xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 6535afbb7b0abd815534ffb2a744878ed6c34ad1)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33  override def cloneType = (new SqPtr).asInstanceOf[this.type]
34}
35
36object SqPtr {
37  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
38    val ptr = Wire(new SqPtr)
39    ptr.flag := f
40    ptr.value := v
41    ptr
42  }
43}
44
45class SqEnqIO(implicit p: Parameters) extends XSBundle {
46  val canAccept = Output(Bool())
47  val lqCanAccept = Input(Bool())
48  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
49  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
50  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
51}
52
53class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
54  val addr   = UInt(PAddrBits.W)
55  val vaddr  = UInt(VAddrBits.W)
56  val data   = UInt(DataBits.W)
57  val mask   = UInt((DataBits/8).W)
58  val wline = Bool()
59  val sqPtr  = new SqPtr
60}
61
62// Store Queue
63class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(8.W))
66    val enq = new SqEnqIO
67    val brqRedirect = Flipped(ValidIO(new Redirect))
68    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
69    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
70    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs
71    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write commited store to sbuffer
72    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
73    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
74    val rob = Flipped(new RobLsqIO)
75    val uncache = new DCacheWordIO
76    // val refill = Flipped(Valid(new DCacheLineReq ))
77    val exceptionAddr = new ExceptionAddrIO
78    val sqempty = Output(Bool())
79    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
80    val sqFull = Output(Bool())
81  })
82
83  println("StoreQueue: size:" + StoreQueueSize)
84
85  // data modules
86  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
87  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
88  val dataModule = Module(new SQDataModule(
89    numEntries = StoreQueueSize,
90    numRead = StorePipelineWidth,
91    numWrite = StorePipelineWidth,
92    numForward = StorePipelineWidth
93  ))
94  dataModule.io := DontCare
95  val paddrModule = Module(new SQAddrModule(
96    dataWidth = PAddrBits,
97    numEntries = StoreQueueSize,
98    numRead = StorePipelineWidth,
99    numWrite = StorePipelineWidth,
100    numForward = StorePipelineWidth
101  ))
102  paddrModule.io := DontCare
103  val vaddrModule = Module(new SQAddrModule(
104    dataWidth = VAddrBits,
105    numEntries = StoreQueueSize,
106    numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO)
107    numWrite = StorePipelineWidth,
108    numForward = StorePipelineWidth
109  ))
110  vaddrModule.io := DontCare
111  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
112  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
113  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
114  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
115
116  // state & misc
117  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
118  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
119  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
120  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
121  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by rob
122  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
123  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
124
125  // ptr
126  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
127  val rdataPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
128  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
129  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
130  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
131  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
132  val allowEnqueue = RegInit(true.B)
133
134  val enqPtr = enqPtrExt(0).value
135  val deqPtr = deqPtrExt(0).value
136  val cmtPtr = cmtPtrExt(0).value
137
138  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
139  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
140
141  val commitCount = RegNext(io.rob.scommit)
142
143  // Read dataModule
144  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
145  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
146    VecInit(rdataPtrExt.map(_ + 2.U)),
147    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
148      VecInit(rdataPtrExt.map(_ + 1.U)),
149      rdataPtrExt
150    )
151  ))
152  // deqPtrExtNext traces which inst is about to leave store queue
153  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
154    VecInit(deqPtrExt.map(_ + 2.U)),
155    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
156      VecInit(deqPtrExt.map(_ + 1.U)),
157      deqPtrExt
158    )
159  ))
160  for (i <- 0 until StorePipelineWidth) {
161    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
162    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
163    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
164  }
165
166  // no inst will be commited 1 cycle before tval update
167  vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value
168
169  /**
170    * Enqueue at dispatch
171    *
172    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
173    */
174  io.enq.canAccept := allowEnqueue
175  for (i <- 0 until io.enq.req.length) {
176    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
177    val sqIdx = enqPtrExt(offset)
178    val index = sqIdx.value
179    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
180      uop(index) := io.enq.req(i).bits
181      allocated(index) := true.B
182      datavalid(index) := false.B
183      addrvalid(index) := false.B
184      commited(index) := false.B
185      pending(index) := false.B
186    }
187    io.enq.resp(i) := sqIdx
188  }
189  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
190
191  /**
192    * Update issuePtr when issue from rs
193    */
194  // update issuePtr
195  val IssuePtrMoveStride = 4
196  require(IssuePtrMoveStride >= 2)
197
198  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
199  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
200  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
201  issuePtrExt := nextIssuePtr
202
203  when (io.brqRedirect.valid) {
204    issuePtrExt := Mux(
205      isAfter(cmtPtrExt(0), deqPtrExt(0)),
206      cmtPtrExt(0),
207      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
208    )
209  }
210  // send issuePtrExt to rs
211  // io.issuePtrExt := cmtPtrExt(0)
212  io.issuePtrExt := issuePtrExt
213
214  /**
215    * Writeback store from store units
216    *
217    * Most store instructions writeback to regfile in the previous cycle.
