1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33import xiangshan.backend.fu.FuConfig._ 34 35class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 36 p => p(XSCoreParamsKey).StoreQueueSize 37){ 38} 39 40object SqPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 42 val ptr = Wire(new SqPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 50 val canAccept = Output(Bool()) 51 val lqCanAccept = Input(Bool()) 52 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 53 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 54 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 55} 56 57class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 58 val addr = UInt(PAddrBits.W) 59 val vaddr = UInt(VAddrBits.W) 60 val data = UInt(VLEN.W) 61 val mask = UInt((VLEN/8).W) 62 val wline = Bool() 63 val sqPtr = new SqPtr 64 val prefetch = Bool() 65 val vec_mbCommit = Bool() 66} 67 68class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 69 val io = IO(new Bundle() { 70 val redirect = Flipped(ValidIO(new Redirect)) 71 val storeAddrIn = Vec(StorePipelineWidth + 1, Flipped(ValidIO(new LsPipelineBundle()))) 72 val exceptionAddr = new ExceptionAddrIO 73 }) 74 75 val req_valid = RegInit(false.B) 76 val req = Reg(new LsPipelineBundle()) 77 78 // enqueue 79 // S1: 80 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 81 val s1_valid = VecInit(io.storeAddrIn.map(_.valid)) 82 83 // S2: delay 1 cycle 84 val s2_req = RegNext(s1_req) 85 val s2_valid = (0 until StorePipelineWidth + 1).map(i => 86 RegNext(s1_valid(i)) && 87 !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) && 88 !s2_req(i).uop.robIdx.needFlush(io.redirect) 89 ) 90 val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR) 91 92 val s2_enqueue = Wire(Vec(StorePipelineWidth + 1, Bool())) 93 for (w <- 0 until StorePipelineWidth + 1) { 94 s2_enqueue(w) := s2_valid(w) && s2_has_exception(w) 95 } 96 97 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 98 req_valid := s2_enqueue.asUInt.orR 99 }.elsewhen (s2_enqueue.asUInt.orR) { 100 req_valid := req_valid || true.B 101 } 102 103 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 104 assert(valid.length == bits.length) 105 if (valid.length == 0 || valid.length == 1) { 106 (valid, bits) 107 } else if (valid.length == 2) { 108 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 109 for (i <- res.indices) { 110 res(i).valid := valid(i) 111 res(i).bits := bits(i) 112 } 113 val oldest = Mux(valid(0) && valid(1), 114 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 115 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 116 Mux(valid(0) && !valid(1), res(0), res(1))) 117 (Seq(oldest.valid), Seq(oldest.bits)) 118 } else { 119 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 120 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 121 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 122 } 123 } 124 125 val reqSel = selectOldest(s2_enqueue, s2_req) 126 127 when (req_valid) { 128 req := Mux(reqSel._1(0) && isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || 129 (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx), reqSel._2(0), req) 130 } .elsewhen (s2_enqueue.asUInt.orR) { 131 req := reqSel._2(0) 132 } 133 134 io.exceptionAddr.vaddr := req.vaddr 135} 136 137// Store Queue 138class StoreQueue(implicit p: Parameters) extends XSModule 139 with HasDCacheParameters 140 with HasCircularQueuePtrHelper 141 with HasPerfEvents 142 with HasVLSUParameters { 143 val io = IO(new Bundle() { 144 val hartId = Input(UInt(8.W)) 145 val enq = new SqEnqIO 146 val brqRedirect = Flipped(ValidIO(new Redirect)) 147 val vecFeedback = Flipped(ValidIO(new FeedbackToLsqIO)) 148 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 149 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 150 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 151 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 152 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 153 val uncacheOutstanding = Input(Bool()) 154 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 155 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 156 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 157 // TODO: scommit is only for scalar store 158 val rob = Flipped(new RobLsqIO) 159 val uncache = new UncacheWordIO 160 // val refill = Flipped(Valid(new DCacheLineReq )) 161 val exceptionAddr = new ExceptionAddrIO 162 val sqEmpty = Output(Bool()) 163 val stAddrReadySqPtr = Output(new SqPtr) 164 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 165 val stDataReadySqPtr = Output(new SqPtr) 166 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 167 val stIssuePtr = Output(new SqPtr) 168 val sqDeqPtr = Output(new SqPtr) 169 val sqFull = Output(Bool()) 170 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 171 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 172 val force_write = Output(Bool()) 173 }) 174 175 println("StoreQueue: size:" + StoreQueueSize) 176 177 // data modules 178 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 179 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 180 val dataModule = Module(new SQDataModule( 181 numEntries = StoreQueueSize, 182 numRead = EnsbufferWidth, 183 numWrite = StorePipelineWidth, 184 numForward = LoadPipelineWidth 185 )) 186 dataModule.io := DontCare 187 val paddrModule = Module(new SQAddrModule( 188 dataWidth = PAddrBits, 189 numEntries = StoreQueueSize, 190 numRead = EnsbufferWidth, 191 numWrite = StorePipelineWidth, 192 numForward = LoadPipelineWidth 193 )) 194 