xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 506ca2a39c8376d3bdb39986964a0b2b61292028)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.backend._
31import xiangshan.backend.rob.{RobLsqIO, RobPtr}
32import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
34import xiangshan.backend.fu.FuConfig._
35import xiangshan.backend.fu.FuType
36import xiangshan.ExceptionNO._
37import coupledL2.{CMOReq, CMOResp}
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70}
71
72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
73  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
74  // The 2nd StorePipelineWidth ports: sta af generated at s2
75  // The following VecStorePipelineWidth ports: vector st exception
76  // The last port: non-data error generated in SoC
77  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
78
79  val io = IO(new Bundle() {
80    val redirect = Flipped(ValidIO(new Redirect))
81    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
82    val flushFrmMaBuf = Input(Bool())
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := req_valid || true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155  when(req_valid && io.flushFrmMaBuf) {
156    req_valid := false.B
157  }
158}
159
160// Store Queue
161class StoreQueue(implicit p: Parameters) extends XSModule
162  with HasDCacheParameters
163  with HasCircularQueuePtrHelper
164  with HasPerfEvents
165  with HasVLSUParameters {
166  val io = IO(new Bundle() {
167    val hartId = Input(UInt(hartIdLen.W))
168    val enq = new SqEnqIO
169    val brqRedirect = Flipped(ValidIO(new Redirect))
170    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
171    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
172    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
173    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
174    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
175    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
176    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
177    val uncacheOutstanding = Input(Bool())
178    val cmoOpReq  = DecoupledIO(new CMOReq)
179    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
180    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
181    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
182    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
183    // TODO: scommit is only for scalar store
184    val rob = Flipped(new RobLsqIO)
185    val uncache = new UncacheWordIO
186    // val refill = Flipped(Valid(new DCacheLineReq ))
187    val exceptionAddr = new ExceptionAddrIO
188    val flushSbuffer = new SbufferFlushBundle
189    val sqEmpty = Output(Bool())
190    val stAddrReadySqPtr = Output(new SqPtr)
191    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
192    val stDataReadySqPtr = Output(new SqPtr)
193    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
194    val stIssuePtr = Output(new SqPtr)
195    val sqDeqPtr = Output(new SqPtr)
196    val sqFull = Output(Bool())
197    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
198    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
199    val force_write = Output(Bool())
200    val maControl   = Flipped(new StoreMaBufToSqControlIO)
201  })
202
203  println("StoreQueue: size:" + StoreQueueSize)
204
205  // data modules
206  val uop = Reg(Vec(StoreQueueSize, new DynInst))
207  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
208  val dataModule = Module(new SQDataModule(
209    numEntries = StoreQueueSize,
210    numRead = EnsbufferWidth,
211    numWrite = StorePipelineWidth,
212    numForward = LoadPipelineWidth
213  ))
214  dataModule.io := DontCare
215  val paddrModule = Module(new SQAddrModule(
216    dataWidth = PAddrBits,
217    numEntries = StoreQueueSize,
218    numRead = EnsbufferWidth,
219    numWrite = StorePipelineWidth,
220    numForward = LoadPipelineWidth
221  ))
222  paddrModule.io := DontCare
223  val vaddrModule = Module(new SQAddrModule(
224    dataWidth = VAddrBits,
225    numEntries = StoreQueueSize,
226    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
227    numWrite = StorePipelineWidth,
228    numForward = LoadPipelineWidth
229  ))
230  vaddrModule.io := DontCare
231  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
232  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
233  val exceptionBuffer = Module(new StoreExceptionBuffer)
234  exceptionBuffer.io.redirect := io.brqRedirect
235  exceptionBuffer.io.exceptionAddr.isStore := DontCare
236  // vlsu exception!
