xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 6810d1e8e7c0789e9f50ee6bdd52010b8ce506ef)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache._
26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
27import xiangshan.backend._
28import xiangshan.backend.rob.{RobLsqIO, RobPtr}
29import difftest._
30import device.RAMHelper
31import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
32
33class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
34  p => p(XSCoreParamsKey).StoreQueueSize
35){
36}
37
38object SqPtr {
39  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
40    val ptr = Wire(new SqPtr)
41    ptr.flag := f
42    ptr.value := v
43    ptr
44  }
45}
46
47class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
48  val canAccept = Output(Bool())
49  val lqCanAccept = Input(Bool())
50  val needAlloc = Vec(MemPipelineWidth, Input(Bool()))
51  val req = Vec(MemPipelineWidth, Flipped(ValidIO(new DynInst)))
52  val resp = Vec(MemPipelineWidth, Output(new SqPtr))
53}
54
55class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
56  val addr   = UInt(PAddrBits.W)
57  val vaddr  = UInt(VAddrBits.W)
58  val data   = UInt(VLEN.W)
59  val mask   = UInt((VLEN/8).W)
60  val wline = Bool()
61  val sqPtr  = new SqPtr
62  val prefetch = Bool()
63}
64
65// Store Queue
66class StoreQueue(implicit p: Parameters) extends XSModule
67  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
68  val io = IO(new Bundle() {
69    val hartId = Input(UInt(8.W))
70    val enq = new SqEnqIO
71    val brqRedirect = Flipped(ValidIO(new Redirect))
72    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
73    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
74    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
75    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
76    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
77    val uncacheOutstanding = Input(Bool())
78    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
79    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
80    val rob = Flipped(new RobLsqIO)
81    val uncache = new UncacheWordIO
82    // val refill = Flipped(Valid(new DCacheLineReq ))
83    val exceptionAddr = new ExceptionAddrIO
84    val sqEmpty = Output(Bool())
85    val stAddrReadySqPtr = Output(new SqPtr)
86    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
87    val stDataReadySqPtr = Output(new SqPtr)
88    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
89    val stIssuePtr = Output(new SqPtr)
90    val sqDeqPtr = Output(new SqPtr)
91    val sqFull = Output(Bool())
92    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
93    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
94    val force_write = Output(Bool())
95  })
96
97  println("StoreQueue: size:" + StoreQueueSize)
98
99  // data modules
100  val uop = Reg(Vec(StoreQueueSize, new DynInst))
101  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
102  val dataModule = Module(new SQDataModule(
103    numEntries = StoreQueueSize,
104    numRead = EnsbufferWidth,
105    numWrite = StorePipelineWidth,
106    numForward = LoadPipelineWidth
107  ))
108  dataModule.io := DontCare
109  val paddrModule = Module(new SQAddrModule(
110    dataWidth = PAddrBits,
111    numEntries = StoreQueueSize,
112    numRead = EnsbufferWidth,
113    numWrite = StorePipelineWidth,
114    numForward = LoadPipelineWidth
115  ))
116  paddrModule.io := DontCare
117  val vaddrModule = Module(new SQAddrModule(
118    dataWidth = VAddrBits,
119    numEntries = StoreQueueSize,
120    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
121    numWrite = StorePipelineWidth,
122    numForward = LoadPipelineWidth
123  ))
124  vaddrModule.io := DontCare
125  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
126  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
127  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
128  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
129
130  // state & misc
131  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
132  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
133  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
134  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
135  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
136  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
137  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
138  val atomic = Reg(Vec(StoreQueueSize, Bool()))
139  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
140
141  // ptr
142  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
143  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
144  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
145  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
146  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
147  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
148  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
149
150  val enqPtr = enqPtrExt(0).value
151  val deqPtr = deqPtrExt(0).value
152  val cmtPtr = cmtPtrExt(0).value
153
154  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
155  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
156
157  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
158  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
159
160  val commitCount = RegNext(io.rob.scommit)
161
162  // store can be committed by ROB
163  io.rob.mmio := DontCare
164  io.rob.uop := DontCare
165
166  // Read dataModule
167  assert(EnsbufferWidth <= 2)
168  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
169  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
170    VecInit(rdataPtrExt.map(_ + 2.U)),
171    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire,
172      VecInit(rdataPtrExt.map(_ + 1.U)),
173      rdataPtrExt
174    )
175  ))
176
177  // deqPtrExtNext traces which inst is about to leave store queue
178  //
179  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
180  // Before data write finish, sbuffer is unable to provide store to load
181  // forward data. As an workaround, deqPtrExt and allocated flag update
182  // is delayed so that load can get the right data from store queue.