paddrModule.io := DontCare 195 val vaddrModule = Module(new SQAddrModule( 196 dataWidth = VAddrBits, 197 numEntries = StoreQueueSize, 198 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 199 numWrite = StorePipelineWidth, 200 numForward = LoadPipelineWidth 201 )) 202 vaddrModule.io := DontCare 203 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 204 val exceptionBuffer = Module(new StoreExceptionBuffer) 205 exceptionBuffer.io.redirect := io.brqRedirect 206 exceptionBuffer.io.exceptionAddr.isStore := DontCare 207 // TODO: implement it! 208 exceptionBuffer.io.storeAddrIn(StorePipelineWidth) := DontCare 209 210 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 211 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 212 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 213 214 // state & misc 215 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 216 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 217 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 218 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 219 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 220 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 221 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 222 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 223 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 224 val is_vec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 225 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 226 val vec_mbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 227 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 228 val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 229 230 // ptr 231 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 232 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 233 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 234 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 235 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 236 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 237 238 val enqPtr = enqPtrExt(0).value 239 val deqPtr = deqPtrExt(0).value 240 val cmtPtr = cmtPtrExt(0).value 241 242 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 243 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 244 245 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 246 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 247 248 // TODO: count commit numbers for scalar / vector store separately 249 val scalarCommitCount = RegInit(0.U(log2Ceil(StoreQueueSize + 1).W)) 250 val scalarCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 251 val vecCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 252 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 253 val scommit = RegNext(io.rob.scommit) 254 255 scalarCommitCount := scalarCommitCount + scommit - scalarCommitted 256 257 // store can be committed by ROB 258 io.rob.mmio := DontCare 259 io.rob.uop := DontCare 260 261 // Read dataModule 262 assert(EnsbufferWidth <= 2) 263 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 264 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 265 VecInit(rdataPtrExt.map(_ + 2.U)), 266 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 267 VecInit(rdataPtrExt.map(_ + 1.U)), 268 rdataPtrExt 269 ) 270 )) 271 272 // deqPtrExtNext traces which inst is about to leave store queue 273 // 274 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 275 // Before data write finish, sbuffer is unable to provide store to load 276 // forward data. As an workaround, deqPtrExt and allocated flag update 277 // is delayed so that load can get the right data from store queue. 278 // 279 // Modify deqPtrExtNext and io.sqDeq with care! 280 val sbuffer_Inv = RegInit(VecInit(List.fill(EnsbufferWidth)(false.B))) 281 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire || sbuffer_Inv(1)), 282 VecInit(deqPtrExt.map(_ + 2.U)), 283 Mux((RegNext(io.sbuffer(0).fire) || sbuffer_Inv(0)) || io.mmioStout.fire || io.vecmmioStout.fire, 284 VecInit(deqPtrExt.map(_ + 1.U)), 285 deqPtrExt 286 ) 287 ) 288 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire) || sbuffer_Inv(1), 2.U, 289 Mux((RegNext(io.sbuffer(0).fire) || sbuffer_Inv(0)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U) 290 )) 291 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 292 293 for (i <- 0 until EnsbufferWidth) { 294 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 295 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 296 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 297 } 298 299 /** 300 * Enqueue at dispatch 301 * 302 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 303 */ 304 io.enq.canAccept := allowEnqueue 305 val canEnqueue = io.enq.req.map(_.valid) 306 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 307 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 308 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNum_Item, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNum_Item, 0.U)} 309 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAlloc_Item) => Mux(needAlloc_Item, flow, 0.U)} 310 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 311 312 for (i <- 0 until io.enq.req.length) { 313 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 314 val index = io.enq.req(i).bits.sqIdx.value 315 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 316 when (canEnqueue(i) && !enqCancel(i)) { 317 for (j <- 0 until VecMemDispatchMaxNumber) { 318 when (j.U < validVStoreOffset(i)) { 319 uop(index + j.U) := io.enq.req(i).bits 