1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32 33class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 34 p => p(XSCoreParamsKey).StoreQueueSize 35){ 36} 37 38object SqPtr { 39 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 40 val ptr = Wire(new SqPtr) 41 ptr.flag := f 42 ptr.value := v 43 ptr 44 } 45} 46 47class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 48 val canAccept = Output(Bool()) 49 val lqCanAccept = Input(Bool()) 50 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 51 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 52 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 53} 54 55class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 56 val addr = UInt(PAddrBits.W) 57 val vaddr = UInt(VAddrBits.W) 58 val data = UInt(VLEN.W) 59 val mask = UInt((VLEN/8).W) 60 val wline = Bool() 61 val sqPtr = new SqPtr 62 val prefetch = Bool() 63} 64 65// Store Queue 66class StoreQueue(implicit p: Parameters) extends XSModule 67 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 68 val io = IO(new Bundle() { 69 val hartId = Input(UInt(8.W)) 70 val enq = new SqEnqIO 71 val brqRedirect = Flipped(ValidIO(new Redirect)) 72 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 73 val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include 74 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 75 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs 76 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 77 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 78 val uncacheOutstanding = Input(Bool()) 79 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 80 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 81 val rob = Flipped(new RobLsqIO) 82 val uncache = new UncacheWordIO 83 // val refill = Flipped(Valid(new DCacheLineReq )) 84 val exceptionAddr = new ExceptionAddrIO 85 val sqEmpty = Output(Bool()) 86 val stAddrReadySqPtr = Output(new SqPtr) 87 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 88 val stDataReadySqPtr = Output(new SqPtr) 89 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 90 val stIssuePtr = Output(new SqPtr) 91 val sqDeqPtr = Output(new SqPtr) 92 val sqFull = Output(Bool()) 93 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 94 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 95 val force_write = Output(Bool()) 96 val vecStoreRetire = Flipped(ValidIO(new SqPtr)) 97 }) 98 99 println("StoreQueue: size:" + StoreQueueSize) 100 101 // data modules 102 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 103 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 104 val dataModule = Module(new SQDataModule( 105 numEntries = StoreQueueSize, 106 numRead = EnsbufferWidth, 107 numWrite = StorePipelineWidth, 108 numForward = LoadPipelineWidth 109 )) 110 dataModule.io := DontCare 111 val paddrModule = Module(new SQAddrModule( 112 dataWidth = PAddrBits, 113 numEntries = StoreQueueSize, 114 numRead = EnsbufferWidth, 115 numWrite = StorePipelineWidth, 116 numForward = LoadPipelineWidth 117 )) 118 paddrModule.io := DontCare 119 val vaddrModule = Module(new SQAddrModule( 120 dataWidth = VAddrBits, 121 numEntries = StoreQueueSize, 122 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 123 numWrite = StorePipelineWidth, 124 numForward = LoadPipelineWidth 125 )) 126 vaddrModule.io := DontCare 127 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 128 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 129 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 130 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 131 132 // state & misc 133 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 134 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 135 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 136 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 137 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 138 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 139 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 140 val atomic = Reg(Vec(StoreQueueSize, Bool())) 141 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 142 val vec = Reg(Vec(StoreQueueSize, Bool())) 143 val vecAddrvalid = Reg(Vec(StoreQueueSize, Bool())) // TODO 144 145 // ptr 146 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 147 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 148 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 149 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 150 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 151 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 152 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 153 154 val enqPtr = enqPtrExt(0).value 155 val deqPtr = deqPtrExt(0).value 156 val cmtPtr = cmtPtrExt(0).value 157 158 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 159 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 160 161 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 162 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 163 164 val commitCount = RegNext(io.rob.scommit) 165 166 // store can be committed by ROB 167 io.rob.mmio := DontCare 168 io.rob.uop := DontCare 169 170 // Read dataModule 171 assert(EnsbufferWidth <= 2) 172 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 173 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 174 VecInit(rdataPtrExt.map(_ + 2.U)), 175 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid, 176 VecInit(rdataPtrExt.map(_ + 1.U)), 177 rdataPtrExt 178 ) 179 )) 180 181 // deqPtrExtNext traces which inst is about to leave store queue 182 // 183 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 184 // Before data write finish, sbuffer is unable to provide store to load 185 // forward data. As an workaround, deqPtrExt and allocated flag update 186 // is delayed so that load can get the right data from store queue. 