218    * However,
219    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
220    * (in this way it will trigger an exception when it reaches ROB's head)
221    * instead of pending to avoid sending them to lower level.
222    *   (2) For an mmio instruction without exceptions, we mark it as pending.
223    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
224    * Upon receiving the response, StoreQueue writes back the instruction
225    * through arbiter with store units. It will later commit as normal.
226    */
227
228  // Write addr to sq
229  for (i <- 0 until StorePipelineWidth) {
230    paddrModule.io.wen(i) := false.B
231    vaddrModule.io.wen(i) := false.B
232    dataModule.io.mask.wen(i) := false.B
233    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
234    when (io.storeIn(i).fire()) {
235      val addr_valid = !io.storeIn(i).bits.miss
236      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
237      // pending(stWbIndex) := io.storeIn(i).bits.mmio
238
239      dataModule.io.mask.waddr(i) := stWbIndex
240      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
241      dataModule.io.mask.wen(i) := addr_valid
242
243      paddrModule.io.waddr(i) := stWbIndex
244      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
245      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
246      paddrModule.io.wen(i) := addr_valid
247
248      vaddrModule.io.waddr(i) := stWbIndex
249      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
250      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
251      vaddrModule.io.wen(i) := addr_valid
252
253      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
254
255      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
256
257      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
258      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
259        io.storeIn(i).bits.uop.sqIdx.value,
260        io.storeIn(i).bits.uop.cf.pc,
261        io.storeIn(i).bits.miss,
262        io.storeIn(i).bits.vaddr,
263        io.storeIn(i).bits.paddr,
264        io.storeIn(i).bits.mmio
265      )
266    }
267
268    // re-replinish mmio, for pma/pmp will get mmio one cycle later
269    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
270    val stWbIndexReg = RegNext(stWbIndex)
271    when (storeInFireReg) {
272      pending(stWbIndexReg) := io.storeInRe(i).mmio
273      mmio(stWbIndexReg) := io.storeInRe(i).mmio
274    }
275
276    when(vaddrModule.io.wen(i)){
277      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
278    }
279  }
280
281  // Write data to sq
282  for (i <- 0 until StorePipelineWidth) {
283    dataModule.io.data.wen(i) := false.B
284    io.rob.storeDataRobWb(i).valid := false.B
285    io.rob.storeDataRobWb(i).bits := DontCare
286    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
287    when (io.storeDataIn(i).fire()) {
288      datavalid(stWbIndex) := true.B
289
290      dataModule.io.data.waddr(i) := stWbIndex
291      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
292        0.U,
293        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
294      )
295      dataModule.io.data.wen(i) := true.B
296
297      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
298
299      io.rob.storeDataRobWb(i).valid := true.B
300      io.rob.storeDataRobWb(i).bits := io.storeDataIn(i).bits.uop.robIdx
301
302      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
303        io.storeDataIn(i).bits.uop.sqIdx.value,
304        io.storeDataIn(i).bits.uop.cf.pc,
305        io.storeDataIn(i).bits.data,
306        dataModule.io.data.wdata(i)
307      )
308    }
309  }
310
311  /**
312    * load forward query
313    *
314    * Check store queue for instructions that is older than the load.