237  for (i <- 0 until VecStorePipelineWidth) {
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
246    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
247    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
248    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
249  }
250
251
252  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
253  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
254  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
255
256  // state & misc
257  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
258  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
259  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
260  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
261  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
262  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
263  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
264  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
265  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
266  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
267  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
268  //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction
269  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
270  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
271  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
272  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
273  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
274  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
275  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
276
277  // ptr
278  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
279  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
280  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
281  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
282  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
283  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
284
285  val enqPtr = enqPtrExt(0).value
286  val deqPtr = deqPtrExt(0).value
287  val cmtPtr = cmtPtrExt(0).value
288
289  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
290  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
291
292  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
293  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
294
295  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
296  val scommit = GatedRegNext(io.rob.scommit)
297
298  // RegNext misalign control for better timing
299  val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr))
300  val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException)
301  val misalignBlock = doMisalignSt && !finishMisalignSt
302
303  // store miss align info
304  io.maControl.storeInfo.data := dataModule.io.rdata(0).data
305  io.maControl.storeInfo.dataReady := doMisalignSt
306  io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire
307
308  // store can be committed by ROB
309  io.rob.mmio := DontCare
310  io.rob.uop := DontCare
311
312  // Read dataModule
313  assert(EnsbufferWidth <= 2)
314  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
315  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
316  rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire,
317    VecInit(rdataPtrExt.map(_ + 2.U)),
318    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire,
319      VecInit(rdataPtrExt.map(_ + 1.U)),
320      rdataPtrExt
321    )
322  ))
323
324  // deqPtrExtNext traces which inst is about to leave store queue
325  //
326  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
327  // Before data write finish, sbuffer is unable to provide store to load
328  // forward data. As an workaround, deqPtrExt and allocated flag update
329  // is delayed so that load can get the right data from store queue.
330  //
331  // Modify deqPtrExtNext and io.sqDeq with care!
332  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
333  deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire),
334    VecInit(deqPtrExt.map(_ + 2.U)),
335    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire,
336      VecInit(deqPtrExt.map(_ + 1.U)),
337      deqPtrExt
338    )
339  )
340
341  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U,
342    Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U)
343  ))
344  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
345
346  for (i <- 0 until EnsbufferWidth) {
347    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
348    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
349    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
350  }
351
352  /**
353    * Enqueue at dispatch
354    *
355    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
356    */
357  io.enq.canAccept := allowEnqueue
358  val canEnqueue = io.enq.req.map(_.valid)
359  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
360  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
361  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)}
362  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
363  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
364
365  for (i <- 0 until io.enq.req.length) {
366    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
367    val index = io.enq.req(i).bits.sqIdx
368    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
369    when (canEnqueue(i) && !enqCancel(i)) {
370      // The maximum 'numLsElem' number that can be emitted per dispatch port is:
371      //    16 2 2 2 2 2.
372      // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2)
373      for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) {
374        when (j.U < validVStoreOffset(i)) {
375          uop((index + j.U).value) := io.enq.req(i).bits
376          // NOTE: the index will be used when replay
377          uop((index + j.U).value).sqIdx := sqIdx + j.U
378          allocated((index + j.U).value) := true.B
379          datavalid((index + j.U).value) := false.B
380          addrvalid((index + j.U).value) := false.B
381          unaligned((index + j.U).value) := false.B
382          committed((index + j.U).value) := false.B
383          pending((index + j.U).value) := false.B
384          prefetch((index + j.U).value) := false.B
385          mmio((index + j.U).value) := false.B
386          isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst
387          vecMbCommit((index + j.U).value) := false.B
388          vecDataValid((index + j.U).value) := false.B
389          hasException((index + j.U).value) := false.B
390          waitStoreS2((index + j.U).value) := true.B
391          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
392          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
393        }
394      }
395    }
396    io.enq.resp(i) := sqIdx
397  }
398  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
399
400  /**
401    * Update addr/dataReadyPtr when issue from rs
402    */
403  // update issuePtr
404  val IssuePtrMoveStride = 4
405  require(IssuePtrMoveStride >= 2)
406
407  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
408  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
409   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
410    && ptr =/= enqPtrExt(0))
