xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 5de026b7a3de33b198698efb97c763c50adba072)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.cache.{CMOReq, CMOResp}
31import xiangshan.backend._
32import xiangshan.backend.rob.{RobLsqIO, RobPtr}
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
35import xiangshan.backend.fu.FuConfig._
36import xiangshan.backend.fu.FuType
37import xiangshan.ExceptionNO._
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70  val sqNeedDeq = Bool()
71}
72
73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
74  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
75  // The 2nd StorePipelineWidth ports: sta af generated at s2
76  // The following VecStorePipelineWidth ports: vector st exception
77  // The last port: non-data error generated in SoC
78  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
79
80  val io = IO(new Bundle() {
81    val redirect = Flipped(ValidIO(new Redirect))
82    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155}
156
157// Store Queue
158class StoreQueue(implicit p: Parameters) extends XSModule
159  with HasDCacheParameters
160  with HasCircularQueuePtrHelper
161  with HasPerfEvents
162  with HasVLSUParameters {
163  val io = IO(new Bundle() {
164    val hartId = Input(UInt(hartIdLen.W))
165    val enq = new SqEnqIO
166    val brqRedirect = Flipped(ValidIO(new Redirect))
167    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
168    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
169    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
170    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
171    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
172    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
173    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
174    val uncacheOutstanding = Input(Bool())
175    val cmoOpReq  = DecoupledIO(new CMOReq)
176    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
177    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
178    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
179    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
180    // TODO: scommit is only for scalar store
181    val rob = Flipped(new RobLsqIO)
182    val uncache = new UncacheWordIO
183    // val refill = Flipped(Valid(new DCacheLineReq ))
184    val exceptionAddr = new ExceptionAddrIO
185    val flushSbuffer = new SbufferFlushBundle
186    val sqEmpty = Output(Bool())
187    val stAddrReadySqPtr = Output(new SqPtr)
188    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
189    val stDataReadySqPtr = Output(new SqPtr)
190    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
191    val stIssuePtr = Output(new SqPtr)
192    val sqDeqPtr = Output(new SqPtr)
193    val sqFull = Output(Bool())
194    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
195    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
196    val force_write = Output(Bool())
197    val maControl   = Flipped(new StoreMaBufToSqControlIO)
198  })
199
200  println("StoreQueue: size:" + StoreQueueSize)
201
202  // data modules
203  val uop = Reg(Vec(StoreQueueSize, new DynInst))
204  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
205  val dataModule = Module(new SQDataModule(
206    numEntries = StoreQueueSize,
207    numRead = EnsbufferWidth,
208    numWrite = StorePipelineWidth,
209    numForward = LoadPipelineWidth
210  ))
211  dataModule.io := DontCare
212  val paddrModule = Module(new SQAddrModule(
213    dataWidth = PAddrBits,
214    numEntries = StoreQueueSize,
215    numRead = EnsbufferWidth,
216    numWrite = StorePipelineWidth,
217    numForward = LoadPipelineWidth
218  ))
219  paddrModule.io := DontCare
220  val vaddrModule = Module(new SQAddrModule(
221    dataWidth = VAddrBits,
222    numEntries = StoreQueueSize,
223    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
224    numWrite = StorePipelineWidth,
225    numForward = LoadPipelineWidth
226  ))
227  vaddrModule.io := DontCare
228  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
229  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
230  val exceptionBuffer = Module(new StoreExceptionBuffer)
231  exceptionBuffer.io.redirect := io.brqRedirect
232  exceptionBuffer.io.exceptionAddr.isStore := DontCare
233  // vlsu exception!
234  for (i <- 0 until VecStorePipelineWidth) {
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
246  }
247
248
249  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
250  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
251  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
252
253  // state & misc
254  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
255  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
256  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
257  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i)))
258  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
259  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
260  val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary
261  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
262  val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst
263  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
264  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
265  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
266  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
267  val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction
268  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
269  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
270  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
271  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
272  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
273  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
274
275  // ptr
276  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
277  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
278  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
279  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
280  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
281  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
282
283  val enqPtr = enqPtrExt(0).value
284  val deqPtr = deqPtrExt(0).value
285  val cmtPtr = cmtPtrExt(0).value
286
287  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
288  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
289
290  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
291  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
292
293  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
294  val scommit = GatedRegNext(io.rob.scommit)
295  val mmioReq = Wire(chiselTypeOf(io.uncache.req))
296  val ncReq = Wire(chiselTypeOf(io.uncache.req))
297  val ncResp = Wire(chiselTypeOf(io.uncache.resp))
298  val ncDoReq = Wire(Bool())
299  val ncDoResp = Wire(Bool())
300  val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp)
301  // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles.
