1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqLsqIO 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Flipped(ValidIO(new Redirect)) 37 val flush = Input(Bool()) 38 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 39 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 40 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 41 val forward = Vec(LoadPipelineWidth, Flipped(new MaskedLoadForwardQueryIO)) 42 val roq = Flipped(new RoqLsqIO) 43 val uncache = new DCacheWordIO 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 val issuePtrExt = Output(new SqPtr) 48 val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) 49 }) 50 51 val difftestIO = IO(new Bundle() { 52 val storeCommit = Output(UInt(2.W)) 53 val storeAddr = Output(Vec(2, UInt(64.W))) 54 val storeData = Output(Vec(2, UInt(64.W))) 55 val storeMask = Output(Vec(2, UInt(8.W))) 56 }) 57 difftestIO <> DontCare 58 59 // data modules 60 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 61 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 62 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 63 dataModule.io := DontCare 64 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 65 paddrModule.io := DontCare 66 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 67 vaddrModule.io := DontCare 68 69 // state & misc 70 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 71 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 72 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 73 val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs 74 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 75 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 76 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 77 78 // ptr 79 require(StoreQueueSize > RenameWidth) 80 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 81 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 82 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 83 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 84 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 85 val allowEnqueue = RegInit(true.B) 86 87 val enqPtr = enqPtrExt(0).value 88 val deqPtr = deqPtrExt(0).value 89 val cmtPtr = cmtPtrExt(0).value 90 91 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 92 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 93 94 val commitCount = RegNext(io.roq.scommit) 95 96 // Read dataModule 97 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 98 // if !sbuffer.fire(), read the same ptr 99 // if sbuffer.fire(), read next 100 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 101 VecInit(deqPtrExt.map(_ + 2.U)), 102 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 103 VecInit(deqPtrExt.map(_ + 1.U)), 104 deqPtrExt 105 ) 106 )) 107 for (i <- 0 until StorePipelineWidth) { 108 dataModule.io.raddr(i) := deqPtrExtNext(i).value 109 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 110 } 111 112 // no inst will be commited 1 cycle before tval update 113 vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value 114 115 /** 116 * Enqueue at dispatch 117 * 118 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 119 */ 120 io.enq.canAccept := allowEnqueue 121 for (i <- 0 until RenameWidth) { 122 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 123 val sqIdx = enqPtrExt(offset) 124 val index = sqIdx.value 125 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 126 uop(index) := io.enq.req(i).bits 127 allocated(index) := true.B 128 datavalid(index) := false.B 129 writebacked(index) := false.B 130 issued(index) := false.B 131 commited(index) := false.B 132 pending(index) := false.B 133 } 134 io.enq.resp(i) := sqIdx 135 } 136 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 137 138 /** 139 * Update issuePtr when issue from rs 140 */ 141 142 // update state bit issued 143 for (i <- 0 until StorePipelineWidth) { 144 when (io.storeIssue(i).valid) { 145 issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B 146 } 147 } 148 149 // update issuePtr 150 val IssuePtrMoveStride = 4 151 require(IssuePtrMoveStride >= 2) 152 153 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 154 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0)) 155 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 156 issuePtrExt := nextIssuePtr 157 158 when (io.brqRedirect.valid || io.flush) { 159 issuePtrExt := Mux( 160 isAfter(cmtPtrExt(0), deqPtrExt(0)), 161 cmtPtrExt(0), 162 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 163 ) 164 } 165 // send issuePtrExt to rs 166 // io.issuePtrExt := cmtPtrExt(0) 167 io.issuePtrExt := issuePtrExt 168 169 /** 170 * Writeback store from store units 171 * 172 * Most store instructions writeback to regfile in the previous cycle. 173 * However, 174 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 175 * (in this way it will trigger an exception when it reaches ROB's head) 176 * instead of pending to avoid sending them to lower level. 177 * (2) For an mmio instruction without exceptions, we mark it as pending. 178 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 179 * Upon receiving the response, StoreQueue writes back the instruction 180 * through arbiter with store units. It will later commit as normal. 