320 // NOTE: the index will be used when replay 321 uop(index + j.U).sqIdx := sqIdx + j.U 322 allocated(index + j.U) := true.B 323 datavalid(index + j.U) := false.B 324 addrvalid(index + j.U) := false.B 325 committed(index + j.U) := false.B 326 pending(index + j.U) := false.B 327 prefetch(index + j.U) := false.B 328 mmio(index + j.U) := false.B 329 is_vec(index + j.U) := enqInstr.isVecStore // check vector store by the encoding of inst 330 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 331 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 332 } 333 } 334 } 335 io.enq.resp(i) := sqIdx 336 } 337 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 338 339 /** 340 * Update addr/dataReadyPtr when issue from rs 341 */ 342 // update issuePtr 343 val IssuePtrMoveStride = 4 344 require(IssuePtrMoveStride >= 2) 345 346 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 347 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || vec_secondInv(ptr.value)) 348 && ptr =/= enqPtrExt(0)) 349 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 350 addrReadyPtrExt := nextAddrReadyPtr 351 352 (0 until StoreQueueSize).map(i => { 353 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i) || vec_secondInv(i))) 354 }) 355 356 when (io.brqRedirect.valid) { 357 addrReadyPtrExt := Mux( 358 isAfter(cmtPtrExt(0), deqPtrExt(0)), 359 cmtPtrExt(0), 360 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 361 ) 362 } 363 364 io.stAddrReadySqPtr := addrReadyPtrExt 365 366 // update 367 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 368 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec_secondInv(ptr.value)) 369 && ptr =/= enqPtrExt(0)) 370 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 371 dataReadyPtrExt := nextDataReadyPtr 372 373 (0 until StoreQueueSize).map(i => { 374 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i) || vec_secondInv(i))) 375 }) 376 377 when (io.brqRedirect.valid) { 378 dataReadyPtrExt := Mux( 379 isAfter(cmtPtrExt(0), deqPtrExt(0)), 380 cmtPtrExt(0), 381 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 382 ) 383 } 384 385 io.stDataReadySqPtr := dataReadyPtrExt 386 io.stIssuePtr := enqPtrExt(0) 387 io.sqDeqPtr := deqPtrExt(0) 388 389 /** 390 * Writeback store from store units 391 * 392 * Most store instructions writeback to regfile in the previous cycle. 393 * However, 394 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 395 * (in this way it will trigger an exception when it reaches ROB's head) 396 * instead of pending to avoid sending them to lower level. 397 * (2) For an mmio instruction without exceptions, we mark it as pending. 398 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 399 * Upon receiving the response, StoreQueue writes back the instruction 400 * through arbiter with store units. It will later commit as normal. 401 */ 402 403 // Write addr to sq 404 for (i <- 0 until StorePipelineWidth) { 405 paddrModule.io.wen(i) := false.B 406 vaddrModule.io.wen(i) := false.B 407 dataModule.io.mask.wen(i) := false.B 408 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 409 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isvec 410 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 411 412 when (io.storeAddrIn(i).fire) { 413 val addr_valid = !io.storeAddrIn(i).bits.miss 414 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 415 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 416 417 paddrModule.io.waddr(i) := stWbIndex 418 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 419 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 420 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 421 paddrModule.io.wen(i) := true.B 422 423 vaddrModule.io.waddr(i) := stWbIndex 424 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 425 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 426 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 427 vaddrModule.io.wen(i) := true.B 428 429 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 430 431 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 432 433 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 434 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 435 436 when (io.storeAddrIn(i).bits.usSecondInv) { 437 vec_secondInv(stWbIndex + 1.U) := true.B 438 // For vec commit or flush 439 uop(stWbIndex + 1.U).robIdx := uop(stWbIndex).robIdx 440 uop(stWbIndex + 1.U).uopIdx := uop(stWbIndex).uopIdx 441 } 442 443 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x vec_secondInv %x\n", 444 io.storeAddrIn(i).bits.uop.sqIdx.value, 445 io.storeAddrIn(i).bits.uop.pc, 446 io.storeAddrIn(i).bits.miss, 447 io.storeAddrIn(i).bits.vaddr, 448 io.storeAddrIn(i).bits.paddr, 449 io.storeAddrIn(i).bits.mmio, 450 io.storeAddrIn(i).bits.isvec, 451 io.storeAddrIn(i).bits.usSecondInv 452 ) 453 } 454 455 // re-replinish mmio, for pma/pmp will get mmio one cycle later 456 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 457 val stWbIndexReg = RegNext(stWbIndex) 458 when (storeAddrInFireReg) { 459 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 460 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 461 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 462 } 463 // dcache miss info (one cycle later than storeIn) 464 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 465 when (storeAddrInFireReg) { 466 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 467 } 468 469 when(vaddrModule.io.wen(i)){ 470 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 471 } 472 } 473 474 // Write data