302  // TODO lyq: to eliminate coupling by passing signals through ubuffer
303  val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp)
304  val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id)
305
306  // store can be committed by ROB
307  io.rob.mmio := DontCare
308  io.rob.uop := DontCare
309
310  // Read dataModule
311  assert(EnsbufferWidth <= 2)
312  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
313  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
314  rdataPtrExtNext := rdataPtrExt.map(i => i +
315    PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) +
316    PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
317  )
318
319  // deqPtrExtNext traces which inst is about to leave store queue
320  //
321  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
322  // Before data write finish, sbuffer is unable to provide store to load
323  // forward data. As an workaround, deqPtrExt and allocated flag update
324  // is delayed so that load can get the right data from store queue.
325  //
326  // Modify deqPtrExtNext and io.sqDeq with care!
327  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
328  // Only sqNeedDeq can move the ptr
329  deqPtrExtNext := deqPtrExt.map(i =>  i +
330    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
331    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
332  )
333
334  io.sqDeq := RegNext(
335    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
336    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
337  )
338
339  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
340
341  for (i <- 0 until EnsbufferWidth) {
342    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
343    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
344    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
345  }
346
347  /**
348    * Enqueue at dispatch
349    *
350    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
351    * Dynamic enq based on numLsElem number
352    */
353  io.enq.canAccept := allowEnqueue
354  val canEnqueue = io.enq.req.map(_.valid)
355  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
356  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
357  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)}
358  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
359  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
360
361  val enqLowBound = io.enq.req.map(_.bits.sqIdx)
362  val enqUpBound  = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem)
363  val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag}
364
365  for(i <- 0 until StoreQueueSize) {
366    val entryCanEnqSeq = (0 until io.enq.req.length).map { j =>
367      val entryHitBound = Mux(
368        enqCrossLoop(j),
369        enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value,
370        enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value
371      )
372      canEnqueue(j) && !enqCancel(j) && entryHitBound
373    }
374
375    val entryCanEnq = entryCanEnqSeq.reduce(_ || _)
376    val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits))
377    val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound)
378    when (entryCanEnq) {
379      uop(i) := selectBits
380      vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B)
381      allocated(i) := true.B
382      datavalid(i) := false.B
383      addrvalid(i) := false.B
384      unaligned(i) := false.B
385      cross16Byte(i) := false.B
386      committed(i) := false.B
387      pending(i) := false.B
388      prefetch(i) := false.B
389      nc(i) := false.B
390      mmio(i) := false.B
391      isVec(i) :=  FuType.isVStore(selectBits.fuType)
392      vecMbCommit(i) := false.B
393      hasException(i) := false.B
394      waitStoreS2(i) := true.B
395    }
396  }
397
398  for (i <- 0 until io.enq.req.length) {
399    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
400    val index = io.enq.req(i).bits.sqIdx
401    when (canEnqueue(i) && !enqCancel(i)) {
402          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
403          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
404    }
405    io.enq.resp(i) := sqIdx
406  }
407  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
408
409  /**
410    * Update addr/dataReadyPtr when issue from rs
411    */
412  // update issuePtr
413  val IssuePtrMoveStride = 4
414  require(IssuePtrMoveStride >= 2)
415
416  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
417  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
418   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
419    && ptr =/= enqPtrExt(0))
420  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
421  addrReadyPtrExt := nextAddrReadyPtr
422
423  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
424  (0 until StoreQueueSize).map(i => {
425    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
426  })
427  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
428
429  when (io.brqRedirect.valid) {
430    addrReadyPtrExt := Mux(
431      isAfter(cmtPtrExt(0), deqPtrExt(0)),
432      cmtPtrExt(0),
433      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
434    )
435  }
436
437  io.stAddrReadySqPtr := addrReadyPtrExt
438
439  // update
440  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
441  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
442   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
443    && ptr =/= enqPtrExt(0))
444  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
445  dataReadyPtrExt := nextDataReadyPtr
446
447  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
448  (0 until StoreQueueSize).map(i => {
449    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
450  })
451  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
452
453  when (io.brqRedirect.valid) {
454    dataReadyPtrExt := Mux(
455      isAfter(cmtPtrExt(0), deqPtrExt(0)),
456      cmtPtrExt(0),
457      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
458    )
459  }
460
461  io.stDataReadySqPtr := dataReadyPtrExt
462  io.stIssuePtr := enqPtrExt(0)
463  io.sqDeqPtr := deqPtrExt(0)
464
465  /**
466    * Writeback store from store units
467    *
468    * Most store instructions writeback to regfile in the previous cycle.
469    * However,
470    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
471    * (in this way it will trigger an exception when it reaches ROB's head)
472    * instead of pending to avoid sending them to lower level.
473    *   (2) For an mmio instruction without exceptions, we mark it as pending.
474    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
475    * Upon receiving the response, StoreQueue writes back the instruction
476    * through arbiter with store units. It will later commit as normal.