181 */ 182 for (i <- 0 until StorePipelineWidth) { 183 dataModule.io.wen(i) := false.B 184 paddrModule.io.wen(i) := false.B 185 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 186 when (io.storeIn(i).fire()) { 187 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 188 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 189 pending(stWbIndex) := io.storeIn(i).bits.mmio 190 191 val storeWbData = Wire(new SQDataEntry) 192 storeWbData := DontCare 193 storeWbData.mask := io.storeIn(i).bits.mask 194 storeWbData.data := io.storeIn(i).bits.data 195 196 dataModule.io.waddr(i) := stWbIndex 197 dataModule.io.wdata(i) := storeWbData 198 dataModule.io.wen(i) := true.B 199 200 paddrModule.io.waddr(i) := stWbIndex 201 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 202 paddrModule.io.wen(i) := true.B 203 204 205 mmio(stWbIndex) := io.storeIn(i).bits.mmio 206 207 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 208 io.storeIn(i).bits.uop.sqIdx.value, 209 io.storeIn(i).bits.uop.cf.pc, 210 io.storeIn(i).bits.vaddr, 211 io.storeIn(i).bits.paddr, 212 io.storeIn(i).bits.data, 213 io.storeIn(i).bits.mmio 214 ) 215 } 216 // vaddrModule write is delayed, as vaddrModule will not be read right after write 217 vaddrModule.io.waddr(i) := RegNext(stWbIndex) 218 vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr) 219 vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire()) 220 } 221 222 /** 223 * load forward query 224 * 225 * Check store queue for instructions that is older than the load. 226 * The response will be valid at the next cycle after req. 227 */ 228 // check over all lq entries and forward data from the first matched store 229 for (i <- 0 until LoadPipelineWidth) { 230 io.forward(i).forwardMask := 0.U(8.W).asBools 231 io.forward(i).forwardData := DontCare 232 233 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 234 // (1) if they have the same flag, we need to check range(tail, sqIdx) 235 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 236 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 237 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 238 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 239 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 240 val forwardMask = io.forward(i).sqIdxMask 241 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 242 for (j <- 0 until StoreQueueSize) { 243 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 244 } 245 val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt 246 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 247 248 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 249 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 250 ) 251 252 // do real fwd query 253 dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt 254 dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt 255 256 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 257 258 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 259 io.forward(i).forwardData := dataModule.io.forwardData(i) 260 } 261 262 /** 263 * Memory mapped IO / other uncached operations 264 * 265 * States: 266 * (1) writeback from store units: mark as pending 267 * (2) when they reach ROB's head, they can be sent to uncache channel 268 * (3) response from uncache channel: mark as datavalid 269 * (4) writeback to ROB (and other units): mark as writebacked 270 * (5) ROB commits the instruction: same as normal instructions 271 */ 272 //(2) when they reach ROB's head, they can be sent to uncache channel 273 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 274 val uncacheState = RegInit(s_idle) 275 switch(uncacheState) { 276 is(s_idle) { 277 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) { 278 uncacheState := s_req 279 } 280 } 281 is(s_req) { 282 when(io.uncache.req.fire()) { 283 uncacheState := s_resp 284 } 285 } 286 is(s_resp) { 287 when(io.uncache.resp.fire()) { 288 uncacheState := s_wb 289 } 290 } 291 is(s_wb) { 292 when (io.mmioStout.fire()) { 293 uncacheState := s_wait 294 } 295 } 296 is(s_wait) { 297 when(io.roq.commit) { 298 uncacheState := s_idle // ready for next mmio 299 } 300 } 301 } 302 io.uncache.req.valid := uncacheState === s_req 303 304 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 305 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 306 io.uncache.req.bits.data := dataModule.io.rdata(0).data 307 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 308 309 io.uncache.req.bits.id := DontCare 310 311 when(io.uncache.req.fire()){ 312 pending(deqPtr) := false.B 313 314 XSDebug( 315 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 316 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 317 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 318 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 319 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 320 ) 321 } 322 323 // (3) response from uncache channel: mark as datavalid 324 io.uncache.resp.ready := true.B 325 when (io.uncache.resp.fire()) { 326 datavalid(deqPtr) := true.B 327 } 328 329 // (4) writeback