to sq 475 // Now store data pipeline is actually 2 stages 476 for (i <- 0 until StorePipelineWidth) { 477 dataModule.io.data.wen(i) := false.B 478 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 479 // sq data write takes 2 cycles: 480 // sq data write s0 481 when (io.storeDataIn(i).fire) { 482 // send data write req to data module 483 dataModule.io.data.waddr(i) := stWbIndex 484 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 485 0.U, 486 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)) 487 ) 488 dataModule.io.data.wen(i) := true.B 489 490 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 491 492 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 493 io.storeDataIn(i).bits.uop.sqIdx.value, 494 io.storeDataIn(i).bits.uop.pc, 495 io.storeDataIn(i).bits.data, 496 dataModule.io.data.wdata(i) 497 ) 498 } 499 // sq data write s1 500 when ( 501 RegNext(io.storeDataIn(i).fire) 502 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 503 ) { 504 datavalid(RegNext(stWbIndex)) := true.B 505 } 506 } 507 508 // Write mask to sq 509 for (i <- 0 until StorePipelineWidth) { 510 // sq mask write s0 511 when (io.storeMaskIn(i).fire) { 512 // send data write req to data module 513 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 514 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 515 dataModule.io.mask.wen(i) := true.B 516 } 517 } 518 519 /** 520 * load forward query 521 * 522 * Check store queue for instructions that is older than the load. 523 * The response will be valid at the next cycle after req. 524 */ 525 // check over all lq entries and forward data from the first matched store 526 for (i <- 0 until LoadPipelineWidth) { 527 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 528 // (1) if they have the same flag, we need to check range(tail, sqIdx) 529 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 530 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 531 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 532 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 533 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 534 val forwardMask = io.forward(i).sqIdxMask 535 // all addrvalid terms need to be checked 536 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 537 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 538 // vector store will consider all inactive || secondInvalid flows as valid 539 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => (addrvalid(j) || vec_secondInv(j) || vec_mbCommit(j)) && allocated(j)))) 540 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j) || vec_secondInv(j) || vec_mbCommit(j)))) 541 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => ((addrvalid(j) && datavalid(j)) || vec_secondInv(j) || vec_mbCommit(j)) && allocated(j)))) 542 543 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR 544 val storeSetHitVec = Mux(lfstEnable, 545 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 546 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 547 ) 548 549 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 550 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 551 val canForward1 = forwardMask1 & allValidVec.asUInt 552 val canForward2 = forwardMask2 & allValidVec.asUInt 553 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 554 555 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 556 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 557 ) 558 559 // do real fwd query (cam lookup in load_s1) 560 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 561 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 562 563 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 564 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 565 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 566 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 567 568 569 // vaddr cam result does not equal to paddr cam result 570 // replay needed 571 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 572 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 573 val vpmaskNotEqual = ( 574 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 575 RegNext(needForward) & 576 RegNext(addrRealValidVec.asUInt) 577 ) =/= 0.U 578 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 579 when (vaddrMatchFailed) { 580 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 581 RegNext(io.forward(i).uop.pc), 582 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 583 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 584 ); 585 } 586 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 587 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 588 589 // Fast forward mask will be generated immediately (load_s1) 590 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 591 592 // Forward result will be generated 1 cycle later (load_s2) 593 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 594 io.forward(i).forwardData := dataModule.io.forwardData(i) 595 // If addr match, data not ready, mark it as dataInvalid 596 // load_s1: generate dataInvalid in load_s1 to set fastUop 597 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 598 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 599 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 600 io.forward(i).dataInvalidFast := dataInvalidMask.orR 601 602 // make chisel happy 603 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 604 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 605 // make chisel happy 606 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 