xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 5c7674fe439b80ea3bb6c6207b7d169ed6183be5)
1package xiangshan.mem
2
3import chipsalliance.rocketchip.config.Parameters
4import chisel3._
5import chisel3.util._
6import utils._
7import xiangshan._
8import xiangshan.cache._
9import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
10import xiangshan.backend.roq.{RoqLsqIO, RoqPtr}
11import difftest._
12import device.RAMHelper
13
14class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
15  p => p(XSCoreParamsKey).StoreQueueSize
16){
17  override def cloneType = (new SqPtr).asInstanceOf[this.type]
18}
19
20object SqPtr {
21  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
22    val ptr = Wire(new SqPtr)
23    ptr.flag := f
24    ptr.value := v
25    ptr
26  }
27}
28
29class SqEnqIO(implicit p: Parameters) extends XSBundle {
30  val canAccept = Output(Bool())
31  val lqCanAccept = Input(Bool())
32  val needAlloc = Vec(RenameWidth, Input(Bool()))
33  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
34  val resp = Vec(RenameWidth, Output(new SqPtr))
35}
36
37// Store Queue
38class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
39  val io = IO(new Bundle() {
40    val enq = new SqEnqIO
41    val brqRedirect = Flipped(ValidIO(new Redirect))
42    val flush = Input(Bool())
43    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
44    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs
45    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) // write commited store to sbuffer
46    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
47    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
48    val roq = Flipped(new RoqLsqIO)
49    val uncache = new DCacheWordIO
50    // val refill = Flipped(Valid(new DCacheLineReq ))
51    val exceptionAddr = new ExceptionAddrIO
52    val sqempty = Output(Bool())
53    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
54    val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) // used to update issuePtrExt
55    val sqFull = Output(Bool())
56  })
57
58  println("StoreQueue: size:" + StoreQueueSize)
59
60  // data modules
61  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
62  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
63  val dataModule = Module(new SQDataModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
64  dataModule.io := DontCare
65  val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
66  paddrModule.io := DontCare
67  val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
68  vaddrModule.io := DontCare
69
70  // state & misc
71  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
72  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
73  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
74  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
75  val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs
76  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
77  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
78  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
79
80  // ptr
81  require(StoreQueueSize > RenameWidth)
82  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
83  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
84  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
85  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
86  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
87  val allowEnqueue = RegInit(true.B)
88
89  val enqPtr = enqPtrExt(0).value
90  val deqPtr = deqPtrExt(0).value
91  val cmtPtr = cmtPtrExt(0).value
92
93  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
94  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
95
96  val commitCount = RegNext(io.roq.scommit)
97
98  // Read dataModule
99  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
100  // if !sbuffer.fire(), read the same ptr
101  // if sbuffer.fire(), read next
102  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
103    VecInit(deqPtrExt.map(_ + 2.U)),
104    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
105      VecInit(deqPtrExt.map(_ + 1.U)),
106      deqPtrExt
107    )
108  ))
109  for (i <- 0 until StorePipelineWidth) {
110    dataModule.io.raddr(i) := deqPtrExtNext(i).value
111    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
112  }
113
114  // no inst will be commited 1 cycle before tval update
115  vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value
116
117  /**
118    * Enqueue at dispatch
119    *
120    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
121    */
122  io.enq.canAccept := allowEnqueue
123  for (i <- 0 until RenameWidth) {
124    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
125    val sqIdx = enqPtrExt(offset)
126    val index = sqIdx.value
127    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) {
128      uop(index) := io.enq.req(i).bits
129      allocated(index) := true.B
130      datavalid(index) := false.B
131      addrvalid(index) := false.B
132      issued(index) := false.B
133      commited(index) := false.B
134      pending(index) := false.B
135    }
136    io.enq.resp(i) := sqIdx
137  }
138  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
139
140  /**
141    * Update issuePtr when issue from rs
142    */
143
144  // update state bit issued
145  for (i <- 0 until StorePipelineWidth) {
146    when (io.storeIssue(i).valid) {
147      issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B
148    }
149  }
150
151  // update issuePtr
152  val IssuePtrMoveStride = 4
153  require(IssuePtrMoveStride >= 2)
154
155  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
156  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0))
157  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
158  issuePtrExt := nextIssuePtr
159
160  when (io.brqRedirect.valid || io.flush) {
161    issuePtrExt := Mux(
162      isAfter(cmtPtrExt(0), deqPtrExt(0)),
163      cmtPtrExt(0),
164      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
165    )
166  }
167  // send issuePtrExt to rs
168  // io.issuePtrExt := cmtPtrExt(0)
169  io.issuePtrExt := issuePtrExt
170
171  /**
172    * Writeback store from store units
173    *
174    * Most store instructions writeback to regfile in the previous cycle.