to ROB (and other units): mark as writebacked 330 io.mmioStout.valid := uncacheState === s_wb // allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 331 io.mmioStout.bits.uop := uop(deqPtr) 332 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 333 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 334 io.mmioStout.bits.redirectValid := false.B 335 io.mmioStout.bits.redirect := DontCare 336 io.mmioStout.bits.debug.isMMIO := true.B 337 io.mmioStout.bits.debug.paddr := DontCare 338 io.mmioStout.bits.debug.isPerfCnt := false.B 339 io.mmioStout.bits.fflags := DontCare 340 when (io.mmioStout.fire()) { 341 writebacked(deqPtr) := true.B 342 allocated(deqPtr) := false.B 343 } 344 345 /** 346 * ROB commits store instructions (mark them as commited) 347 * 348 * (1) When store commits, mark it as commited. 349 * (2) They will not be cancelled and can be sent to lower level. 350 */ 351 for (i <- 0 until CommitWidth) { 352 when (commitCount > i.U) { 353 commited(cmtPtrExt(i).value) := true.B 354 } 355 } 356 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 357 358 // Commited stores will not be cancelled and can be sent to lower level. 359 // remove retired insts from sq, add retired store to sbuffer 360 for (i <- 0 until StorePipelineWidth) { 361 // We use RegNext to prepare data for sbuffer 362 val ptr = deqPtrExt(i).value 363 // if !sbuffer.fire(), read the same ptr 364 // if sbuffer.fire(), read next 365 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 366 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 367 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 368 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 369 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 370 io.sbuffer(i).bits.id := DontCare 371 372 when (io.sbuffer(i).fire()) { 373 allocated(ptr) := false.B 374 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 375 } 376 } 377 when (io.sbuffer(1).fire()) { 378 assert(io.sbuffer(0).fire()) 379 } 380 381 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 382 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 383 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 384 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 385 386 if (!env.FPGAPlatform) { 387 difftestIO.storeCommit := RegNext(storeCommit) 388 difftestIO.storeAddr := RegNext(waddr) 389 difftestIO.storeData := RegNext(wdata) 390 difftestIO.storeMask := RegNext(wmask) 391 } 392 393 // Read vaddr for mem exception 394 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 395 396 // misprediction recovery / exception redirect 397 // invalidate sq term using robIdx 398 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 399 for (i <- 0 until StoreQueueSize) { 400 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 401 when (needCancel(i)) { 402 allocated(i) := false.B 403 } 404 } 405 406 /** 407 * update pointers 408 */ 409 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 410 val lastCycleFlush = RegNext(io.flush) 411 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 412 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 413 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 414 when (lastCycleRedirect || lastCycleFlush) { 415 // we recover the pointers in the next cycle after redirect 416 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 417 }.otherwise { 418 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 419 } 420 421 deqPtrExt := deqPtrExtNext 422 423 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 424 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 425 426 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 427 428 // io.sqempty will be used by sbuffer 429 // We delay it for 1 cycle for better timing 430 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 431 // for 1 cycle will also promise that sq is empty in that cycle 432 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 433 434 // perf counter 435 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 436 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 437 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 438 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 439 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 440 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 441 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 442 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 443 444 // debug info 445 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 446 447 def PrintFlag(flag: Bool, name: String): Unit = { 448 when(flag) { 449 XSDebug(false, true.B, name) 450 }.otherwise { 451 XSDebug(false, true.B, " ") 452 } 453 } 454 455 for (i <- 0 until StoreQueueSize) { 456 if (i % 4 == 0) XSDebug("") 457 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 458 PrintFlag(allocated(i), "a") 459 PrintFlag(allocated(i) && datavalid(i), "v") 460 PrintFlag(allocated(i) && writebacked(i), "w") 461 PrintFlag(allocated(i) && commited(i), "c") 462 PrintFlag(allocated(i) && pending(i), "p") 463 XSDebug(false, true.B, " ") 464 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 465 } 466 467} 468