187 // 188 // Modify deqPtrExtNext and io.sqDeq with care! 189 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 190 VecInit(deqPtrExt.map(_ + 2.U)), 191 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 192 VecInit(deqPtrExt.map(_ + 1.U)), 193 deqPtrExt 194 ) 195 ) 196 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 197 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U) 198 )) 199 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 200 201 for (i <- 0 until EnsbufferWidth) { 202 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 203 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 204 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 205 } 206 207 // no inst will be committed 1 cycle before tval update 208 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 209 210 /** 211 * Enqueue at dispatch 212 * 213 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 214 */ 215 io.enq.canAccept := allowEnqueue 216 val canEnqueue = io.enq.req.map(_.valid) 217 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 218 for (i <- 0 until io.enq.req.length) { 219 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 220 val sqIdx = enqPtrExt(offset) 221 val index = io.enq.req(i).bits.sqIdx.value 222 when (canEnqueue(i) && !enqCancel(i)) { 223 uop(index) := io.enq.req(i).bits 224 // NOTE: the index will be used when replay 225 uop(index).sqIdx := sqIdx 226 allocated(index) := true.B 227 datavalid(index) := false.B 228 addrvalid(index) := false.B 229 committed(index) := false.B 230 pending(index) := false.B 231 prefetch(index) := false.B 232 mmio(index) := false.B 233 vec(index) := io.enq.req(i).bits.instr(6, 0) === "b0100111".U // TODO 234 vecAddrvalid(index) := false.B//TODO 235 236 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 237 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 238 } 239 io.enq.resp(i) := sqIdx 240 } 241 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 242 243 /** 244 * Update addr/dataReadyPtr when issue from rs 245 */ 246 // update issuePtr 247 val IssuePtrMoveStride = 4 248 require(IssuePtrMoveStride >= 2) 249 250 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 251 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || (vec(ptr.value) && vecAddrvalid(ptr.value))) && ptr =/= enqPtrExt(0)) 252 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 253 addrReadyPtrExt := nextAddrReadyPtr 254 255 (0 until StoreQueueSize).map(i => { 256 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 257 }) 258 259 when (io.brqRedirect.valid) { 260 addrReadyPtrExt := Mux( 261 isAfter(cmtPtrExt(0), deqPtrExt(0)), 262 cmtPtrExt(0), 263 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 264 ) 265 } 266 267 io.stAddrReadySqPtr := addrReadyPtrExt 268 269 // update 270 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 271 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0)) // TODO : flag of vector store data valid not add yet 272 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 273 dataReadyPtrExt := nextDataReadyPtr 274 275 (0 until StoreQueueSize).map(i => { 276 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 277 }) 278 279 when (io.brqRedirect.valid) { 280 dataReadyPtrExt := Mux( 281 isAfter(cmtPtrExt(0), deqPtrExt(0)), 282 cmtPtrExt(0), 283 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 284 ) 285 } 286 287 io.stDataReadySqPtr := dataReadyPtrExt 288 io.stIssuePtr := enqPtrExt(0) 289 io.sqDeqPtr := deqPtrExt(0) 290 291 /** 292 * Writeback store from store units 293 * 294 * Most store instructions writeback to regfile in the previous cycle. 295 * However, 296 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 297 * (in this way it will trigger an exception when it reaches ROB's head) 298 * instead of pending to avoid sending them to lower level. 299 * (2) For an mmio instruction without exceptions, we mark it as pending. 300 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 301 * Upon receiving the response, StoreQueue writes back the instruction 302 * through arbiter with store units. It will later commit as normal. 303 */ 304 305 // Write addr to sq 306 for (i <- 0 until StorePipelineWidth) { 307 paddrModule.io.wen(i) := false.B 308 vaddrModule.io.wen(i) := false.B 309 dataModule.io.mask.wen(i) := false.B 310 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 311 when (io.storeAddrIn(i).fire) { 312 val addr_valid = !io.storeAddrIn(i).bits.miss 313 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 314 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 315 316 paddrModule.io.waddr(i) := stWbIndex 317 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 318 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 319 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 320 paddrModule.io.wen(i) := true.B 321 322 vaddrModule.io.waddr(i) := stWbIndex 323 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 324 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 325 