315    * The response will be valid at the next cycle after req.
316    */
317  // check over all lq entries and forward data from the first matched store
318  for (i <- 0 until LoadPipelineWidth) {
319    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
320    // (1) if they have the same flag, we need to check range(tail, sqIdx)
321    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
322    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
323    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
324    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
325    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
326    val forwardMask = io.forward(i).sqIdxMask
327    // all addrvalid terms need to be checked
328    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
329    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
330    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
331    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
332    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
333    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
334
335    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
336      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
337    )
338
339    // do real fwd query (cam lookup in load_s1)
340    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
341    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
342
343    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
344    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
345
346    // vaddr cam result does not equal to paddr cam result
347    // replay needed
348    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
349    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
350    val vpmaskNotEqual = (
351      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
352      RegNext(needForward) &
353      RegNext(addrValidVec.asUInt)
354    ) =/= 0.U
355    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
356    when (vaddrMatchFailed) {
357      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
358        RegNext(io.forward(i).uop.cf.pc),
359        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
360        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
361      );
362    }
363    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
364    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
365
366    // Fast forward mask will be generated immediately (load_s1)
367    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
368
369    // Forward result will be generated 1 cycle later (load_s2)
370    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
371    io.forward(i).forwardData := dataModule.io.forwardData(i)
372
373    // If addr match, data not ready, mark it as dataInvalid
374    // load_s1: generate dataInvalid in load_s1 to set fastUop
375    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR
376    val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward))
377    // load_s2
378    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
379
380    // load_s2
381    // check if vaddr forward mismatched
382    io.forward(i).matchInvalid := vaddrMatchFailed
383    io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg
384  }
385
386  /**
387    * Memory mapped IO / other uncached operations
388    *
389    * States:
390    * (1) writeback from store units: mark as pending
391    * (2) when they reach ROB's head, they can be sent to uncache channel
392    * (3) response from uncache channel: mark as datavalidmask.wen
393    * (4) writeback to ROB (and other units): mark as writebacked
394    * (5) ROB commits the instruction: same as normal instructions
395    */
396  //(2) when they reach ROB's head, they can be sent to uncache channel
397  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
398  val uncacheState = RegInit(s_idle)
399  switch(uncacheState) {
400    is(s_idle) {
401      when(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) {
402        uncacheState := s_req
403      }
404    }
405    is(s_req) {
406      when(io.uncache.req.fire()) {
407        uncacheState := s_resp
408      }
409    }
410    is(s_resp) {
411      when(io.uncache.resp.fire()) {
412        uncacheState := s_wb
413      }
414    }
415    is(s_wb) {
416      when (io.mmioStout.fire()) {
417        uncacheState := s_wait
418      }
419    }
420    is(s_wait) {
421      when(commitCount > 0.U) {
422        uncacheState := s_idle // ready for next mmio
423      }
424    }
425  }
426  io.uncache.req.valid := uncacheState === s_req
427
428  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
429  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
430  io.uncache.req.bits.data := dataModule.io.rdata(0).data
431  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
432
433  // CBO op type check can be delayed for 1 cycle,
434  // as uncache op will not start in s_idle
435  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
436  val cbo_mmio_op = 0.U //TODO
437  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
438  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
439    io.uncache.req.bits.addr := DontCare // TODO
440    io.uncache.req.bits.data := paddrModule.io.rdata(0)