411  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
412  addrReadyPtrExt := nextAddrReadyPtr
413
414  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
415  (0 until StoreQueueSize).map(i => {
416    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
417  })
418  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
419
420  when (io.brqRedirect.valid) {
421    addrReadyPtrExt := Mux(
422      isAfter(cmtPtrExt(0), deqPtrExt(0)),
423      cmtPtrExt(0),
424      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
425    )
426  }
427
428  io.stAddrReadySqPtr := addrReadyPtrExt
429
430  // update
431  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
432  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
433   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
434    && ptr =/= enqPtrExt(0))
435  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
436  dataReadyPtrExt := nextDataReadyPtr
437
438  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
439  (0 until StoreQueueSize).map(i => {
440    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
441  })
442  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
443
444  when (io.brqRedirect.valid) {
445    dataReadyPtrExt := Mux(
446      isAfter(cmtPtrExt(0), deqPtrExt(0)),
447      cmtPtrExt(0),
448      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
449    )
450  }
451
452  io.stDataReadySqPtr := dataReadyPtrExt
453  io.stIssuePtr := enqPtrExt(0)
454  io.sqDeqPtr := deqPtrExt(0)
455
456  /**
457    * Writeback store from store units
458    *
459    * Most store instructions writeback to regfile in the previous cycle.
460    * However,
461    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
462    * (in this way it will trigger an exception when it reaches ROB's head)
463    * instead of pending to avoid sending them to lower level.
464    *   (2) For an mmio instruction without exceptions, we mark it as pending.
465    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
466    * Upon receiving the response, StoreQueue writes back the instruction
467    * through arbiter with store units. It will later commit as normal.
468    */
469
470  // Write addr to sq
471  for (i <- 0 until StorePipelineWidth) {
472    paddrModule.io.wen(i) := false.B
473    vaddrModule.io.wen(i) := false.B
474    dataModule.io.mask.wen(i) := false.B
475    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
476    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
477    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
478    // will re-enter exceptionbuffer at store_s2
479    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
480    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
481
482    when (io.storeAddrIn(i).fire) {
483      val addr_valid = !io.storeAddrIn(i).bits.miss
484      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
485      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
486      unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned)
487
488      paddrModule.io.waddr(i) := stWbIndex
489      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
490      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
491      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
492      paddrModule.io.wen(i) := true.B
493
494      vaddrModule.io.waddr(i) := stWbIndex
495      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
496      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
497      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
498      vaddrModule.io.wen(i) := true.B
499
500      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
501
502      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
503
504      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
505      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
506
507      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
508
509      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
510        io.storeAddrIn(i).bits.uop.sqIdx.value,
511        io.storeAddrIn(i).bits.uop.pc,
512        io.storeAddrIn(i).bits.miss,
513        io.storeAddrIn(i).bits.vaddr,
514        io.storeAddrIn(i).bits.paddr,
515        io.storeAddrIn(i).bits.mmio,
516        io.storeAddrIn(i).bits.isvec
517      )
518    }
519
520    // re-replinish mmio, for pma/pmp will get mmio one cycle later
521    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
522    //val stWbIndexReg = RegNext(stWbIndex)
523    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
524    when (storeAddrInFireReg) {
525      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
526      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
527      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
528      hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR ||
529                                    TriggerAction.isDmode(uop(stWbIndexReg).trigger) || io.storeAddrInRe(i).af
530      waitStoreS2(stWbIndexReg) := false.B
531    }
532    // dcache miss info (one cycle later than storeIn)
533    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
534    when (storeAddrInFireReg) {
535      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
536    }
537    // enter exceptionbuffer again
538    when (storeAddrInFireReg) {
539      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af
540      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
541      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
542    }
543
544    when(vaddrModule.io.wen(i)){
545      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
546    }
547  }
548
549  // Write data to sq
550  // Now store data pipeline is actually 2 stages
551  for (i <- 0 until StorePipelineWidth) {
552    dataModule.io.data.wen(i) := false.B
553    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
554    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
555    // sq data write takes 2 cycles:
556    // sq data write s0
557    when (io.storeDataIn(i).fire) {
558      // send data write req to data module
559      dataModule.io.data.waddr(i) := stWbIndex
560      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
561        0.U,
562        Mux(isVec,
563          io.storeDataIn(i).bits.data,
564          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
565      )
566      dataModule.io.data.wen(i) := true.B
567
568      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
569
570      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
571        io.storeDataIn(i).bits.uop.sqIdx.value,
572        io.storeDataIn(i).bits.uop.pc,
573        io.storeDataIn(i).bits.data,
574        dataModule.io.data.wdata(i)
575      )
576    }
577    // sq data write s1
578    when (
579      RegNext(io.storeDataIn(i).fire)
580      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
581    ) {
582      datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B
583    }
584  }
585
586  // Write mask to sq
587  for (i <- 0 until StorePipelineWidth) {
588    // sq mask write s0
589    when (io.storeMaskIn(i).fire) {
590      // send data write req to data module
591      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
592      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