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 326 vaddrModule.io.wen(i) := true.B 327 328 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 329 330 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 331 332 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 333 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 334 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 335 io.storeAddrIn(i).bits.uop.sqIdx.value, 336 io.storeAddrIn(i).bits.uop.pc, 337 io.storeAddrIn(i).bits.miss, 338 io.storeAddrIn(i).bits.vaddr, 339 io.storeAddrIn(i).bits.paddr, 340 io.storeAddrIn(i).bits.mmio 341 ) 342 } 343 344 // re-replinish mmio, for pma/pmp will get mmio one cycle later 345 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 346 val stWbIndexReg = RegNext(stWbIndex) 347 when (storeAddrInFireReg) { 348 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 349 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 350 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 351 } 352 // dcache miss info (one cycle later than storeIn) 353 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 354 when (storeAddrInFireReg) { 355 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 356 } 357 358 when(vaddrModule.io.wen(i)){ 359 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 360 } 361 // TODO : When lastElem issue to stu, set vector store addr ready 362 val vecStWbIndex = io.vecStoreAddrIn(i).bits.uop.sqIdx.value 363 when(io.vecStoreAddrIn(i).fire){ 364 vecAddrvalid(vecStWbIndex) := !io.vecStoreAddrIn(i).bits.miss && io.vecStoreAddrIn(i).bits.isLastElem 365 } 366 } 367 368 // Write data to sq 369 // Now store data pipeline is actually 2 stages 370 for (i <- 0 until StorePipelineWidth) { 371 dataModule.io.data.wen(i) := false.B 372 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 373 // sq data write takes 2 cycles: 374 // sq data write s0 375 when (io.storeDataIn(i).fire) { 376 // send data write req to data module 377 dataModule.io.data.waddr(i) := stWbIndex 378 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 379 0.U, 380 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0)) 381 ) 382 dataModule.io.data.wen(i) := true.B 383 384 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 385 386 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 387 io.storeDataIn(i).bits.uop.sqIdx.value, 388 io.storeDataIn(i).bits.uop.pc, 389 io.storeDataIn(i).bits.data, 390 dataModule.io.data.wdata(i) 391 ) 392 } 393 // sq data write s1 394 when ( 395 RegNext(io.storeDataIn(i).fire) 396 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 397 ) { 398 datavalid(RegNext(stWbIndex)) := true.B 399 } 400 } 401 402 // Write mask to sq 403 for (i <- 0 until StorePipelineWidth) { 404 // sq mask write s0 405 when (io.storeMaskIn(i).fire) { 406 // send data write req to data module 407 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 408 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 409 dataModule.io.mask.wen(i) := true.B 410 } 411 } 412 413 /** 414 * load forward query 415 * 416 * Check store queue for instructions that is older than the load. 417 * The response will be valid at the next cycle after req. 418 */ 419 // check over all lq entries and forward data from the first matched store 420 for (i <- 0 until LoadPipelineWidth) { 421 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 422 // (1) if they have the same flag, we need to check range(tail, sqIdx) 423 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 424 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 425 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 426 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 427 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 428 val forwardMask = io.forward(i).sqIdxMask 429 // all addrvalid terms need to be checked 430 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 431 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 432 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 433 434 val storeSetHitVec = 435 if (LFSTEnable) { 436 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))) 437 } else { 438 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 439 } 440 441 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 442 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 443 val canForward1 = forwardMask1 & allValidVec.asUInt 444 val canForward2 = forwardMask2 & allValidVec.asUInt 445 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 446 447 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 448 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 449 ) 450 451 // do real fwd query (cam lookup in load_s1) 452 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 453 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 454 455 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 456 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 457 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 458 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 459 460 461 // vaddr cam result does not equal to paddr cam result 462 // replay needed 463 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 464 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 465 val vpmaskNotEqual = ( 466 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 467 RegNext(needForward) & 468 RegNext(addrValidVec.asUInt) 469 ) =/= 0.U 470 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 