175    * However,
176    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
177    * (in this way it will trigger an exception when it reaches ROB's head)
178    * instead of pending to avoid sending them to lower level.
179    *   (2) For an mmio instruction without exceptions, we mark it as pending.
180    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
181    * Upon receiving the response, StoreQueue writes back the instruction
182    * through arbiter with store units. It will later commit as normal.
183    */
184
185  // Write addr to sq
186  for (i <- 0 until StorePipelineWidth) {
187    paddrModule.io.wen(i) := false.B
188    dataModule.io.mask.wen(i) := false.B
189    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
190    when (io.storeIn(i).fire()) {
191      addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio
192      pending(stWbIndex) := io.storeIn(i).bits.mmio
193
194      dataModule.io.mask.waddr(i) := stWbIndex
195      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
196      dataModule.io.mask.wen(i) := true.B
197
198      paddrModule.io.waddr(i) := stWbIndex
199      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
200      paddrModule.io.wen(i) := true.B
201
202      mmio(stWbIndex) := io.storeIn(i).bits.mmio
203
204      XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n",
205        io.storeIn(i).bits.uop.sqIdx.value,
206        io.storeIn(i).bits.uop.cf.pc,
207        io.storeIn(i).bits.vaddr,
208        io.storeIn(i).bits.paddr,
209        io.storeIn(i).bits.mmio
210      )
211    }
212    // vaddrModule write is delayed, as vaddrModule will not be read right after write
213    vaddrModule.io.waddr(i) := RegNext(stWbIndex)
214    vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr)
215    vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire())
216  }
217
218  // Write data to sq
219  for (i <- 0 until StorePipelineWidth) {
220    dataModule.io.data.wen(i) := false.B
221    io.roq.storeDataRoqWb(i).valid := false.B
222    io.roq.storeDataRoqWb(i).bits := DontCare
223    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
224    when (io.storeDataIn(i).fire()) {
225      datavalid(stWbIndex) := true.B
226
227      dataModule.io.data.waddr(i) := stWbIndex
228      dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
229      dataModule.io.data.wen(i) := true.B
230
231      io.roq.storeDataRoqWb(i).valid := true.B
232      io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx
233
234      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
235        io.storeDataIn(i).bits.uop.sqIdx.value,
236        io.storeDataIn(i).bits.uop.cf.pc,
237        io.storeDataIn(i).bits.data,
238        dataModule.io.data.wdata(i)
239      )
240    }
241  }
242
243  /**
244    * load forward query
245    *
246    * Check store queue for instructions that is older than the load.
247    * The response will be valid at the next cycle after req.