593      dataModule.io.mask.wen(i) := true.B
594    }
595  }
596
597  /**
598    * load forward query
599    *
600    * Check store queue for instructions that is older than the load.
601    * The response will be valid at the next cycle after req.
602    */
603  // check over all lq entries and forward data from the first matched store
604  for (i <- 0 until LoadPipelineWidth) {
605    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
606    // (1) if they have the same flag, we need to check range(tail, sqIdx)
607    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
608    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
609    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
610    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
611    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
612    val forwardMask = io.forward(i).sqIdxMask
613    // all addrvalid terms need to be checked
614    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
615    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
616    // vector store will consider all inactive || secondInvalid flows as valid
617    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
618    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
619    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
620
621    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
622    val storeSetHitVec = Mux(lfstEnable,
623      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
624      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
625    )
626
627    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
628    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
629    val canForward1 = forwardMask1 & allValidVec.asUInt
630    val canForward2 = forwardMask2 & allValidVec.asUInt
631    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
632
633    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
634      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
635    )
636
637    // do real fwd query (cam lookup in load_s1)
638    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
639    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
640
641    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
642    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
643    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
644    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
645
646    // vaddr cam result does not equal to paddr cam result
647    // replay needed
648    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
649    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
650    val vpmaskNotEqual = (
651      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
652      RegNext(needForward) &
653      GatedRegNext(addrRealValidVec.asUInt)
654    ) =/= 0.U
655    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
656    when (vaddrMatchFailed) {
657      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
658        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
659        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
660        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
661      );
662    }
663    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
664    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
665
666    // Fast forward mask will be generated immediately (load_s1)
667    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
668
669    // Forward result will be generated 1 cycle later (load_s2)
670    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
671    io.forward(i).forwardData := dataModule.io.forwardData(i)
672    // If addr match, data not ready, mark it as dataInvalid
673    // load_s1: generate dataInvalid in load_s1 to set fastUop
674    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
675    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
676    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
677    io.forward(i).dataInvalidFast := dataInvalidMask.orR
678
679    // make chisel happy
680    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
681    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
682    // make chisel happy
683    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
684    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
685    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
686
687    // If SSID match, address not ready, mark it as addrInvalid
688    // load_s2: generate addrInvalid
689    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
690    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
691    // make chisel happy
692    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
693    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
694    // make chisel happy
695    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
696    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
697    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
698
699    // load_s2
700    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
701    // check if vaddr forward mismatched
702    io.forward(i).matchInvalid := vaddrMatchFailed
703
704    // data invalid sq index
705    // check whether false fail
706    // check flag
707    val s2_differentFlag = RegNext(differentFlag)
708    val s2_enqPtrExt = RegNext(enqPtrExt(0))
709    val s2_deqPtrExt = RegNext(deqPtrExt(0))
710
711    // addr invalid sq index
712    // make chisel happy
713    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
714    addrInvalidMaskRegWire := addrInvalidMaskReg
715    val addrInvalidFlag = addrInvalidMaskRegWire.orR
716    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
717
718    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
719    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
720    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
721
722    // store-set content management
723    //                +-----------------------+
724    //                | Search a SSID for the |
725    //                |    load operation     |
726    //                +-----------------------+
727    //                           |
728    //                           V
729    //                 +-------------------+
730    //                 | load wait strict? |
731    //                 +-------------------+
732    //                           |
733    //                           V
734    //               +----------------------+
735    //            Set|                      |Clean
736    //               V                      V
737    //  +------------------------+   +------------------------------+
738    //  | Waiting for all older  |   | Wait until the corresponding |
739    //  |   stores operations    |   | older store operations       |
740    //  +------------------------+   +------------------------------+
741
742
743
744    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
745      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
746    } .elsewhen (addrInvalidFlag) {
747      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
748      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
749    } .otherwise {
750      // may be store inst has been written to sbuffer already.