477    */
478
479  // Write addr to sq
480  for (i <- 0 until StorePipelineWidth) {
481    paddrModule.io.wen(i) := false.B
482    vaddrModule.io.wen(i) := false.B
483    dataModule.io.mask.wen(i) := false.B
484    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
485    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
486    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
487    // will re-enter exceptionbuffer at store_s2
488    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
489    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
490
491    when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) {
492      val addr_valid = !io.storeAddrIn(i).bits.miss
493      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
494      nc(stWbIndex) := io.storeAddrIn(i).bits.nc
495
496    }
497    when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) {
498      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
499      unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign
500      cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte
501
502      paddrModule.io.waddr(i) := stWbIndex
503      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
504      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
505      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
506      paddrModule.io.wen(i) := true.B
507
508      vaddrModule.io.waddr(i) := stWbIndex
509      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
510      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
511      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
512      vaddrModule.io.wen(i) := true.B
513
514      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
515
516      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
517
518      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
519        io.storeAddrIn(i).bits.uop.sqIdx.value,
520        io.storeAddrIn(i).bits.uop.pc,
521        io.storeAddrIn(i).bits.miss,
522        io.storeAddrIn(i).bits.vaddr,
523        io.storeAddrIn(i).bits.paddr,
524        io.storeAddrIn(i).bits.mmio,
525        io.storeAddrIn(i).bits.isvec
526      )
527    }
528    when (io.storeAddrIn(i).fire) {
529      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
530      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
531    }
532
533    // re-replinish mmio, for pma/pmp will get mmio one cycle later
534    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid
535    //val stWbIndexReg = RegNext(stWbIndex)
536    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
537    when (storeAddrInFireReg) {
538      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
539      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
540      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
541      hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException
542      waitStoreS2(stWbIndexReg) := false.B
543    }
544    // dcache miss info (one cycle later than storeIn)
545    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
546    when (storeAddrInFireReg) {
547      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
548    }
549    // enter exceptionbuffer again
550    when (storeAddrInFireReg) {
551      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec
552      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i)
553      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
554    }
555
556    when(vaddrModule.io.wen(i)){
557      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
558    }
559  }
560
561  // Write data to sq
562  // Now store data pipeline is actually 2 stages
563  for (i <- 0 until StorePipelineWidth) {
564    dataModule.io.data.wen(i) := false.B
565    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
566    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
567    // sq data write takes 2 cycles:
568    // sq data write s0
569    when (io.storeDataIn(i).fire) {
570      // send data write req to data module
571      dataModule.io.data.waddr(i) := stWbIndex
572      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
573        0.U,
574        Mux(isVec,
575          io.storeDataIn(i).bits.data,
576          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
577      )
578      dataModule.io.data.wen(i) := true.B
579
580      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
581
582      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
583        io.storeDataIn(i).bits.uop.sqIdx.value,
584        io.storeDataIn(i).bits.uop.pc,
585        io.storeDataIn(i).bits.data,
586        dataModule.io.data.wdata(i)
587      )
588    }
589    // sq data write s1
590    val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire)
591    when (
592      RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex)
593      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
594    ) {
595      datavalid(lastStWbIndex) := true.B
596    }
597  }
598
599  // Write mask to sq
600  for (i <- 0 until StorePipelineWidth) {
601    // sq mask write s0
602    when (io.storeMaskIn(i).fire) {
603      // send data write req to data module
604      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
605      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
606      dataModule.io.mask.wen(i) := true.B
607    }
608  }
609
610  /**
611    * load forward query
612    *
613    * Check store queue for instructions that is older than the load.
614    * The response will be valid at the next cycle after req.
615    */
616  // check over all lq entries and forward data from the first matched store
617  for (i <- 0 until LoadPipelineWidth) {
618    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
619    // (1) if they have the same flag, we need to check range(tail, sqIdx)
620    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
621    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
622    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
623    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
624    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
625    val forwardMask = io.forward(i).sqIdxMask
626    // all addrvalid terms need to be checked
627    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
628    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
629    // vector store will consider all inactive || secondInvalid flows as valid
630    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
631    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
632    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
633
634    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
635    val storeSetHitVec = Mux(lfstEnable,
636      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
637      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
638    )
639
640    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
641    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
642    val canForward1 = forwardMask1 & allValidVec.asUInt
643    val canForward2 = forwardMask2 & allValidVec.asUInt
644    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
645
646    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
647      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
648    )
649
650    // do real fwd query (cam lookup in load_s1)
651    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
652    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
653
654    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
655    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
656    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
657    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
658
659    // vaddr cam result does not equal to paddr cam result
660    // replay needed
661    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
662    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
663    val vpmaskNotEqual = (
664      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
665      RegNext(needForward) &
666      GatedRegNext(addrRealValidVec.asUInt)
667    ) =/= 0.U
668    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
669    when (vaddrMatchFailed) {
670      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
671        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
672        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
673        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
674      );
675    }
676    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
677    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
678
679    // Fast forward mask will be generated immediately (load_s1)
680    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
681
682    // Forward result will be generated 1 cycle later (load_s2)
683    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
684    io.forward(i).forwardData := dataModule.io.forwardData(i)
685
686    //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it.