183  //
184  // Modify deqPtrExtNext and io.sqDeq with care!
185  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
186    VecInit(deqPtrExt.map(_ + 2.U)),
187    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire,
188      VecInit(deqPtrExt.map(_ + 1.U)),
189      deqPtrExt
190    )
191  )
192  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
193    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 1.U, 0.U)
194  ))
195  assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire))
196
197  for (i <- 0 until EnsbufferWidth) {
198    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
199    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
200    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
201  }
202
203  // no inst will be committed 1 cycle before tval update
204  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
205
206  /**
207    * Enqueue at dispatch
208    *
209    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
210    */
211  io.enq.canAccept := allowEnqueue
212  val canEnqueue = io.enq.req.map(_.valid)
213  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
214  for (i <- 0 until io.enq.req.length) {
215    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
216    val sqIdx = enqPtrExt(offset)
217    val index = io.enq.req(i).bits.sqIdx.value
218    when (canEnqueue(i) && !enqCancel(i)) {
219      uop(index) := io.enq.req(i).bits
220      // NOTE: the index will be used when replay
221      uop(index).sqIdx := sqIdx
222      allocated(index) := true.B
223      datavalid(index) := false.B
224      addrvalid(index) := false.B
225      committed(index) := false.B
226      pending(index) := false.B
227      prefetch(index) := false.B
228      mmio(index) := false.B
229
230      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
231      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
232    }
233    io.enq.resp(i) := sqIdx
234  }
235  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
236
237  /**
238    * Update addr/dataReadyPtr when issue from rs
239    */
240  // update issuePtr
241  val IssuePtrMoveStride = 4
242  require(IssuePtrMoveStride >= 2)
243
244  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
245  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0))
246  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
247  addrReadyPtrExt := nextAddrReadyPtr
248
249  (0 until StoreQueueSize).map(i => {
250    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
251  })
252
253  when (io.brqRedirect.valid) {
254    addrReadyPtrExt := Mux(
255      isAfter(cmtPtrExt(0), deqPtrExt(0)),
256      cmtPtrExt(0),
257      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
258    )
259  }
260
261  io.stAddrReadySqPtr := addrReadyPtrExt
262
263  // update
264  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
265  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0))
266  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
267  dataReadyPtrExt := nextDataReadyPtr
268
269  (0 until StoreQueueSize).map(i => {
270    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
271  })
272
273  when (io.brqRedirect.valid) {
274    dataReadyPtrExt := Mux(
275      isAfter(cmtPtrExt(0), deqPtrExt(0)),
276      cmtPtrExt(0),
277      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
278    )
279  }
280
281  io.stDataReadySqPtr := dataReadyPtrExt
282  io.stIssuePtr := enqPtrExt(0)
283  io.sqDeqPtr := deqPtrExt(0)
284
285  /**
286    * Writeback store from store units
287    *
288    * Most store instructions writeback to regfile in the previous cycle.
289    * However,
290    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
291    * (in this way it will trigger an exception when it reaches ROB's head)
292    * instead of pending to avoid sending them to lower level.
293    *   (2) For an mmio instruction without exceptions, we mark it as pending.
294    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
295    * Upon receiving the response, StoreQueue writes back the instruction
296    * through arbiter with store units. It will later commit as normal.