751      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
752    }
753    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
754
755    // data invalid sq index
756    // make chisel happy
757    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
758    dataInvalidMaskRegWire := dataInvalidMaskReg
759    val dataInvalidFlag = dataInvalidMaskRegWire.orR
760
761    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
762    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
763    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
764
765    when (dataInvalidFlag) {
766      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
767      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
768    } .otherwise {
769      // may be store inst has been written to sbuffer already.
770      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
771    }
772  }
773
774  /**
775    * Memory mapped IO / other uncached operations / CMO
776    *
777    * States:
778    * (1) writeback from store units: mark as pending
779    * (2) when they reach ROB's head, they can be sent to uncache channel
780    * (3) response from uncache channel: mark as datavalidmask.wen
781    * (4) writeback to ROB (and other units): mark as writebacked
782    * (5) ROB commits the instruction: same as normal instructions
783    */
784  //(2) when they reach ROB's head, they can be sent to uncache channel
785  // TODO: CAN NOT deal with vector mmio now!
786  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
787  val uncacheState = RegInit(s_idle)
788  val uncacheUop = Reg(new DynInst)
789  val uncacheVAddr = Reg(UInt(VAddrBits.W))
790  val cboFlushedSb = RegInit(false.B)
791  switch(uncacheState) {
792    is(s_idle) {
793      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
794        uncacheState := s_req
795        uncacheUop := uop(deqPtr)
796        cboFlushedSb := false.B
797      }
798    }
799    is(s_req) {
800      when (io.uncache.req.fire) {
801        when (io.uncacheOutstanding) {
802          uncacheState := s_wb
803        } .otherwise {
804          uncacheState := s_resp
805        }
806      }
807    }
808    is(s_resp) {
809      when(io.uncache.resp.fire) {
810        uncacheState := s_wb
811
812        when (io.uncache.resp.bits.nderr) {
813          uncacheUop.exceptionVec(storeAccessFault) := true.B
814        }
815      }
816    }
817    is(s_wb) {
818      when (io.mmioStout.fire || io.vecmmioStout.fire) {
819        uncacheState := s_wait
820      }
821    }
822    is(s_wait) {
823      // A MMIO store can always move cmtPtrExt as it must be ROB head
824      when(scommit > 0.U) {
825        uncacheState := s_idle // ready for next mmio
826      }
827    }
828  }
829  io.uncache.req.valid := uncacheState === s_req
830
831  io.uncache.req.bits := DontCare
832  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
833  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
834  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
835  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
836
837  // CBO op type check can be delayed for 1 cycle,
838  // as uncache op will not start in s_idle
839  val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0))
840  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
841  when (deqCanDoCbo) {
842    // disable uncache channel
843    io.uncache.req.valid := false.B
844
845    when (io.cmoOpReq.fire) {
846      uncacheState := s_resp
847    }
848
849    when (uncacheState === s_resp) {
850      when (io.cmoOpResp.fire) {
851        uncacheState := s_wb
852      }
853    }
854  }
855
856  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req)
857  io.cmoOpReq.bits.opcode  := uop(deqPtr).fuOpType(1, 0)
858  io.cmoOpReq.bits.address := cboMmioAddr
859
860  io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp)
861
862  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty
863
864  when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) {
865    cboFlushedSb := true.B
866  }
867
868  io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
869
870  when(io.uncache.req.fire){