687    //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward.
688    // If addr match, data not ready, mark it as dataInvalid
689    // load_s1: generate dataInvalid in load_s1 to set fastUop
690    val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt
691    val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt
692    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
693    io.forward(i).dataInvalidFast := dataInvalidMask.orR
694
695    // make chisel happy
696    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
697    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
698    // make chisel happy
699    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
700    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
701    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
702
703    // If SSID match, address not ready, mark it as addrInvalid
704    // load_s2: generate addrInvalid
705    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
706    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
707    // make chisel happy
708    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
709    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
710    // make chisel happy
711    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
712    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
713    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
714
715    // load_s2
716    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
717    // check if vaddr forward mismatched
718    io.forward(i).matchInvalid := vaddrMatchFailed
719
720    // data invalid sq index
721    // check whether false fail
722    // check flag
723    val s2_differentFlag = RegNext(differentFlag)
724    val s2_enqPtrExt = RegNext(enqPtrExt(0))
725    val s2_deqPtrExt = RegNext(deqPtrExt(0))
726
727    // addr invalid sq index
728    // make chisel happy
729    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
730    addrInvalidMaskRegWire := addrInvalidMaskReg
731    val addrInvalidFlag = addrInvalidMaskRegWire.orR
732    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
733
734    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
735    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
736    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
737
738    // store-set content management
739    //                +-----------------------+
740    //                | Search a SSID for the |
741    //                |    load operation     |
742    //                +-----------------------+
743    //                           |
744    //                           V
745    //                 +-------------------+
746    //                 | load wait strict? |
747    //                 +-------------------+
748    //                           |
749    //                           V
750    //               +----------------------+
751    //            Set|                      |Clean
752    //               V                      V
753    //  +------------------------+   +------------------------------+
754    //  | Waiting for all older  |   | Wait until the corresponding |
755    //  |   stores operations    |   | older store operations       |
756    //  +------------------------+   +------------------------------+
757
758
759
760    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
761      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
762    } .elsewhen (addrInvalidFlag) {
763      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
764      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
765    } .otherwise {
766      // may be store inst has been written to sbuffer already.
767      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
768    }
769    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
770
771    // data invalid sq index
772    // make chisel happy
773    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
774    dataInvalidMaskRegWire := dataInvalidMaskReg
775    val dataInvalidFlag = dataInvalidMaskRegWire.orR
776
777    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
778    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
779    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
780
781    when (dataInvalidFlag) {
782      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
783      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
784    } .otherwise {
785      // may be store inst has been written to sbuffer already.
786      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
787    }
788  }
789
790  /**
791    * Memory mapped IO / other uncached operations / CMO
792    *
793    * States:
794    * (1) writeback from store units: mark as pending
795    * (2) when they reach ROB's head, they can be sent to uncache channel
796    * (3) response from uncache channel: mark as datavalidmask.wen
797    * (4) writeback to ROB (and other units): mark as writebacked
798    * (5) ROB commits the instruction: same as normal instructions
799    */
800  //(2) when they reach ROB's head, they can be sent to uncache channel
801  // TODO: CAN NOT deal with vector mmio now!
802  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
803  val mmioState = RegInit(s_idle)
804  val uncacheUop = Reg(new DynInst)
805  val cboFlushedSb = RegInit(false.B)
806  val cmoOpCode = uncacheUop.fuOpType(1, 0)
807  val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc
808  val cboMmioPAddr = Reg(UInt(PAddrBits.W))
809  switch(mmioState) {
810    is(s_idle) {
811      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) {
812        mmioState := s_req
813        uncacheUop := uop(deqPtr)
814        uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
815        uncacheUop.trigger := 0.U.asTypeOf(TriggerAction())
816        cboFlushedSb := false.B
817        cboMmioPAddr := paddrModule.io.rdata(0)
818      }
819    }
820    is(s_req) {
821      when (mmioDoReq) {
822        mmioState := s_resp
823      }
824    }
825    is(s_resp) {
826      when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) {
827        mmioState := s_wb
828
829        when (io.uncache.resp.bits.nderr) {
830          uncacheUop.exceptionVec(storeAccessFault) := true.B
831        }
832      }
833    }
834    is(s_wb) {
835      when (io.mmioStout.fire || io.vecmmioStout.fire) {
836        when (uncacheUop.exceptionVec(storeAccessFault)) {
837          mmioState := s_idle
838        }.otherwise {
839          mmioState := s_wait
840        }
841      }
842    }
843    is(s_wait) {
844      // A MMIO store can always move cmtPtrExt as it must be ROB head
845      when(scommit > 0.U) {
846        mmioState := s_idle // ready for next mmio
847      }
848    }
849  }
850
851  mmioReq.valid := mmioState === s_req
852  mmioReq.bits := DontCare
853  mmioReq.bits.cmd  := MemoryOpConstants.M_XWR
854  mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
855  mmioReq.bits.vaddr:= vaddrModule.io.rdata(0)
856  mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
857  mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
858  mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
859  mmioReq.bits.nc := false.B
860  mmioReq.bits.id := rdataPtrExt(0).value
861
862  /**
863    * NC Store
864    * (1) req: when it has been commited, it can be sent to lower level.