297    */
298
299  // Write addr to sq
300  for (i <- 0 until StorePipelineWidth) {
301    paddrModule.io.wen(i) := false.B
302    vaddrModule.io.wen(i) := false.B
303    dataModule.io.mask.wen(i) := false.B
304    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
305    when (io.storeAddrIn(i).fire) {
306      val addr_valid = !io.storeAddrIn(i).bits.miss
307      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
308      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
309
310      paddrModule.io.waddr(i) := stWbIndex
311      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
312      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
313      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
314      paddrModule.io.wen(i) := true.B
315
316      vaddrModule.io.waddr(i) := stWbIndex
317      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
318      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
319      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
320      vaddrModule.io.wen(i) := true.B
321
322      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
323
324      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
325
326      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
327      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
328      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
329        io.storeAddrIn(i).bits.uop.sqIdx.value,
330        io.storeAddrIn(i).bits.uop.pc,
331        io.storeAddrIn(i).bits.miss,
332        io.storeAddrIn(i).bits.vaddr,
333        io.storeAddrIn(i).bits.paddr,
334        io.storeAddrIn(i).bits.mmio
335      )
336    }
337
338    // re-replinish mmio, for pma/pmp will get mmio one cycle later
339    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
340    val stWbIndexReg = RegNext(stWbIndex)
341    when (storeAddrInFireReg) {
342      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
343      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
344      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
345    }
346    // dcache miss info (one cycle later than storeIn)
347    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
348    when (storeAddrInFireReg) {
349      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
350    }
351
352    when(vaddrModule.io.wen(i)){
353      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
354    }
355  }
356
357  // Write data to sq
358  // Now store data pipeline is actually 2 stages
359  for (i <- 0 until StorePipelineWidth) {
360    dataModule.io.data.wen(i) := false.B
361    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
362    // sq data write takes 2 cycles:
363    // sq data write s0
364    when (io.storeDataIn(i).fire) {
365      // send data write req to data module
366      dataModule.io.data.waddr(i) := stWbIndex
367      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
368        0.U,
369        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
370      )
371      dataModule.io.data.wen(i) := true.B
372
373      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
374
375      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
376        io.storeDataIn(i).bits.uop.sqIdx.value,
377        io.storeDataIn(i).bits.uop.pc,
378        io.storeDataIn(i).bits.data,
379        dataModule.io.data.wdata(i)
380      )
381    }
382    // sq data write s1
383    when (
384      RegNext(io.storeDataIn(i).fire)
385      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
386    ) {
387      datavalid(RegNext(stWbIndex)) := true.B
388    }
389  }
390
391  // Write mask to sq
392  for (i <- 0 until StorePipelineWidth) {
393    // sq mask write s0
394    when (io.storeMaskIn(i).fire) {
395      // send data write req to data module
396      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
397      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
398      dataModule.io.mask.wen(i) := true.B
399    }
400  }
401
402  /**
403    * load forward query
404    *
405    * Check store queue for instructions that is older than the load.
406    * The response will be valid at the next cycle after req.