871    // mmio store should not be committed until uncache req is sent
872    pending(deqPtr) := false.B
873
874    XSDebug(
875      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
876      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
877      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
878      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
879      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
880    )
881  }
882
883  // (3) response from uncache channel: mark as datavalid
884  io.uncache.resp.ready := true.B
885
886  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
887  io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr)
888  io.mmioStout.bits.uop := uncacheUop
889  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
890  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
891  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
892  io.mmioStout.bits.debug.isMMIO := true.B
893  io.mmioStout.bits.debug.paddr := DontCare
894  io.mmioStout.bits.debug.isPerfCnt := false.B
895  io.mmioStout.bits.debug.vaddr := DontCare
896  // Remove MMIO inst from store queue after MMIO request is being sent
897  // That inst will be traced by uncache state machine
898  when (io.mmioStout.fire) {
899    allocated(deqPtr) := false.B
900  }
901
902  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
903  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
904  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
905  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
906  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
907
908  // (4) or vector store:
909  // TODO: implement it!
910  io.vecmmioStout := DontCare
911  io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr)
912  io.vecmmioStout.bits.uop := uop(deqPtr)
913  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
914  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
915  io.vecmmioStout.bits.debug.isMMIO := true.B
916  io.vecmmioStout.bits.debug.paddr := DontCare
917  io.vecmmioStout.bits.debug.isPerfCnt := false.B
918  io.vecmmioStout.bits.debug.vaddr := DontCare
919  // Remove MMIO inst from store queue after MMIO request is being sent
920  // That inst will be traced by uncache state machine
921  when (io.vecmmioStout.fire) {
922    allocated(deqPtr) := false.B
923  }
924
925  /**
926    * ROB commits store instructions (mark them as committed)
927    *
928    * (1) When store commits, mark it as committed.
929    * (2) They will not be cancelled and can be sent to lower level.
930    */
931  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
932   "should not commit instruction when MMIO has not been finished\n")
933
934  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
935  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
936  dontTouch(commitVec)
937  // TODO: Deal with vector store mmio
938  for (i <- 0 until CommitWidth) {
939    when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
940      // don't commit while doing misalign
941      if (i == 0){
942        // TODO: fixme for vector mmio
943        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
944          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
945            committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B)
946            commitVec(0) := Mux(misalignBlock, false.B, true.B)
947          }
948        }
949      } else {
950        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
951          committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value))
952          commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1))
953        }
954      }
955    }
956  }
957
958  commitCount := PopCount(commitVec)
959  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
960
961  // committed stores will not be cancelled and can be sent to lower level.
962  // remove retired insts from sq, add retired store to sbuffer
963
964  // Read data from data module
965  // As store queue grows larger and larger, time needed to read data from data
966  // module keeps growing higher. Now we give data read a whole cycle.