471 when (vaddrMatchFailed) { 472 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 473 RegNext(io.forward(i).uop.pc), 474 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 475 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 476 ); 477 } 478 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 479 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 480 481 // Fast forward mask will be generated immediately (load_s1) 482 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 483 484 // Forward result will be generated 1 cycle later (load_s2) 485 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 486 io.forward(i).forwardData := dataModule.io.forwardData(i) 487 // If addr match, data not ready, mark it as dataInvalid 488 // load_s1: generate dataInvalid in load_s1 to set fastUop 489 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 490 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 491 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 492 io.forward(i).dataInvalidFast := dataInvalidMask.orR 493 494 // make chisel happy 495 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 496 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 497 // make chisel happy 498 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 499 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 500 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 501 502 // If SSID match, address not ready, mark it as addrInvalid 503 // load_s2: generate addrInvalid 504 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 505 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 506 // make chisel happy 507 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 508 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 509 // make chisel happy 510 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 511 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 512 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 513 514 // load_s2 515 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 516 // check if vaddr forward mismatched 517 io.forward(i).matchInvalid := vaddrMatchFailed 518 519 // data invalid sq index 520 // check whether false fail 521 // check flag 522 val s2_differentFlag = RegNext(differentFlag) 523 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 524 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 525 526 // addr invalid sq index 527 // make chisel happy 528 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 529 addrInvalidMaskRegWire := addrInvalidMaskReg 530 val addrInvalidFlag = addrInvalidMaskRegWire.orR 531 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 532 533 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 534 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 535 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 536 537 // store-set content management 538 // +-----------------------+ 539 // | Search a SSID for the | 540 // | load operation | 541 // +-----------------------+ 542 // | 543 // V 544 // +-------------------+ 545 // | load wait strict? | 546 // +-------------------+ 547 // | 548 // V 549 // +----------------------+ 550 // Set| |Clean 551 // V V 552 // +------------------------+ +------------------------------+ 553 // | Waiting for all older | | Wait until the corresponding | 554 // | stores operations | | older store operations | 555 // +------------------------+ +------------------------------+ 556 557 558 559 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 560 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 561 } .elsewhen (addrInvalidFlag) { 562 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 563 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 564 } .otherwise { 565 // may be store inst has been written to sbuffer already. 566 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 567 } 568 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 569 570 // data invalid sq index 571 // make chisel happy 572 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 573 dataInvalidMaskRegWire := dataInvalidMaskReg 574 val dataInvalidFlag = dataInvalidMaskRegWire.orR 575 576 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 577 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 578 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 579 580 when (dataInvalidFlag) { 581 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 582 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 583 } .otherwise { 584 // may be store inst has been written to sbuffer already. 585 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 586 } 587 } 588 589 /** 590 * Memory mapped IO / other uncached operations 591 * 592 * States: 593 * (1) writeback from store units: mark as pending 594 * (2) when they reach ROB's head, they can be sent to uncache channel 595 * (3) response from uncache channel: mark as datavalidmask.wen 596 * (4) writeback to ROB (and other units): mark as writebacked 597 * (5) ROB commits the instruction: same as normal instructions 598 */ 599 //(2) when they reach ROB's head, they can be sent to uncache channel 600 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 601 val uncacheState = RegInit(s_idle) 602 switch(uncacheState) { 603 is(s_idle) { 604 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 605 uncacheState := s_req 606 } 607 } 608 is(s_req) { 609 when (io.uncache.req.fire) { 610 when (io.uncacheOutstanding) { 611 uncacheState := s_wb 612 } .otherwise { 613 uncacheState := s_resp 614 } 615 } 616 } 617 is(s_resp) { 618 when(io.uncache.resp.fire) { 619 uncacheState := s_wb 620 } 621 } 622 is(s_wb) { 623 when (io.mmioStout.fire) { 624 uncacheState := s_wait 625 } 626 } 627 is(s_wait) { 628 when(commitCount > 0.U) { 629 uncacheState := s_idle // ready for next mmio 630 } 631 } 632 } 633 io.uncache.req.valid := uncacheState === s_req 634 635 io.uncache.req.bits := DontCare 636 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 637 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 638 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 639 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 640 641 // CBO op type check can be delayed for 1 cycle, 642 // as uncache op will not start in s_idle 643 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 644 val cbo_mmio_op = 0.U //TODO 645 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 646 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 647 io.uncache.req.bits.addr := DontCare // TODO 648 io.uncache.req.bits.data := paddrModule.io.rdata(0) 649 io.uncache.req.bits.mask := DontCare // TODO 650 } 651 652 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 653 654 when(io.uncache.req.fire){ 655 // mmio store should not be committed until uncache req is sent 656 pending(deqPtr) := false.B 657 658 XSDebug( 659 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 660 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 661 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 662 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 663 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 664 ) 665 } 666 667 // (3) response from uncache channel: mark as datavalid 668 io.uncache.resp.ready := true.B 669 670 // (4) writeback to ROB (and other units): mark as writebacked 671 io.mmioStout.valid := uncacheState === s_wb 672 io.mmioStout.bits.uop := uop(deqPtr) 673 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 674 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 675 io.mmioStout.bits.debug.isMMIO := true.B 676 io.mmioStout.bits.debug.paddr := DontCare 677 io.mmioStout.bits.debug.isPerfCnt := false.B 678 io.mmioStout.bits.debug.vaddr := DontCare 679 // Remove MMIO inst from store queue after MMIO request is being sent 680 // That inst will be traced by uncache state machine 681 when (io.mmioStout.fire) { 682 allocated(deqPtr) := false.B 683 } 684 685 /** 686 * ROB commits store instructions (mark them as committed) 687 * 688 * (1) When store commits, mark it as committed. 689 * (2) They will not be cancelled and can be sent to lower level. 690 */ 691 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 692 "should not commit instruction when MMIO has not been finished\n") 693 for (i <- 0 until CommitWidth) { 694 when (commitCount > i.U) { // MMIO inst is not in progress 695 if(i == 0){ 696 // MMIO inst should not update committed flag 697 // Note that commit count has been delayed for 1 cycle 698 when(uncacheState === s_idle){ 699 committed(cmtPtrExt(0).value) := true.B 700 } 701 } else { 702 committed(cmtPtrExt(i).value) := true.B 703 } 704 } 705 } 706 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 707 708 // committed stores will not be cancelled and can be sent to lower level. 709 // remove retired insts from sq, add retired store to sbuffer 710 711 // Read data from data module 712 // As store queue grows larger and larger, time needed to read data from data 713 // module keeps growing higher. Now we give data read a whole cycle. 714 715 // Vector stores are written to sbuffer by vector store flow queue rather than sq 716 XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store") 717 XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry") 718 XSError(io.vecStoreRetire.valid && vec(rdataPtrExt(0).value) && !vecAddrvalid(rdataPtrExt(0).value), "Vector store is trying to retire without write last element!") 719 when (io.vecStoreRetire.valid) { 720 assert(io.vecStoreRetire.bits === rdataPtrExt(0)) 721 vec(rdataPtrExt(0).value) := false.B 722 vecAddrvalid(rdataPtrExt(0).value) := false.B 723 allocated(rdataPtrExt(0).value) := false.B 724 } 725 726 val mmioStall = mmio(rdataPtrExt(0).value) 727 val vecStall = vec(rdataPtrExt(0).value) 728 for (i <- 0 until EnsbufferWidth) { 729 val ptr = rdataPtrExt(i).value 730 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall 731 // Note that store data/addr should both be valid after store's commit 732 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 733 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 734 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 735 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 736 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 737 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 738 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 739 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 740 } 741 742 // Send data stored in sbufferReqBitsReg to sbuffer 743 for (i <- 0 until EnsbufferWidth) { 744 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 745 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 746 // Write line request should have all 1 mask 747 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 748 io.sbuffer(i).bits := DontCare 749 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 750 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 751 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 752 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 753 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 754 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 755 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 756 757 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 758 // Before data write finish, sbuffer is unable to provide store to load 759 // forward data. As an workaround, deqPtrExt and allocated flag update 760 // is delayed so that load can get the right data from store queue. 