407    */
408  // check over all lq entries and forward data from the first matched store
409  for (i <- 0 until LoadPipelineWidth) {
410    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
411    // (1) if they have the same flag, we need to check range(tail, sqIdx)
412    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
413    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
414    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
415    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
416    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
417    val forwardMask = io.forward(i).sqIdxMask
418    // all addrvalid terms need to be checked
419    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
420    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
421    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
422
423    val storeSetHitVec =
424      if (LFSTEnable) {
425        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
426      } else {
427        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
428      }
429
430    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
431    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
432    val canForward1 = forwardMask1 & allValidVec.asUInt
433    val canForward2 = forwardMask2 & allValidVec.asUInt
434    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
435
436    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
437      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
438    )
439
440    // do real fwd query (cam lookup in load_s1)
441    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
442    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
443
444    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
445    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
446    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
447    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
448
449
450    // vaddr cam result does not equal to paddr cam result
451    // replay needed
452    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
453    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
454    val vpmaskNotEqual = (
455      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
456      RegNext(needForward) &
457      RegNext(addrValidVec.asUInt)
458    ) =/= 0.U
459    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
460    when (vaddrMatchFailed) {
461      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
462        RegNext(io.forward(i).uop.pc),
463        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
464        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
465      );
466    }
467    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
468    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
469
470    // Fast forward mask will be generated immediately (load_s1)
471    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
472
473    // Forward result will be generated 1 cycle later (load_s2)
474    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
475    io.forward(i).forwardData := dataModule.io.forwardData(i)
476    // If addr match, data not ready, mark it as dataInvalid
477    // load_s1: generate dataInvalid in load_s1 to set fastUop
478    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
479    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
480    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
481    io.forward(i).dataInvalidFast := dataInvalidMask.orR
482
483    // make chisel happy
484    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
485    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
486    // make chisel happy
487    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
488    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
489    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
490
491    // If SSID match, address not ready, mark it as addrInvalid
492    // load_s2: generate addrInvalid
493    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
494    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
495    // make chisel happy
496    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
497    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
498    // make chisel happy
499    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
500    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
501    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
502
503    // load_s2
504    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
505    // check if vaddr forward mismatched
506    io.forward(i).matchInvalid := vaddrMatchFailed
507
508    // data invalid sq index
509    // check whether false fail
510    // check flag
511    val s2_differentFlag = RegNext(differentFlag)
512    val s2_enqPtrExt = RegNext(enqPtrExt(0))
513    val s2_deqPtrExt = RegNext(deqPtrExt(0))
514
515    // addr invalid sq index
516    // make chisel happy
517    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
518    addrInvalidMaskRegWire := addrInvalidMaskReg
519    val addrInvalidFlag = addrInvalidMaskRegWire.orR
520    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
521
522    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
523    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
524    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
525
526    // store-set content management
527    //                +-----------------------+
528    //                | Search a SSID for the |
529    //                |    load operation     |
530    //                +-----------------------+
531    //                           |
532    //                           V
533    //                 +-------------------+
534    //                 | load wait strict? |
535    //                 +-------------------+
536    //                           |
537    //                           V
538    //               +----------------------+
539    //            Set|                      |Clean
540    //               V                      V
541    //  +------------------------+   +------------------------------+
542    //  | Waiting for all older  |   | Wait until the corresponding |
543    //  |   stores operations    |   | older store operations       |
544    //  +------------------------+   +------------------------------+
545
546
547
548    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
549      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
550    } .elsewhen (addrInvalidFlag) {
551      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
552      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
553    } .otherwise {
554      // may be store inst has been written to sbuffer already.
555      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
556    }
557    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
558
559    // data invalid sq index
560    // make chisel happy
561    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
562    dataInvalidMaskRegWire := dataInvalidMaskReg
563    val dataInvalidFlag = dataInvalidMaskRegWire.orR
564
565    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
566    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
567    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
568
569    when (dataInvalidFlag) {
570      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
571      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
572    } .otherwise {
573      // may be store inst has been written to sbuffer already.