248    */
249  // check over all lq entries and forward data from the first matched store
250  for (i <- 0 until LoadPipelineWidth) {
251    io.forward(i).forwardMask := 0.U(8.W).asBools
252    io.forward(i).forwardData := DontCare
253
254    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
255    // (1) if they have the same flag, we need to check range(tail, sqIdx)
256    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
257    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
258    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
259    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
260    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
261    val forwardMask = io.forward(i).sqIdxMask
262    // all addrvalid terms need to be checked
263    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
264    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
265    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
266    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
267    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
268    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
269
270    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
271      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
272    )
273
274    // do real fwd query (cam lookup in load_s1)
275    dataModule.io.needForward(i)(0) := canForward1 & paddrModule.io.forwardMmask(i).asUInt
276    dataModule.io.needForward(i)(1) := canForward2 & paddrModule.io.forwardMmask(i).asUInt
277
278    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
279
280    // Forward result will be generated 1 cycle later (load_s2)
281    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
282    io.forward(i).forwardData := dataModule.io.forwardData(i)
283
284    // If addr match, data not ready, mark it as dataInvalid
285    // load_s1: generate dataInvalid in load_s1 to set fastUop to
286    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & paddrModule.io.forwardMmask(i).asUInt & needForward).orR
287    // load_s2
288    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
289  }
290
291  /**
292    * Memory mapped IO / other uncached operations
293    *
294    * States:
295    * (1) writeback from store units: mark as pending
296    * (2) when they reach ROB's head, they can be sent to uncache channel
297    * (3) response from uncache channel: mark as datavalidmask.wen
298    * (4) writeback to ROB (and other units): mark as writebacked
299    * (5) ROB commits the instruction: same as normal instructions
300    */
301  //(2) when they reach ROB's head, they can be sent to uncache channel
302  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
303  val uncacheState = RegInit(s_idle)
304  switch(uncacheState) {
305    is(s_idle) {
306      when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) {
307        uncacheState := s_req
308      }
309    }
310    is(s_req) {
311      when(io.uncache.req.fire()) {
312        uncacheState := s_resp
313      }
314    }
315    is(s_resp) {
316      when(io.uncache.resp.fire()) {
317        uncacheState := s_wb
318      }
319    }
320    is(s_wb) {
321      when (io.mmioStout.fire()) {
322        uncacheState := s_wait
323      }
324    }
325    is(s_wait) {
326      when(io.roq.commit) {
327        uncacheState := s_idle // ready for next mmio
328      }
329    }
330  }
331  io.uncache.req.valid := uncacheState === s_req
332
333  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
334  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
335  io.uncache.req.bits.data := dataModule.io.rdata(0).data
336  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
337
338  io.uncache.req.bits.id   := DontCare
339
340  when(io.uncache.req.fire()){
341    // mmio store should not be committed until uncache req is sent
342    pending(deqPtr) := false.B
343
344    XSDebug(
345      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
346      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
347      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
348      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
349      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
350    )
351  }
352
353  // (3) response from uncache channel: mark as datavalid
354  io.uncache.resp.ready := true.B
355
356  // (4) writeback to ROB (and other units): mark as writebacked
357  io.mmioStout.valid := uncacheState === s_wb
358  io.mmioStout.bits.uop := uop(deqPtr)
359  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
360  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
361  io.mmioStout.bits.redirectValid := false.B
362  io.mmioStout.bits.redirect := DontCare
363  io.mmioStout.bits.debug.isMMIO := true.B
364  io.mmioStout.bits.debug.paddr := DontCare
365  io.mmioStout.bits.debug.isPerfCnt := false.B
366  io.mmioStout.bits.fflags := DontCare
367  when (io.mmioStout.fire()) {
368    allocated(deqPtr) := false.B
369  }
370
371  /**
372    * ROB commits store instructions (mark them as commited)
373    *
374    * (1) When store commits, mark it as commited.
375    * (2) They will not be cancelled and can be sent to lower level.
376    */
377  for (i <- 0 until CommitWidth) {
378    when (commitCount > i.U) {
379      commited(cmtPtrExt(i).value) := true.B
380    }
381  }
382  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
383
384  // Commited stores will not be cancelled and can be sent to lower level.