607 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 608 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 609 610 // If SSID match, address not ready, mark it as addrInvalid 611 // load_s2: generate addrInvalid 612 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 613 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 614 // make chisel happy 615 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 616 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 617 // make chisel happy 618 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 619 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 620 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 621 622 // load_s2 623 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 624 // check if vaddr forward mismatched 625 io.forward(i).matchInvalid := vaddrMatchFailed 626 627 // data invalid sq index 628 // check whether false fail 629 // check flag 630 val s2_differentFlag = RegNext(differentFlag) 631 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 632 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 633 634 // addr invalid sq index 635 // make chisel happy 636 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 637 addrInvalidMaskRegWire := addrInvalidMaskReg 638 val addrInvalidFlag = addrInvalidMaskRegWire.orR 639 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 640 641 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 642 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 643 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 644 645 // store-set content management 646 // +-----------------------+ 647 // | Search a SSID for the | 648 // | load operation | 649 // +-----------------------+ 650 // | 651 // V 652 // +-------------------+ 653 // | load wait strict? | 654 // +-------------------+ 655 // | 656 // V 657 // +----------------------+ 658 // Set| |Clean 659 // V V 660 // +------------------------+ +------------------------------+ 661 // | Waiting for all older | | Wait until the corresponding | 662 // | stores operations | | older store operations | 663 // +------------------------+ +------------------------------+ 664 665 666 667 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 668 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 669 } .elsewhen (addrInvalidFlag) { 670 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 671 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 672 } .otherwise { 673 // may be store inst has been written to sbuffer already. 674 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 675 } 676 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 677 678 // data invalid sq index 679 // make chisel happy 680 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 681 dataInvalidMaskRegWire := dataInvalidMaskReg 682 val dataInvalidFlag = dataInvalidMaskRegWire.orR 683 684 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 685 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 686 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 687 688 when (dataInvalidFlag) { 689 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 690 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 691 } .otherwise { 692 // may be store inst has been written to sbuffer already. 693 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 694 } 695 } 696 697 /** 698 * Memory mapped IO / other uncached operations 699 * 700 * States: 701 * (1) writeback from store units: mark as pending 702 * (2) when they reach ROB's head, they can be sent to uncache channel 703 * (3) response from uncache channel: mark as datavalidmask.wen 704 * (4) writeback to ROB (and other units): mark as writebacked 705 * (5) ROB commits the instruction: same as normal instructions 706 */ 707 //(2) when they reach ROB's head, they can be sent to uncache channel 708 // TODO: CAN NOT deal with vector mmio now! 709 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 710 val uncacheState = RegInit(s_idle) 711 switch(uncacheState) { 712 is(s_idle) { 713 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 714 uncacheState := s_req 715 } 716 } 717 is(s_req) { 718 when (io.uncache.req.fire) { 719 when (io.uncacheOutstanding) { 720 uncacheState := s_wb 721 } .otherwise { 722 uncacheState := s_resp 723 } 724 } 725 } 726 is(s_resp) { 727 when(io.uncache.resp.fire) { 728 uncacheState := s_wb 729 } 730 } 731 is(s_wb) { 732 when (io.mmioStout.fire || io.vecmmioStout.fire) { 733 uncacheState := s_wait 734 } 735 } 736 is(s_wait) { 737 // A MMIO store can always move cmtPtrExt as it must be ROB head 738 when(scommit > 0.U) { 739 uncacheState := s_idle // ready for next mmio 740 } 741 } 742 } 743 io.uncache.req.valid := uncacheState === s_req 744 745 io.uncache.req.bits := DontCare 746 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 747 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 748 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 749 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 750 751 // CBO op type check can be delayed for 1 cycle, 752 // as uncache op will not start in s_idle 753 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 754 val cbo_mmio_op = 0.U //TODO 755 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 756 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 757 io.uncache.req.bits.addr := DontCare // TODO 758 io.uncache.req.bits.data := paddrModule.io.rdata(0) 759 io.uncache.req.bits.mask := DontCare // TODO 760 } 761 762 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 