574      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
575    }
576  }
577
578  /**
579    * Memory mapped IO / other uncached operations
580    *
581    * States:
582    * (1) writeback from store units: mark as pending
583    * (2) when they reach ROB's head, they can be sent to uncache channel
584    * (3) response from uncache channel: mark as datavalidmask.wen
585    * (4) writeback to ROB (and other units): mark as writebacked
586    * (5) ROB commits the instruction: same as normal instructions
587    */
588  //(2) when they reach ROB's head, they can be sent to uncache channel
589  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
590  val uncacheState = RegInit(s_idle)
591  switch(uncacheState) {
592    is(s_idle) {
593      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
594        uncacheState := s_req
595      }
596    }
597    is(s_req) {
598      when (io.uncache.req.fire) {
599        when (io.uncacheOutstanding) {
600          uncacheState := s_wb
601        } .otherwise {
602          uncacheState := s_resp
603        }
604      }
605    }
606    is(s_resp) {
607      when(io.uncache.resp.fire) {
608        uncacheState := s_wb
609      }
610    }
611    is(s_wb) {
612      when (io.mmioStout.fire) {
613        uncacheState := s_wait
614      }
615    }
616    is(s_wait) {
617      when(commitCount > 0.U) {
618        uncacheState := s_idle // ready for next mmio
619      }
620    }
621  }
622  io.uncache.req.valid := uncacheState === s_req
623
624  io.uncache.req.bits := DontCare
625  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
626  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
627  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
628  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
629
630  // CBO op type check can be delayed for 1 cycle,
631  // as uncache op will not start in s_idle
632  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
633  val cbo_mmio_op = 0.U //TODO
634  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
635  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
636    io.uncache.req.bits.addr := DontCare // TODO
637    io.uncache.req.bits.data := paddrModule.io.rdata(0)
638    io.uncache.req.bits.mask := DontCare // TODO
639  }
640
641  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
642
643  when(io.uncache.req.fire){
644    // mmio store should not be committed until uncache req is sent
645    pending(deqPtr) := false.B
646
647    XSDebug(
648      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
649      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
650      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
651      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
652      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
653    )
654  }
655
656  // (3) response from uncache channel: mark as datavalid
657  io.uncache.resp.ready := true.B
658
659  // (4) writeback to ROB (and other units): mark as writebacked
660  io.mmioStout.valid := uncacheState === s_wb
661  io.mmioStout.bits.uop := uop(deqPtr)
662  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
663  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
664  io.mmioStout.bits.debug.isMMIO := true.B
665  io.mmioStout.bits.debug.paddr := DontCare
666  io.mmioStout.bits.debug.isPerfCnt := false.B
667  io.mmioStout.bits.debug.vaddr := DontCare
668  // Remove MMIO inst from store queue after MMIO request is being sent
669  // That inst will be traced by uncache state machine
670  when (io.mmioStout.fire) {
671    allocated(deqPtr) := false.B
672  }
673
674  /**
675    * ROB commits store instructions (mark them as committed)
676    *
677    * (1) When store commits, mark it as committed.
678    * (2) They will not be cancelled and can be sent to lower level.
679    */
680  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
681   "should not commit instruction when MMIO has not been finished\n")
682  for (i <- 0 until CommitWidth) {
683    when (commitCount > i.U) { // MMIO inst is not in progress
684      if(i == 0){
685        // MMIO inst should not update committed flag
686        // Note that commit count has been delayed for 1 cycle
687        when(uncacheState === s_idle){
688          committed(cmtPtrExt(0).value) := true.B
689        }
690      } else {
691        committed(cmtPtrExt(i).value) := true.B
692      }
693    }
694  }
695  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
696
697  // committed stores will not be cancelled and can be sent to lower level.
698  // remove retired insts from sq, add retired store to sbuffer
699
700  // Read data from data module
701  // As store queue grows larger and larger, time needed to read data from data
702  // module keeps growing higher. Now we give data read a whole cycle.
703
704  val mmioStall = mmio(rdataPtrExt(0).value)
705  for (i <- 0 until EnsbufferWidth) {
706    val ptr = rdataPtrExt(i).value
707    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
708    // Note that store data/addr should both be valid after store's commit
709    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
710    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
711    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
712    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
713    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
714    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
715    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
716    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
717  }
718
719  // Send data stored in sbufferReqBitsReg to sbuffer
720  for (i <- 0 until EnsbufferWidth) {
721    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
722    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
723    // Write line request should have all 1 mask
724    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
725    io.sbuffer(i).bits := DontCare
726    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
727    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
728    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
729    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
730    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
731    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
732    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
733
734    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
735    // Before data write finish, sbuffer is unable to provide store to load
736    // forward data. As an workaround, deqPtrExt and allocated flag update
737    // is delayed so that load can get the right data from store queue.