865    * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received
866    */
867  // TODO: CAN NOT deal with vector nc now!
868  val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3)
869  val ncState = RegInit(nc_idle)
870  val rptr0 = rdataPtrExt(0).value
871  switch(ncState){
872    is(nc_idle) {
873      when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) {
874        ncState := nc_req
875      }
876    }
877    is(nc_req) {
878      when(ncDoReq) {
879        when(io.uncacheOutstanding) {
880          ncState := nc_idle
881        }.otherwise{
882          ncState := nc_resp
883        }
884      }
885    }
886    is(nc_resp) {
887      when(ncResp.fire) {
888        ncState := nc_idle
889      }
890    }
891  }
892
893  ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc
894  ncDoResp := ncResp.fire
895
896  ncReq.valid := ncState === nc_req
897  ncReq.bits := DontCare
898  ncReq.bits.cmd  := MemoryOpConstants.M_XWR
899  ncReq.bits.addr := paddrModule.io.rdata(0)
900  ncReq.bits.vaddr:= vaddrModule.io.rdata(0)
901  ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
902  ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
903  ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
904  ncReq.bits.nc := true.B
905  ncReq.bits.id := rptr0
906
907  ncResp.ready := io.uncache.resp.ready
908  ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc
909  ncResp.bits <> io.uncache.resp.bits
910  when (ncDeqTrigger) {
911    allocated(ncPtr) := false.B
912    XSDebug("nc fire: ptr %d\n", ncPtr)
913  }
914
915  mmioReq.ready := io.uncache.req.ready
916  ncReq.ready := io.uncache.req.ready && !mmioReq.valid
917  io.uncache.req.valid := mmioReq.valid || ncReq.valid
918  io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits)
919
920  // CBO op type check can be delayed for 1 cycle,
921  // as uncache op will not start in s_idle
922  val cboMmioAddr = get_block_addr(cboMmioPAddr)
923  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
924  when (deqCanDoCbo) {
925    // disable uncache channel
926    io.uncache.req.valid := false.B
927
928    when (io.cmoOpReq.fire) {
929      mmioState := s_resp
930    }
931
932    when (mmioState === s_resp) {
933      when (io.cmoOpResp.fire) {
934        mmioState := s_wb
935      }
936    }
937  }
938
939  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req)
940  io.cmoOpReq.bits.opcode  := cmoOpCode
941  io.cmoOpReq.bits.address := cboMmioAddr
942
943  io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp)
944
945  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty
946
947  when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) {
948    cboFlushedSb := true.B
949  }
950
951  when(mmioDoReq){
952    // mmio store should not be committed until uncache req is sent
953    pending(deqPtr) := false.B
954
955    XSDebug(
956      p"uncache mmio req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
957      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
958      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
959      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
960      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
961    )
962  }
963
964  // (3) response from uncache channel: mark as datavalid
965  io.uncache.resp.ready := true.B
966
967  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
968  io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr)
969  io.mmioStout.bits.uop := uncacheUop
970  io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg)
971  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
972  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
973  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
974  io.mmioStout.bits.isFromLoadUnit := DontCare
975  io.mmioStout.bits.debug.isMMIO := true.B
976  io.mmioStout.bits.debug.isNC := false.B
977  io.mmioStout.bits.debug.paddr := DontCare
978  io.mmioStout.bits.debug.isPerfCnt := false.B
979  io.mmioStout.bits.debug.vaddr := DontCare
980  // Remove MMIO inst from store queue after MMIO request is being sent
981  // That inst will be traced by uncache state machine
982  when (io.mmioStout.fire) {
983    allocated(deqPtr) := false.B
984  }
985
986  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
987  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
988  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
989  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
990  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
991
992  // (4) or vector store:
993  // TODO: implement it!