763 764 when(io.uncache.req.fire){ 765 // mmio store should not be committed until uncache req is sent 766 pending(deqPtr) := false.B 767 768 XSDebug( 769 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 770 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 771 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 772 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 773 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 774 ) 775 } 776 777 // (3) response from uncache channel: mark as datavalid 778 io.uncache.resp.ready := true.B 779 780 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 781 io.mmioStout.valid := uncacheState === s_wb && !is_vec(deqPtr) 782 io.mmioStout.bits.uop := uop(deqPtr) 783 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 784 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 785 io.mmioStout.bits.debug.isMMIO := true.B 786 io.mmioStout.bits.debug.paddr := DontCare 787 io.mmioStout.bits.debug.isPerfCnt := false.B 788 io.mmioStout.bits.debug.vaddr := DontCare 789 // Remove MMIO inst from store queue after MMIO request is being sent 790 // That inst will be traced by uncache state machine 791 when (io.mmioStout.fire) { 792 allocated(deqPtr) := false.B 793 } 794 795 // (4) or vector store: 796 // TODO: implement it! 797 io.vecmmioStout := DontCare 798 io.vecmmioStout.valid := uncacheState === s_wb && is_vec(deqPtr) 799 io.vecmmioStout.bits.uop := uop(deqPtr) 800 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 801 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 802 io.vecmmioStout.bits.debug.isMMIO := true.B 803 io.vecmmioStout.bits.debug.paddr := DontCare 804 io.vecmmioStout.bits.debug.isPerfCnt := false.B 805 io.vecmmioStout.bits.debug.vaddr := DontCare 806 // Remove MMIO inst from store queue after MMIO request is being sent 807 // That inst will be traced by uncache state machine 808 when (io.vecmmioStout.fire) { 809 allocated(deqPtr) := false.B 810 } 811 812 /** 813 * ROB commits store instructions (mark them as committed) 814 * 815 * (1) When store commits, mark it as committed. 816 * (2) They will not be cancelled and can be sent to lower level. 817 */ 818 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 819 "should not commit instruction when MMIO has not been finished\n") 820 821 val scalarcommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 822 val veccommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 823 // TODO: Deal with vector store mmio 824 for (i <- 0 until CommitWidth) { 825 val veccount = PopCount(veccommitVec.take(i)) 826 when (is_vec(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, io.rob.pendingPtr) && vec_mbCommit(cmtPtrExt(i).value)) { 827 if (i == 0){ 828 // TODO: fixme for vector mmio 829 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 830 committed(cmtPtrExt(0).value) := true.B 831 veccommitVec(i) := true.B 832 } 833 } else { 834 committed(cmtPtrExt(i).value) := true.B 835 veccommitVec(i) := true.B 836 } 837 } .elsewhen (scalarCommitCount > i.U - veccount) { 838 if (i == 0){ 839 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 840 committed(cmtPtrExt(0).value) := true.B 841 scalarcommitVec(i) := true.B 842 } 843 } else { 844 committed(cmtPtrExt(i).value) := true.B 845 scalarcommitVec(i) := true.B 846 } 847 } 848 } 849 850 scalarCommitted := PopCount(scalarcommitVec) 851 vecCommitted := PopCount(veccommitVec) 852 commitCount := scalarCommitted + vecCommitted 853 854 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 855 856 // committed stores will not be cancelled and can be sent to lower level. 857 // remove retired insts from sq, add retired store to sbuffer 858 859 // Read data from data module 860 // As store queue grows larger and larger, time needed to read data from data 861 // module keeps growing higher. Now we give data read a whole cycle. 862 val mmioStall = mmio(rdataPtrExt(0).value) 863 for (i <- 0 until EnsbufferWidth) { 864 val ptr = rdataPtrExt(i).value 865 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 866 // Note that store data/addr should both be valid after store's commit 867 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vec_mbCommit(ptr))) 868 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 869 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 870 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 871 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 872 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 873 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 874 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 875 dataBuffer.io.enq(i).bits.vec_mbCommit := vec_mbCommit(ptr) 876 } 877 878 // Send data stored in sbufferReqBitsReg to sbuffer 879 for (i <- 0 until EnsbufferWidth) { 880 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid && !dataBuffer.io.deq(i).bits.vec_mbCommit 881 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 882 // Write line request should have all 1 mask 883 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 884 io.sbuffer(i).bits := DontCare 885 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 886 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 887 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 888 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 889 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 890 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 891 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 892 sbuffer_Inv(i) := dataBuffer.io.deq(i).valid && dataBuffer.io.deq(i).bits.vec_mbCommit 893 894 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 895 // Before data write finish, sbuffer is unable to provide store to load 896 // forward data. As an workaround, deqPtrExt and allocated flag update 897 // is delayed so that load can get the right data from store queue. 