761 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 762 when (RegNext(io.sbuffer(i).fire)) { 763 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 764 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 765 } 766 } 767 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 768 if (coreParams.dcacheParametersOpt.isEmpty) { 769 for (i <- 0 until EnsbufferWidth) { 770 val ptr = deqPtrExt(i).value 771 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 772 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 773 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 774 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 775 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 776 when (wen) { 777 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 778 } 779 } 780 } 781 782 // Read vaddr for mem exception 783 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 784 785 // misprediction recovery / exception redirect 786 // invalidate sq term using robIdx 787 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 788 for (i <- 0 until StoreQueueSize) { 789 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 790 when (needCancel(i)) { 791 allocated(i) := false.B 792 } 793 } 794 795 /** 796* update pointers 797**/ 798 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 799 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 800 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 801 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 802 803 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 804 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 805 806 when (lastlastCycleRedirect) { 807 // we recover the pointers in 2 cycle after redirect for better timing 808 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 809 }.otherwise { 810 // lastCycleRedirect.valid or nornal case 811 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 812 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 813 } 814 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 815 816 deqPtrExt := deqPtrExtNext 817 rdataPtrExt := rdataPtrExtNext 818 819 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 820 821 // If redirect at T0, sqCancelCnt is at T2 822 io.sqCancelCnt := redirectCancelCount 823 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 824 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 825 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 826 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 827 828 val valid_cnt = PopCount(allocated) 829 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 830 831 // io.sqempty will be used by sbuffer 832 // We delay it for 1 cycle for better timing 833 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 834 // for 1 cycle will also promise that sq is empty in that cycle 835 io.sqEmpty := RegNext( 836 enqPtrExt(0).value === deqPtrExt(0).value && 837 enqPtrExt(0).flag === deqPtrExt(0).flag 838 ) 839 // perf counter 840 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 841 io.sqFull := !allowEnqueue 842 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 843 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 844 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 845 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 846 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 847 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 848 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 849 850 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 851 val perfEvents = Seq( 852 ("mmioCycle ", uncacheState =/= s_idle), 853 ("mmioCnt ", io.uncache.req.fire), 854 ("mmio_wb_success", io.mmioStout.fire), 855 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 856 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 857 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 858 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 859 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 860 ) 861 generatePerfEvent() 862 863 // debug info 864 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 865 866 def PrintFlag(flag: Bool, name: String): Unit = { 867 when(flag) { 868 XSDebug(false, true.B, name) 869 }.otherwise { 870 XSDebug(false, true.B, " ") 871 } 872 } 873 874 for (i <- 0 until StoreQueueSize) { 875 XSDebug(i + ": pc %x va %x pa %x data %x ", 876 uop(i).pc, 877 debug_vaddr(i), 878 debug_paddr(i), 879 debug_data(i) 880 ) 881 PrintFlag(allocated(i), "a") 882 PrintFlag(allocated(i) && addrvalid(i), "a") 883 PrintFlag(allocated(i) && datavalid(i), "d") 884 PrintFlag(allocated(i) && committed(i), "c") 885 PrintFlag(allocated(i) && pending(i), "p") 886 PrintFlag(allocated(i) && mmio(i), "m") 887 XSDebug(false, true.B, "\n") 888 } 889 890} 891