994  io.vecmmioStout := DontCare
995  io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr)
996  io.vecmmioStout.bits.uop := uop(deqPtr)
997  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
998  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
999  io.vecmmioStout.bits.debug.isMMIO := true.B
1000  io.vecmmioStout.bits.debug.isNC   := false.B
1001  io.vecmmioStout.bits.debug.paddr := DontCare
1002  io.vecmmioStout.bits.debug.isPerfCnt := false.B
1003  io.vecmmioStout.bits.debug.vaddr := DontCare
1004  // Remove MMIO inst from store queue after MMIO request is being sent
1005  // That inst will be traced by uncache state machine
1006  when (io.vecmmioStout.fire) {
1007    allocated(deqPtr) := false.B
1008  }
1009
1010  /**
1011    * ROB commits store instructions (mark them as committed)
1012    *
1013    * (1) When store commits, mark it as committed.
1014    * (2) They will not be cancelled and can be sent to lower level.
1015    */
1016  XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U,
1017   "should not commit instruction when MMIO has not been finished\n")
1018
1019  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
1020  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
1021
1022  if (backendParams.debugEn){ dontTouch(commitVec) }
1023
1024  // TODO: Deal with vector store mmio
1025  for (i <- 0 until CommitWidth) {
1026    // don't mark misalign store as committed
1027    when (
1028      allocated(cmtPtrExt(i).value) &&
1029      isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) &&
1030      !needCancel(cmtPtrExt(i).value) &&
1031      (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
1032      if (i == 0){
1033        // TODO: fixme for vector mmio
1034        when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){
1035          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1036            committed(cmtPtrExt(0).value) := true.B
1037            commitVec(0) := true.B
1038          }
1039        }
1040      } else {
1041        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1042          committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value)
1043          commitVec(i) := commitVec(i - 1)
1044        }
1045      }
1046    }
1047  }
1048
1049  commitCount := PopCount(commitVec)
1050  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
1051
1052  /**
1053   * committed stores will not be cancelled and can be sent to lower level.
1054   *
1055   * 1. Store NC: Read data to uncache
1056   *    implement as above
1057   *
1058   * 2. Store Cache: Read data from data module
1059   *    remove retired insts from sq, add retired store to sbuffer.
1060   *    as store queue grows larger and larger, time needed to read data from data
1061   *    module keeps growing higher. Now we give data read a whole cycle.
1062   */
1063
1064  //TODO An unaligned command can only be sent out if the databuffer can enter more than two.
1065  //TODO For now, hardcode the number of ENQs for the databuffer.
1066  val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready
1067  val firstWithMisalign = unaligned(rdataPtrExt(0).value)
1068  val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value)
1069
1070  val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit
1071  val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq
1072  // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr.
1073  io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0)
1074  io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire
1075  io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value)
1076  for (i <- 0 until EnsbufferWidth) {
1077    val ptr = rdataPtrExt(i).value
1078    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1079    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1080    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
1081      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
1082    }
1083    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
1084    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
1085    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
1086
1087    // Only the first interface can write unaligned directives.
1088    // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue.
1089    val assert_flag = WireInit(false.B)
1090    when(firstWithMisalign && firstWithCross16Byte) {
1091      dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1092        ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1093        (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall
1094
1095      dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1096        (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1097        (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall
1098      assert_flag := dataBuffer.io.enq(1).valid
1099    }.otherwise {
1100      if (i == 0) {
1101        dataBuffer.io.enq(i).valid := (
1102          allocated(ptr) && committed(ptr)
1103            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1104            && !mmioStall && !ncStall
1105            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1106          )
1107      }
1108      else {
1109        dataBuffer.io.enq(i).valid := (
1110          allocated(ptr) && committed(ptr)
1111            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1112            && !mmioStall && !ncStall
1113            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1114          )
1115      }
1116    }
1117
1118    val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0)
1119    val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0)
1120    val addrLow4bit = vaddrModule.io.rdata(i)(3, 0)
1121
1122    // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue.