385  // remove retired insts from sq, add retired store to sbuffer
386  for (i <- 0 until StorePipelineWidth) {
387    // We use RegNext to prepare data for sbuffer
388    val ptr = deqPtrExt(i).value
389    // if !sbuffer.fire(), read the same ptr
390    // if sbuffer.fire(), read next
391    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
392    // Note that store data/addr should both be valid after store's commit
393    assert(!io.sbuffer(i).valid || allvalid(ptr))
394    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
395    io.sbuffer(i).bits.addr := paddrModule.io.rdata(i)
396    io.sbuffer(i).bits.data := dataModule.io.rdata(i).data
397    io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask
398    io.sbuffer(i).bits.id   := DontCare
399
400    when (io.sbuffer(i).fire()) {
401      allocated(ptr) := false.B
402      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
403    }
404  }
405  when (io.sbuffer(1).fire()) {
406    assert(io.sbuffer(0).fire())
407  }
408  if (useFakeDCache) {
409    for (i <- 0 until StorePipelineWidth) {
410      val ptr = deqPtrExt(i).value
411      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
412      fakeRAM.io.clk   := clock
413      fakeRAM.io.en    := allocated(ptr) && commited(ptr) && !mmio(ptr)
414      fakeRAM.io.rIdx  := 0.U
415      fakeRAM.io.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
416      fakeRAM.io.wdata := dataModule.io.rdata(i).data
417      fakeRAM.io.wmask := MaskExpand(dataModule.io.rdata(i).mask)
418      fakeRAM.io.wen   := allocated(ptr) && commited(ptr) && !mmio(ptr)
419    }
420  }
421
422  if (!env.FPGAPlatform) {
423    for (i <- 0 until StorePipelineWidth) {
424      val storeCommit = io.sbuffer(i).fire()
425      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
426      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
427      val wmask = io.sbuffer(i).bits.mask
428
429      val difftest = Module(new DifftestStoreEvent)
430      difftest.io.clock       := clock
431      difftest.io.coreid      := hardId.U
432      difftest.io.index       := i.U
433      difftest.io.valid       := storeCommit
434      difftest.io.storeAddr   := waddr
435      difftest.io.storeData   := wdata
436      difftest.io.storeMask   := wmask
437    }
438  }
439
440  // Read vaddr for mem exception
441  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
442
443  // misprediction recovery / exception redirect
444  // invalidate sq term using robIdx
445  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
446  for (i <- 0 until StoreQueueSize) {
447    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i)
448    when (needCancel(i)) {
449        allocated(i) := false.B
450    }
451  }
452
453  /**
454    * update pointers
455    */
456  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
457  val lastCycleFlush = RegNext(io.flush)
458  val lastCycleCancelCount = PopCount(RegNext(needCancel))
459  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
460  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U)
461  when (lastCycleRedirect || lastCycleFlush) {
462    // we recover the pointers in the next cycle after redirect
463    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
464  }.otherwise {
465    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
466  }
467
468  deqPtrExt := deqPtrExtNext
469
470  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
471  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
472
473  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
474
475  // io.sqempty will be used by sbuffer
476  // We delay it for 1 cycle for better timing
477  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
478  // for 1 cycle will also promise that sq is empty in that cycle
479  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
480
481  // perf counter
482  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
483  io.sqFull := !allowEnqueue
484  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
485  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
486  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
487  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
488  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
489  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
490  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
491
492  // debug info
493  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
494
495  def PrintFlag(flag: Bool, name: String): Unit = {
496    when(flag) {
497      XSDebug(false, true.B, name)
498    }.otherwise {
499      XSDebug(false, true.B, " ")
500    }
501  }
502
503  for (i <- 0 until StoreQueueSize) {
504    if (i % 4 == 0) XSDebug("")
505    XSDebug(false, true.B, "%x ", uop(i).cf.pc)
506    PrintFlag(allocated(i), "a")
507    PrintFlag(allocated(i) && addrvalid(i), "a")
508    PrintFlag(allocated(i) && datavalid(i), "d")
509    PrintFlag(allocated(i) && commited(i), "c")
510    PrintFlag(allocated(i) && pending(i), "p")
511    PrintFlag(allocated(i) && mmio(i), "m")
512    XSDebug(false, true.B, " ")
513    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
514  }
515
516}
517