738    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
739    when (RegNext(io.sbuffer(i).fire)) {
740      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
741      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
742    }
743  }
744  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
745  if (coreParams.dcacheParametersOpt.isEmpty) {
746    for (i <- 0 until EnsbufferWidth) {
747      val ptr = deqPtrExt(i).value
748      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
749      fakeRAM.clk   := clock
750      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
751      fakeRAM.rIdx  := 0.U
752      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
753      fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0))
754      fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0)))
755      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
756    }
757  }
758
759  if (env.EnableDifftest) {
760    for (i <- 0 until EnsbufferWidth) {
761      val storeCommit = io.sbuffer(i).fire
762      val waddr = ZeroExt(Cat(io.sbuffer(i).bits.addr(PAddrBits - 1, 3), 0.U(3.W)), 64)
763      val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask)
764      val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data)
765      val wmask = sbufferMask
766      val wdata = sbufferData & MaskExpand(sbufferMask)
767
768      val difftest = DifftestModule(new DiffStoreEvent, delay = 2)
769      difftest.coreid := io.hartId
770      difftest.index  := i.U
771      difftest.valid  := storeCommit
772      difftest.addr   := waddr
773      difftest.data   := wdata
774      difftest.mask   := wmask
775    }
776  }
777
778  // Read vaddr for mem exception
779  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
780
781  // misprediction recovery / exception redirect
782  // invalidate sq term using robIdx
783  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
784  for (i <- 0 until StoreQueueSize) {
785    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
786    when (needCancel(i)) {
787      allocated(i) := false.B
788    }
789  }
790
791 /**
792* update pointers
793**/
794  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
795  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
796  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
797  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
798
799  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
800  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
801
802  when (lastlastCycleRedirect) {
803    // we recover the pointers in 2 cycle after redirect for better timing
804    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
805  }.otherwise {
806    // lastCycleRedirect.valid or nornal case
807    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
808    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
809  }
810  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
811
812  deqPtrExt := deqPtrExtNext
813  rdataPtrExt := rdataPtrExtNext
814
815  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
816
817  // If redirect at T0, sqCancelCnt is at T2
818  io.sqCancelCnt := redirectCancelCount
819  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
820  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
821  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
822  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
823
824  val valid_cnt = PopCount(allocated)
825  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
826
827  // io.sqempty will be used by sbuffer
828  // We delay it for 1 cycle for better timing
829  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
830  // for 1 cycle will also promise that sq is empty in that cycle
831  io.sqEmpty := RegNext(
832    enqPtrExt(0).value === deqPtrExt(0).value &&
833    enqPtrExt(0).flag === deqPtrExt(0).flag
834  )
835  // perf counter
836  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
837  io.sqFull := !allowEnqueue
838  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
839  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
840  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire)
841  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
842  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
843  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
844  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
845
846  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
847  val perfEvents = Seq(
848    ("mmioCycle      ", uncacheState =/= s_idle),
849    ("mmioCnt        ", io.uncache.req.fire),
850    ("mmio_wb_success", io.mmioStout.fire),
851    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
852    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
853    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
854    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
855    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
856  )
857  generatePerfEvent()
858
859  // debug info
860  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
861
862  def PrintFlag(flag: Bool, name: String): Unit = {
863    when(flag) {
864      XSDebug(false, true.B, name)
865    }.otherwise {
866      XSDebug(false, true.B, " ")
867    }
868  }
869
870  for (i <- 0 until StoreQueueSize) {
871    XSDebug(i + ": pc %x va %x pa %x data %x ",
872      uop(i).pc,
873      debug_vaddr(i),
874      debug_paddr(i),
875      debug_data(i)
876    )
877    PrintFlag(allocated(i), "a")
878    PrintFlag(allocated(i) && addrvalid(i), "a")
879    PrintFlag(allocated(i) && datavalid(i), "d")
880    PrintFlag(allocated(i) && committed(i), "c")
881    PrintFlag(allocated(i) && pending(i), "p")
882    PrintFlag(allocated(i) && mmio(i), "m")
883    XSDebug(false, true.B, "\n")
884  }
885
886}
887