898 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 899 when (RegNext(io.sbuffer(i).fire) || sbuffer_Inv(i)) { 900 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 901 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 902 } 903 } 904 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 905 if (coreParams.dcacheParametersOpt.isEmpty) { 906 for (i <- 0 until EnsbufferWidth) { 907 val ptr = deqPtrExt(i).value 908 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 909 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 910 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 911 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 912 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 913 when (wen) { 914 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 915 } 916 } 917 } 918 919 // Read vaddr for mem exception 920 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 921 922 // vector commit or replay from 923 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 924 for (i <- 0 until StoreQueueSize) { 925 val fbk = io.vecFeedback 926 vecCommit(i) := fbk.valid && fbk.bits.isCommit && uop(i).robIdx === fbk.bits.robidx && uop(i).uopIdx === fbk.bits.uopidx 927 when (vecCommit(i)) { 928 vec_mbCommit(i) := true.B 929 } 930 } 931 932 // misprediction recovery / exception redirect 933 // invalidate sq term using robIdx 934 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 935 for (i <- 0 until StoreQueueSize) { 936 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 937 when (needCancel(i)) { 938 allocated(i) := false.B 939 } 940 } 941 942 /** 943* update pointers 944**/ 945 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 946 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 947 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 948 val enqNumber = validVStoreFlow.reduce(_ + _) 949 950 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 951 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 952 953 when (lastlastCycleRedirect) { 954 // we recover the pointers in 2 cycle after redirect for better timing 955 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 956 }.otherwise { 957 // lastCycleRedirect.valid or nornal case 958 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 959 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 960 } 961 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 962 963 deqPtrExt := deqPtrExtNext 964 rdataPtrExt := rdataPtrExtNext 965 966 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 967 968 // If redirect at T0, sqCancelCnt is at T2 969 io.sqCancelCnt := redirectCancelCount 970 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 971 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 972 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 973 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 974 975 val valid_cnt = PopCount(allocated) 976 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 977 978 // io.sqempty will be used by sbuffer 979 // We delay it for 1 cycle for better timing 980 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 981 // for 1 cycle will also promise that sq is empty in that cycle 982 io.sqEmpty := RegNext( 983 enqPtrExt(0).value === deqPtrExt(0).value && 984 enqPtrExt(0).flag === deqPtrExt(0).flag 985 ) 986 // perf counter 987 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 988 io.sqFull := !allowEnqueue 989 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 990 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 991 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 992 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 993 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 994 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 995 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 996 997 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 998 val perfEvents = Seq( 999 ("mmioCycle ", uncacheState =/= s_idle), 1000 ("mmioCnt ", io.uncache.req.fire), 1001 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1002 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1003 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1004 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1005 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1006 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1007 ) 1008 generatePerfEvent() 1009 1010 // debug info 1011 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1012 1013 def PrintFlag(flag: Bool, name: String): Unit = { 1014 when(flag) { 1015 XSDebug(false, true.B, name) 1016 }.otherwise { 1017 XSDebug(false, true.B, " ") 1018 } 1019 } 1020 1021 for (i <- 0 until StoreQueueSize) { 1022 XSDebug(i + ": pc %x va %x pa %x data %x ", 1023 uop(i).pc, 1024 debug_vaddr(i), 1025 debug_paddr(i), 1026 debug_data(i) 1027 ) 1028 PrintFlag(allocated(i), "a") 1029 PrintFlag(allocated(i) && addrvalid(i), "a") 1030 PrintFlag(allocated(i) && datavalid(i), "d") 1031 PrintFlag(allocated(i) && committed(i), "c") 1032 PrintFlag(allocated(i) && pending(i), "p") 1033 PrintFlag(allocated(i) && mmio(i), "m") 1034 PrintFlag(allocated(i) && vec_secondInv(i), "s") 1035 XSDebug(false, true.B, "\n") 1036 } 1037 1038} 1039