1123    val Cross16ByteMask = Wire(UInt(32.W))
1124    val Cross16ByteData = Wire(UInt(256.W))
1125    Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit
1126    Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3)
1127
1128    val paddrLow  = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1129    val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1130
1131    val vaddrLow  = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1132    val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1133
1134    val maskLow   = Cross16ByteMask(15, 0)
1135    val maskHigh  = Cross16ByteMask(31, 16)
1136
1137    val dataLow   = Cross16ByteData(127, 0)
1138    val dataHigh  = Cross16ByteData(255, 128)
1139
1140    val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid
1141    when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) {
1142      when(isCross4KPage && isCross4KPageCanDeq) {
1143        if (i == 0) {
1144          dataBuffer.io.enq(i).bits.addr      := paddrLow
1145          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1146          dataBuffer.io.enq(i).bits.data      := dataLow
1147          dataBuffer.io.enq(i).bits.mask      := maskLow
1148          dataBuffer.io.enq(i).bits.wline     := false.B
1149          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1150          dataBuffer.io.enq(i).bits.prefetch  := false.B
1151          dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1152          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1153        }
1154        else {
1155          dataBuffer.io.enq(i).bits.addr      := io.maControl.toStoreQueue.paddr
1156          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1157          dataBuffer.io.enq(i).bits.data      := dataHigh
1158          dataBuffer.io.enq(i).bits.mask      := maskHigh
1159          dataBuffer.io.enq(i).bits.wline     := false.B
1160          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1161          dataBuffer.io.enq(i).bits.prefetch  := false.B
1162          dataBuffer.io.enq(i).bits.sqNeedDeq := false.B
1163          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1164        }
1165      } .otherwise {
1166        if (i == 0) {
1167          dataBuffer.io.enq(i).bits.addr      := paddrLow
1168          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1169          dataBuffer.io.enq(i).bits.data      := dataLow
1170          dataBuffer.io.enq(i).bits.mask      := maskLow
1171          dataBuffer.io.enq(i).bits.wline     := false.B
1172          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1173          dataBuffer.io.enq(i).bits.prefetch  := false.B
1174          dataBuffer.io.enq(i).bits.sqNeedDeq  := true.B
1175          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1176        }
1177        else {
1178          dataBuffer.io.enq(i).bits.addr      := paddrHigh
1179          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1180          dataBuffer.io.enq(i).bits.data      := dataHigh
1181          dataBuffer.io.enq(i).bits.mask      := maskHigh
1182          dataBuffer.io.enq(i).bits.wline     := false.B
1183          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1184          dataBuffer.io.enq(i).bits.prefetch  := false.B
1185          dataBuffer.io.enq(i).bits.sqNeedDeq  := false.B
1186          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1187        }
1188      }
1189
1190
1191    }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) {
1192      dataBuffer.io.enq(i).bits.addr     := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W))
1193      dataBuffer.io.enq(i).bits.vaddr    := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W))
1194      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data << (addrLow4bit << 3)
1195      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1196      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1197      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1198      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1199      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1200      // when scalar has exception, will also not write into sbuffer
1201      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1202    }.otherwise {
1203      dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
1204      dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
1205      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
1206      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1207      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1208      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1209      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1210      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1211      // when scalar has exception, will also not write into sbuffer
1212      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1213
1214    }
1215
1216    // Note that store data/addr should both be valid after store's commit
1217    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag)
1218  }
1219
1220  // Send data stored in sbufferReqBitsReg to sbuffer
1221  for (i <- 0 until EnsbufferWidth) {
1222    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1223    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1224    io.sbuffer(i).bits := DontCare
1225    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1226    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1227    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1228    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1229    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1230    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1231    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1232    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1233    io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq
1234    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1235    // Before data write finish, sbuffer is unable to provide store to load
1236    // forward data. As an workaround, deqPtrExt and allocated flag update
1237    // is delayed so that load can get the right data from store queue.
1238    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1239    when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) {
1240      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1241      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
1242    }
1243  }
1244
1245  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1246  // Flags are used to record whether there are any exceptions when the queue is displayed.
1247  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1248  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1249    val ptr = rdataPtrExt(i).value
1250    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1251    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1252    val exceptionVliad      = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire
1253    (exceptionVliad, uop(ptr), vecLastFlow(ptr))
1254  }
1255
1256  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1257  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1258  val vecCommitHasExceptionLastFlow   = vecCommitHasException.map(_._3)
1259  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1260  // Just select the last Uop tah has an exception.
1261  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1262  // If the last flow with an exception is the LastFlow of this instruction, the flag is not set.
1263  // compare robidx to select the last flow
1264  require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.")
1265  val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire &&
1266    uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx
1267  val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && (
1268    uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx
1269  )
1270  val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire
1271
1272  val vecCommitLastFlow =
1273    // robidx equal => check if 1 is last flow
1274    robidxEQ && vecCommitHasExceptionLastFlow(1) ||
1275    // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception
1276    robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) ||
1277    onlyCommit0 && vecCommitHasExceptionLastFlow(0)
1278
1279
1280  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1281    val ptr = rdataPtrExt(i).value
1282    val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire
1283    vecLastFlowCommit
1284  }.reduce(_ || _)
1285
1286  // When a LastFlow with an exception instruction is commited, clear the flag.
1287  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) {
1288    vecExceptionFlag.valid  := true.B
1289    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1290  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1291    vecExceptionFlag.valid  := false.B
1292    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1293  }
1294
1295  // A dumb defensive code. The flag should not be placed for a long period of time.
1296  // A relatively large timeout period, not have any special meaning.
1297  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1298  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1299
1300  // Initialize when unenabled difftest.
1301  for (i <- 0 until EnsbufferWidth) {
1302    io.sbufferVecDifftestInfo(i) := DontCare
1303  }
1304  // Consistent with the logic above.
