with store units. It will later commit as normal. 145 */ 146 for (i <- 0 until StorePipelineWidth) { 147 dataModule.io.wen(i) := false.B 148 paddrModule.io.wen(i) := false.B 149 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 150 when (io.storeIn(i).fire()) { 151 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 152 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 153 pending(stWbIndex) := io.storeIn(i).bits.mmio 154 155 val storeWbData = Wire(new SQDataEntry) 156 storeWbData := DontCare 157 storeWbData.mask := io.storeIn(i).bits.mask 158 storeWbData.data := io.storeIn(i).bits.data 159 160 dataModule.io.waddr(i) := stWbIndex 161 dataModule.io.wdata(i) := storeWbData 162 dataModule.io.wen(i) := true.B 163 164 paddrModule.io.waddr(i) := stWbIndex 165 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 166 paddrModule.io.wen(i) := true.B 167 168 169 mmio(stWbIndex) := io.storeIn(i).bits.mmio 170 171 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 172 io.storeIn(i).bits.uop.sqIdx.value, 173 io.storeIn(i).bits.uop.cf.pc, 174 io.storeIn(i).bits.vaddr, 175 io.storeIn(i).bits.paddr, 176 io.storeIn(i).bits.data, 177 io.storeIn(i).bits.mmio 178 ) 179 } 180 // vaddrModule write is delayed, as vaddrModule will not be read right after write 181 vaddrModule.io.waddr(i) := RegNext(stWbIndex) 182 vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr) 183 vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire()) 184 } 185 186 /** 187 * load forward query 188 * 189 * Check store queue for instructions that is older than the load. 190 * The response will be valid at the next cycle after req. 191 */ 192 // check over all lq entries and forward data from the first matched store 193 for (i <- 0 until LoadPipelineWidth) { 194 io.forward(i).forwardMask := 0.U(8.W).asBools 195 io.forward(i).forwardData := DontCare 196 197 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 198 // (1) if they have the same flag, we need to check range(tail, sqIdx) 199 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 200 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 201 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 202 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 203 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 204 val forwardMask = io.forward(i).sqIdxMask 205 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 206 for (j <- 0 until StoreQueueSize) { 207 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 208 } 209 val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt 210 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 211 212 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 213 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 214 ) 215 216 // do real fwd query 217 dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt 218 dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt 219 220 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 221 222 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 223 io.forward(i).forwardData := dataModule.io.forwardData(i) 224 } 225 226 /** 227 * Memory mapped IO / other uncached operations 228 * 229 * States: 230 * (1) writeback from store units: mark as pending 231 * (2) when they reach ROB's head, they can be sent to uncache channel 232 * (3) response from uncache channel: mark as datavalid 233 * (4) writeback to ROB (and other units): mark as writebacked 234 * (5) ROB commits the instruction: same as normal instructions 235 */ 236 //(2) when they reach ROB's head, they can be sent to uncache channel 237 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 238 val uncacheState = RegInit(s_idle) 239 switch(uncacheState) { 240 is(s_idle) { 241 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) { 242 uncacheState := s_req 243 } 244 } 245 is(s_req) { 246 when(io.uncache.req.fire()) { 247 uncacheState := s_resp 248 } 249 } 250 is(s_resp) { 251 when(io.uncache.resp.fire()) { 252 uncacheState := s_wait 253 } 254 } 255 is(s_wait) { 256 when(io.roq.commit) { 257 uncacheState := s_idle // ready for next mmio 258 } 259 } 260 } 261 io.uncache.req.valid := uncacheState === s_req 262 263 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 264 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 265 io.uncache.req.bits.data := dataModule.io.rdata(0).data 266 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 267 268 io.uncache.req.bits.id := DontCare 269 270 when(io.uncache.req.fire()){ 271 pending(deqPtr) := false.B 272 273 XSDebug( 274 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 275 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 276 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 277 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 278 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 279 ) 280 } 281 282 // (3) response from uncache channel: mark as datavalid 283 io.uncache.resp.ready := true.B 284 when (io.uncache.resp.fire()) { 285 datavalid(deqPtr) := true.B 286 } 287 288 // (4) writeback to ROB (and other units): mark as writebacked 289 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 290 io.mmioStout.bits.uop := uop(deqPtr) 291 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 292 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 293 io.mmioStout.bits.redirectValid := false.B 294 io.mmioStout.bits.redirect := DontCare 295 io.mmioStout.bits.debug.isMMIO := true.B 296 io.mmioStout.bits.debug.paddr := DontCare 297 io.mmioStout.bits.debug.isPerfCnt := false.B 298 io.mmioStout.bits.fflags := DontCare 299 when (io.mmioStout.fire()) { 300 writebacked(deqPtr) := true.B 301 allocated(deqPtr) := false.B 302 } 303 304 /** 305 * ROB commits store instructions (mark them as commited) 306 * 307 * (1) When store commits, mark it as commited. 