441    io.uncache.req.bits.mask := DontCare // TODO
442  }
443
444  io.uncache.req.bits.id   := DontCare
445  io.uncache.req.bits.instrtype   := DontCare
446
447  when(io.uncache.req.fire()){
448    // mmio store should not be committed until uncache req is sent
449    pending(deqPtr) := false.B
450
451    XSDebug(
452      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
453      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
454      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
455      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
456      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
457    )
458  }
459
460  // (3) response from uncache channel: mark as datavalid
461  io.uncache.resp.ready := true.B
462
463  // (4) writeback to ROB (and other units): mark as writebacked
464  io.mmioStout.valid := uncacheState === s_wb
465  io.mmioStout.bits.uop := uop(deqPtr)
466  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
467  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
468  io.mmioStout.bits.redirectValid := false.B
469  io.mmioStout.bits.redirect := DontCare
470  io.mmioStout.bits.debug.isMMIO := true.B
471  io.mmioStout.bits.debug.paddr := DontCare
472  io.mmioStout.bits.debug.isPerfCnt := false.B
473  io.mmioStout.bits.fflags := DontCare
474  io.mmioStout.bits.debug.vaddr := DontCare
475  // Remove MMIO inst from store queue after MMIO request is being sent
476  // That inst will be traced by uncache state machine
477  when (io.mmioStout.fire()) {
478    allocated(deqPtr) := false.B
479  }
480
481  /**
482    * ROB commits store instructions (mark them as commited)
483    *
484    * (1) When store commits, mark it as commited.
485    * (2) They will not be cancelled and can be sent to lower level.
486    */
487  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
488   "should not commit instruction when MMIO has not been finished\n")
489  for (i <- 0 until CommitWidth) {
490    when (commitCount > i.U) { // MMIO inst is not in progress
491      if(i == 0){
492        // MMIO inst should not update commited flag
493        // Note that commit count has been delayed for 1 cycle
494        when(uncacheState === s_idle){
495          commited(cmtPtrExt(0).value) := true.B
496        }
497      } else {
498        commited(cmtPtrExt(i).value) := true.B
499      }
500    }
501  }
502  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
503
504  // Commited stores will not be cancelled and can be sent to lower level.
505  // remove retired insts from sq, add retired store to sbuffer
506
507  // Read data from data module
508  // As store queue grows larger and larger, time needed to read data from data
509  // module keeps growing higher. Now we give data read a whole cycle.
510
511  // For now, data read logic width is hardcoded to 2
512  require(StorePipelineWidth == 2) // TODO: add EnsbufferWidth parameter
513  val mmioStall = mmio(rdataPtrExt(0).value)
514  for (i <- 0 until StorePipelineWidth) {
515    val ptr = rdataPtrExt(i).value
516    dataBuffer.io.enq(i).valid := allocated(ptr) && commited(ptr) && !mmioStall
517    // Note that store data/addr should both be valid after store's commit
518    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
519    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
520    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
521    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
522    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
523    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
524    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
525  }
526
527  // Send data stored in sbufferReqBitsReg to sbuffer
528  for (i <- 0 until StorePipelineWidth) {
529    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
530    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
531    // Write line request should have all 1 mask
532    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
533    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
534    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
535    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
536    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
537    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
538    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
539    io.sbuffer(i).bits.id    := DontCare
540    io.sbuffer(i).bits.instrtype    := DontCare
541
542    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
543    when (io.sbuffer(i).fire()) {
544      allocated(ptr) := false.B
545      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
546    }
547  }
548  when (io.sbuffer(1).fire()) {
549    assert(io.sbuffer(0).fire())
550  }
551  if (coreParams.dcacheParametersOpt.isEmpty) {
552    for (i <- 0 until StorePipelineWidth) {
553      val ptr = deqPtrExt(i).value
554      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
555      fakeRAM.clk   := clock
556      fakeRAM.en    := allocated(ptr) && commited(ptr) && !mmio(ptr)
557      fakeRAM.rIdx  := 0.U
558      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
559      fakeRAM.wdata := dataModule.io.rdata(i).data