967  for (i <- 0 until EnsbufferWidth) {
968    val ptr = rdataPtrExt(i).value
969    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
970    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
971      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
972    }
973    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
974    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
975    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
976    if (i == 0) {
977      // use dataBuffer write port 0 to writeback missaligned store out
978      dataBuffer.io.enq(i).valid := Mux(
979        doMisalignSt,
980        io.maControl.control.writeSb,
981        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
982      )
983    } else {
984      dataBuffer.io.enq(i).valid := Mux(
985        doMisalignSt,
986        false.B,
987        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
988      )
989    }
990    // Note that store data/addr should both be valid after store's commit
991    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr)))
992    dataBuffer.io.enq(i).bits.addr     := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i))
993    dataBuffer.io.enq(i).bits.vaddr    := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i))
994    dataBuffer.io.enq(i).bits.data     := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data)
995    dataBuffer.io.enq(i).bits.mask     := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask)
996    dataBuffer.io.enq(i).bits.wline    := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i))
997    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
998    dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr))
999    // when scalar has exception, will also not write into sbuffer
1000    dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid)
1001//    dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr)
1002  }
1003
1004  // Send data stored in sbufferReqBitsReg to sbuffer
1005  for (i <- 0 until EnsbufferWidth) {
1006    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1007    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1008    io.sbuffer(i).bits := DontCare
1009    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1010    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1011    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1012    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1013    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1014    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1015    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1016    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1017    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1018    // Before data write finish, sbuffer is unable to provide store to load
1019    // forward data. As an workaround, deqPtrExt and allocated flag update
1020    // is delayed so that load can get the right data from store queue.
1021    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1022    when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) {
1023      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1024      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
1025    }
1026  }
1027
1028  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1029  // Flags are used to record whether there are any exceptions when the queue is displayed.
1030  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1031  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1032    val ptr                 = rdataPtrExt(i).value
1033    val mmioStall           = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1034    val exceptionVliad      = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr)
1035    (exceptionVliad, uop(ptr))
1036  }
1037
1038  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1039  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1040  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1041  // Just select the last Uop tah has an exception.
1042  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1043  // If the last Uop with an exception is the LastUop of this instruction, the flag is not set.
1044  val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop
1045
1046  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1047    val ptr                   = rdataPtrExt(i).value
1048    val mmioStall             = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1049    val vecLastUopCommit      = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) &&
1050                                allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr)
1051    vecLastUopCommit
1052  }.reduce(_ || _)
1053
1054  // When a LastUop with an exception instruction is commited, clear the flag.
1055  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) {
1056    vecExceptionFlag.valid  := true.B
1057    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1058  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1059    vecExceptionFlag.valid  := false.B
1060    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1061  }
1062
1063  // A dumb defensive code. The flag should not be placed for a long period of time.
1064  // A relatively large timeout period, not have any special meaning.
1065  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1066  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1067
1068  // Initialize when unenabled difftest.
1069  for (i <- 0 until EnsbufferWidth) {
1070    io.sbufferVecDifftestInfo(i) := DontCare
1071  }
1072  // Consistent with the logic above.
1073  // Only the vector store difftest required signal is separated from the rtl code.
1074  if (env.EnableDifftest) {
1075    for (i <- 0 until EnsbufferWidth) {
1076      val ptr = rdataPtrExt(i).value
1077      val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1078      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1079      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1080    }
1081    for (i <- 0 until EnsbufferWidth) {
1082      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1083      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1084
1085      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1086    }
1087
1088    // commit cbo.inval to difftest
1089    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1090    cmoInvalEvent.coreid := io.hartId
1091    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1092    cmoInvalEvent.addr   := cboMmioAddr
1093  }
1094
1095  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1096  if (coreParams.dcacheParametersOpt.isEmpty) {