1305  // Only the vector store difftest required signal is separated from the rtl code.
1306  if (env.EnableDifftest) {
1307    for (i <- 0 until EnsbufferWidth) {
1308      val ptr = dataBuffer.io.enq(i).bits.sqPtr.value
1309      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1310      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1311    }
1312    for (i <- 0 until EnsbufferWidth) {
1313      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1314      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1315
1316      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1317    }
1318
1319    // commit cbo.inval to difftest
1320    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1321    cmoInvalEvent.coreid := io.hartId
1322    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1323    cmoInvalEvent.addr   := cboMmioAddr
1324  }
1325
1326  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1327  if (coreParams.dcacheParametersOpt.isEmpty) {
1328    for (i <- 0 until EnsbufferWidth) {
1329      val ptr = deqPtrExt(i).value
1330      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1331      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1332      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1333      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1334      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1335      when (wen) {
1336        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1337      }
1338    }
1339  }
1340
1341  // Read vaddr for mem exception
1342  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1343  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1344  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1345  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1346  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1347  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1348  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1349
1350  // vector commit or replay from
1351  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1352  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1353  for (i <- 0 until StoreQueueSize) {
1354    val fbk = io.vecFeedback
1355    for (j <- 0 until VecStorePipelineWidth) {
1356      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1357        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1358    }
1359    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1360
1361    when (vecCommit(i)) {
1362      vecMbCommit(i) := true.B
1363    }
1364  }
1365
1366  // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed.
1367  // TODO FIXME Can vecMbCommit be removed?
1368  when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) {
1369    vecMbCommit(rdataPtrExt(0).value) := true.B
1370  }
1371
1372  // misprediction recovery / exception redirect
1373  // invalidate sq term using robIdx
1374  for (i <- 0 until StoreQueueSize) {
1375    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1376      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1377    when (needCancel(i)) {
1378      allocated(i) := false.B
1379    }
1380  }
1381
1382 /**
1383* update pointers
1384**/
1385  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1386    v && x.bits.robIdx.needFlush(io.brqRedirect)
1387  }
1388  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1389    Mux(v, req.bits.numLsElem, 0.U)
1390  }
1391  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1392
1393  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1394  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1395  val enqNumber = validVStoreFlow.reduce(_ + _)
1396
1397  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1398  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1399
1400  when (lastlastCycleRedirect) {
1401    // we recover the pointers in 2 cycle after redirect for better timing
1402    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1403  }.otherwise {
1404    // lastCycleRedirect.valid or nornal case
1405    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1406    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1407  }
1408  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1409
1410  deqPtrExt := deqPtrExtNext
1411  rdataPtrExt := rdataPtrExtNext
1412
1413  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1414
1415  // If redirect at T0, sqCancelCnt is at T2
1416  io.sqCancelCnt := redirectCancelCount
1417  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1418  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1419  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1420  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1421
1422  val valid_cnt = PopCount(allocated)
1423  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1424
1425  // io.sqempty will be used by sbuffer
1426  // We delay it for 1 cycle for better timing
1427  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1428  // for 1 cycle will also promise that sq is empty in that cycle
1429  io.sqEmpty := RegNext(
1430    enqPtrExt(0).value === deqPtrExt(0).value &&
1431    enqPtrExt(0).flag === deqPtrExt(0).flag
1432  )
1433  // perf counter
1434  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1435  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1436  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1437  io.sqFull := !allowEnqueue
1438  XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req
1439  XSPerfAccumulate("mmioCnt", mmioDoReq)
1440  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1441  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1442  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1443  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1444  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1445
1446  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1447  val perfEvents = Seq(
1448    ("mmioCycle      ", mmioState =/= s_idle),
1449    ("mmioCnt        ", mmioDoReq),
1450    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1451    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1452    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1453    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1454    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1455    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1456  )
1457  generatePerfEvent()
1458
1459  // debug info
1460  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1461
1462  def PrintFlag(flag: Bool, name: String): Unit = {
1463    when(flag) {
1464      XSDebug(false, true.B, name)
1465    }.otherwise {
1466      XSDebug(false, true.B, " ")
1467    }
1468  }
1469
1470  for (i <- 0 until StoreQueueSize) {
1471    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1472      uop(i).pc,
1473      debug_vaddr(i),
1474      debug_paddr(i),
1475      debug_data(i)
1476    )
1477    PrintFlag(allocated(i), "a")
1478    PrintFlag(allocated(i) && addrvalid(i), "a")
1479    PrintFlag(allocated(i) && datavalid(i), "d")
1480    PrintFlag(allocated(i) && committed(i), "c")
1481    PrintFlag(allocated(i) && pending(i), "p")
1482    PrintFlag(allocated(i) && mmio(i), "m")
1483    XSDebug(false, true.B, "\n")
1484  }
1485
1486}
1487