560      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
561      fakeRAM.wen   := allocated(ptr) && commited(ptr) && !mmio(ptr)
562    }
563  }
564
565  if (env.EnableDifftest) {
566    for (i <- 0 until StorePipelineWidth) {
567      val storeCommit = io.sbuffer(i).fire()
568      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
569      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
570      val wmask = io.sbuffer(i).bits.mask
571
572      val difftest = Module(new DifftestStoreEvent)
573      difftest.io.clock       := clock
574      difftest.io.coreid      := io.hartId
575      difftest.io.index       := i.U
576      difftest.io.valid       := storeCommit
577      difftest.io.storeAddr   := waddr
578      difftest.io.storeData   := wdata
579      difftest.io.storeMask   := wmask
580    }
581  }
582
583  // Read vaddr for mem exception
584  io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth)
585
586  // misprediction recovery / exception redirect
587  // invalidate sq term using robIdx
588  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
589  for (i <- 0 until StoreQueueSize) {
590    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i)
591    when (needCancel(i)) {
592        allocated(i) := false.B
593    }
594  }
595
596  /**
597    * update pointers
598    */
599  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
600  val lastCycleCancelCount = PopCount(RegNext(needCancel))
601  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
602  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
603  when (lastCycleRedirect) {
604    // we recover the pointers in the next cycle after redirect
605    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
606  }.otherwise {
607    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
608  }
609
610  deqPtrExt := deqPtrExtNext
611  rdataPtrExt := rdataPtrExtNext
612
613  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
614  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
615
616  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - io.enq.req.length).U
617
618  // io.sqempty will be used by sbuffer
619  // We delay it for 1 cycle for better timing
620  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
621  // for 1 cycle will also promise that sq is empty in that cycle
622  io.sqempty := RegNext(
623    enqPtrExt(0).value === deqPtrExt(0).value &&
624    enqPtrExt(0).flag === deqPtrExt(0).flag
625  )
626
627  // perf counter
628  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
629  io.sqFull := !allowEnqueue
630  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
631  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
632  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
633  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
634  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
635  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
636  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
637
638  val perfinfo = IO(new Bundle(){
639    val perfEvents = Output(new PerfEventsBundle(8))
640  })
641  val perfEvents = Seq(
642    ("mmioCycle         ", uncacheState =/= s_idle                                                                                                                             ),
643    ("mmioCnt           ", io.uncache.req.fire()                                                                                                                               ),
644    ("mmio_wb_success   ", io.mmioStout.fire()                                                                                                                                 ),
645    ("mmio_wb_blocked   ", io.mmioStout.valid && !io.mmioStout.ready                                                                                                           ),
646    ("stq_1/4_valid     ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U))                                                                              ),
647    ("stq_2/4_valid     ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U))    ),
648    ("stq_3/4_valid     ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))),
649    ("stq_4/4_valid     ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U))                                                                          ),
650  )
651
652  for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) {
653    perf_out.incr_step := RegNext(perf)
654  }
655  // debug info
656  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
657
658  def PrintFlag(flag: Bool, name: String): Unit = {
659    when(flag) {
660      XSDebug(false, true.B, name)
661    }.otherwise {
662      XSDebug(false, true.B, " ")
663    }
664  }
665
666  for (i <- 0 until StoreQueueSize) {
667    XSDebug(i + ": pc %x va %x pa %x data %x ",
668      uop(i).cf.pc,
669      debug_vaddr(i),
670      debug_paddr(i),
671      debug_data(i)
672    )
673    PrintFlag(allocated(i), "a")
674    PrintFlag(allocated(i) && addrvalid(i), "a")
675    PrintFlag(allocated(i) && datavalid(i), "d")
676    PrintFlag(allocated(i) && commited(i), "c")
677    PrintFlag(allocated(i) && pending(i), "p")
678    PrintFlag(allocated(i) && mmio(i), "m")
679    XSDebug(false, true.B, "\n")
680  }
681
682}
683