1097    for (i <- 0 until EnsbufferWidth) {
1098      val ptr = deqPtrExt(i).value
1099      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1100      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1101      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1102      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1103      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1104      when (wen) {
1105        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1106      }
1107    }
1108  }
1109
1110  // Read vaddr for mem exception
1111  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1112  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1113  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1114  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1115  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1116  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1117  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1118
1119  // vector commit or replay from
1120  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1121  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1122  for (i <- 0 until StoreQueueSize) {
1123    val fbk = io.vecFeedback
1124    for (j <- 0 until VecStorePipelineWidth) {
1125      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1126        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1127    }
1128    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1129
1130    when (vecCommit(i)) {
1131      vecMbCommit(i) := true.B
1132    }
1133  }
1134
1135  // misprediction recovery / exception redirect
1136  // invalidate sq term using robIdx
1137  for (i <- 0 until StoreQueueSize) {
1138    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1139      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1140    when (needCancel(i)) {
1141      allocated(i) := false.B
1142    }
1143  }
1144
1145 /**
1146* update pointers
1147**/
1148  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1149    v && x.bits.robIdx.needFlush(io.brqRedirect)
1150  }
1151  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1152    Mux(v, req.bits.numLsElem, 0.U)
1153  }
1154  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1155
1156  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1157  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1158  val enqNumber = validVStoreFlow.reduce(_ + _)
1159
1160  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1161  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1162
1163  when (lastlastCycleRedirect) {
1164    // we recover the pointers in 2 cycle after redirect for better timing
1165    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1166  }.otherwise {
1167    // lastCycleRedirect.valid or nornal case
1168    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1169    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1170  }
1171  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1172
1173  exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt
1174  // special case (store miss align) in updating ptr
1175  when (doMisalignSt) {
1176    when (!finishMisalignSt) {
1177      // dont move deqPtr and rdataPtr until all split store has been written to sb
1178      deqPtrExtNext := deqPtrExt
1179      rdataPtrExtNext := rdataPtrExt
1180    } .otherwise {
1181      // remove this unaligned store from sq
1182      allocated(deqPtr) := false.B
1183      committed(deqPtr) := true.B
1184      cmtPtrExt := cmtPtrExt.map(_ + 1.U)
1185      deqPtrExtNext := deqPtrExt.map(_ + 1.U)
1186      rdataPtrExtNext := rdataPtrExt.map(_ + 1.U)
1187    }
1188  }
1189
1190  deqPtrExt := deqPtrExtNext
1191  rdataPtrExt := rdataPtrExtNext
1192
1193  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1194
1195  // If redirect at T0, sqCancelCnt is at T2
1196  io.sqCancelCnt := redirectCancelCount
1197  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1198  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1199  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1200  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1201
1202  val valid_cnt = PopCount(allocated)
1203  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1204
1205  // io.sqempty will be used by sbuffer
1206  // We delay it for 1 cycle for better timing
1207  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1208  // for 1 cycle will also promise that sq is empty in that cycle
1209  io.sqEmpty := RegNext(
1210    enqPtrExt(0).value === deqPtrExt(0).value &&
1211    enqPtrExt(0).flag === deqPtrExt(0).flag
1212  )
1213  // perf counter
1214  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1215  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1216  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1217  io.sqFull := !allowEnqueue
1218  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1219  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
1220  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1221  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1222  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1223  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1224  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1225
1226  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1227  val perfEvents = Seq(
1228    ("mmioCycle      ", uncacheState =/= s_idle),
1229    ("mmioCnt        ", io.uncache.req.fire),
1230    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1231    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1232    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1233    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1234    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1235    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1236  )
1237  generatePerfEvent()
1238
1239  // debug info
1240  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1241
1242  def PrintFlag(flag: Bool, name: String): Unit = {
1243    when(flag) {
1244      XSDebug(false, true.B, name)
1245    }.otherwise {
1246      XSDebug(false, true.B, " ")
1247    }
1248  }
1249
1250  for (i <- 0 until StoreQueueSize) {
1251    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1252      uop(i).pc,
1253      debug_vaddr(i),
1254      debug_paddr(i),
1255      debug_data(i)
1256    )
1257    PrintFlag(allocated(i), "a")
1258    PrintFlag(allocated(i) && addrvalid(i), "a")
1259    PrintFlag(allocated(i) && datavalid(i), "d")
1260    PrintFlag(allocated(i) && committed(i), "c")
1261    PrintFlag(allocated(i) && pending(i), "p")
1262    PrintFlag(allocated(i) && mmio(i), "m")
1263    XSDebug(false, true.B, "\n")
1264  }
1265
1266}
1267