308 * (2) They will not be cancelled and can be sent to lower level. 309 */ 310 for (i <- 0 until CommitWidth) { 311 when (commitCount > i.U) { 312 commited(cmtPtrExt(i).value) := true.B 313 } 314 } 315 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 316 317 // Commited stores will not be cancelled and can be sent to lower level. 318 // remove retired insts from sq, add retired store to sbuffer 319 for (i <- 0 until StorePipelineWidth) { 320 // We use RegNext to prepare data for sbuffer 321 val ptr = deqPtrExt(i).value 322 // if !sbuffer.fire(), read the same ptr 323 // if sbuffer.fire(), read next 324 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 325 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 326 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 327 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 328 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 329 io.sbuffer(i).bits.id := DontCare 330 331 when (io.sbuffer(i).fire()) { 332 allocated(ptr) := false.B 333 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 334 } 335 } 336 when (io.sbuffer(1).fire()) { 337 assert(io.sbuffer(0).fire()) 338 } 339 340 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 341 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 342 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 343 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 344 345 if (!env.FPGAPlatform) { 346 difftestIO.storeCommit := RegNext(storeCommit) 347 difftestIO.storeAddr := RegNext(waddr) 348 difftestIO.storeData := RegNext(wdata) 349 difftestIO.storeMask := RegNext(wmask) 350 } 351 352 // Read vaddr for mem exception 353 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 354 355 // misprediction recovery / exception redirect 356 // invalidate sq term using robIdx 357 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 358 for (i <- 0 until StoreQueueSize) { 359 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 360 when (needCancel(i)) { 361 allocated(i) := false.B 362 } 363 } 364 365 /** 366 * update pointers 367 */ 368 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 369 val lastCycleFlush = RegNext(io.flush) 370 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 371 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 372 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 373 when (lastCycleRedirect || lastCycleFlush) { 374 // we recover the pointers in the next cycle after redirect 375 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 376 }.otherwise { 377 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 378 } 379 380 deqPtrExt := deqPtrExtNext 381 382 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 383 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 384 385 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 386 387 // io.sqempty will be used by sbuffer 388 // We delay it for 1 cycle for better timing 389 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 390 // for 1 cycle will also promise that sq is empty in that cycle 391 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 392 393 // perf counter 394 XSPerf("sqFull", !allowEnqueue, acc = true) 395 XSPerf("sqMmioCycle", uncacheState =/= s_idle, acc = true) // lq is busy dealing with uncache req 396 XSPerf("sqMmioCnt", io.uncache.req.fire(), acc = true) 397 XSPerf("sqWriteback", io.mmioStout.fire(), acc = true) 398 XSPerf("sqWbBlocked", io.mmioStout.valid && !io.mmioStout.ready, acc = true) 399 XSPerf("sqValidEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 400 XSPerf("sqCmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 401 XSPerf("sqNCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 402 403 // debug info 404 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 405 406 def PrintFlag(flag: Bool, name: String): Unit = { 407 when(flag) { 408 XSDebug(false, true.B, name) 409 }.otherwise { 410 XSDebug(false, true.B, " ") 411 } 412 } 413 414 for (i <- 0 until StoreQueueSize) { 415 if (i % 4 == 0) XSDebug("") 416 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 417 PrintFlag(allocated(i), "a") 418 PrintFlag(allocated(i) && datavalid(i), "v") 419 PrintFlag(allocated(i) && writebacked(i), "w") 420 PrintFlag(allocated(i) && commited(i), "c") 421 PrintFlag(allocated(i) && pending(i), "p") 422 XSDebug(false, true.B, " ") 423 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 424 } 425 426} 427