1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33import xiangshan.backend.fu.FuConfig._ 34import xiangshan.backend.fu.FuType 35 36class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 37 p => p(XSCoreParamsKey).StoreQueueSize 38){ 39} 40 41object SqPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 43 val ptr = Wire(new SqPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 51 val canAccept = Output(Bool()) 52 val lqCanAccept = Input(Bool()) 53 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 54 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 55 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 56} 57 58class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 59 val addr = UInt(PAddrBits.W) 60 val vaddr = UInt(VAddrBits.W) 61 val data = UInt(VLEN.W) 62 val mask = UInt((VLEN/8).W) 63 val wline = Bool() 64 val sqPtr = new SqPtr 65 val prefetch = Bool() 66 val vecValid = Bool() 67} 68 69class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 70 val io = IO(new Bundle() { 71 val redirect = Flipped(ValidIO(new Redirect)) 72 val storeAddrIn = Vec(StorePipelineWidth + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle()))) 73 val exceptionAddr = new ExceptionAddrIO 74 }) 75 76 val req_valid = RegInit(false.B) 77 val req = Reg(new LsPipelineBundle()) 78 79 // enqueue 80 // S1: 81 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 82 val s1_valid = VecInit(io.storeAddrIn.map(_.valid)) 83 84 // S2: delay 1 cycle 85 val s2_req = RegNext(s1_req) 86 val s2_valid = (0 until StorePipelineWidth + VecStorePipelineWidth).map(i => 87 RegNext(s1_valid(i)) && 88 !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) && 89 !s2_req(i).uop.robIdx.needFlush(io.redirect) 90 ) 91 val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR) 92 93 val s2_enqueue = Wire(Vec(StorePipelineWidth + VecStorePipelineWidth, Bool())) 94 for (w <- 0 until StorePipelineWidth + VecStorePipelineWidth) { 95 s2_enqueue(w) := s2_valid(w) && s2_has_exception(w) 96 } 97 98 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 99 req_valid := s2_enqueue.asUInt.orR 100 }.elsewhen (s2_enqueue.asUInt.orR) { 101 req_valid := req_valid || true.B 102 } 103 104 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 105 assert(valid.length == bits.length) 106 if (valid.length == 0 || valid.length == 1) { 107 (valid, bits) 108 } else if (valid.length == 2) { 109 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 110 for (i <- res.indices) { 111 res(i).valid := valid(i) 112 res(i).bits := bits(i) 113 } 114 val oldest = Mux(valid(0) && valid(1), 115 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 116 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 117 Mux(valid(0) && !valid(1), res(0), res(1))) 118 (Seq(oldest.valid), Seq(oldest.bits)) 119 } else { 120 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 121 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 122 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 123 } 124 } 125 126 val reqSel = selectOldest(s2_enqueue, s2_req) 127 128 when (req_valid) { 129 req := Mux(reqSel._1(0) && isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || 130 (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx), reqSel._2(0), req) 131 } .elsewhen (s2_enqueue.asUInt.orR) { 132 req := reqSel._2(0) 133 } 134 135 io.exceptionAddr.vaddr := req.vaddr 136 io.exceptionAddr.vstart := req.uop.vpu.vstart 137 io.exceptionAddr.vl := req.uop.vpu.vl 138} 139 140// Store Queue 141class StoreQueue(implicit p: Parameters) extends XSModule 142 with HasDCacheParameters 143 with HasCircularQueuePtrHelper 144 with HasPerfEvents 145 with HasVLSUParameters { 146 val io = IO(new Bundle() { 147 val hartId = Input(UInt(8.W)) 148 val enq = new SqEnqIO 149 val brqRedirect = Flipped(ValidIO(new Redirect)) 150 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 151 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 152 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 153 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 154 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 155 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 156 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 157 val uncacheOutstanding = Input(Bool()) 158 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 159 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 160 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 161 // TODO: scommit is only for scalar store 162 val rob = Flipped(new RobLsqIO) 163 val uncache = new UncacheWordIO 164 // val refill = Flipped(Valid(new DCacheLineReq )) 165 val exceptionAddr = new ExceptionAddrIO 166 val sqEmpty = Output(Bool()) 167 val stAddrReadySqPtr = Output(new SqPtr) 168 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 169 val stDataReadySqPtr = Output(new SqPtr) 170 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 171 val stIssuePtr = Output(new SqPtr) 172 val sqDeqPtr = Output(new SqPtr) 173 val sqFull = Output(Bool()) 174 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 175 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 176 val force_write = Output(Bool()) 177 }) 178 179 println("StoreQueue: size:" + StoreQueueSize) 180 181 // data modules 182 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 183 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 184 val dataModule = Module(new SQDataModule( 185 numEntries = StoreQueueSize, 186 numRead = EnsbufferWidth, 187 numWrite = StorePipelineWidth, 188 numForward = LoadPipelineWidth 189 )) 190 dataModule.io := DontCare 191 val paddrModule = Module(new SQAddrModule( 192 dataWidth = PAddrBits, 193 numEntries = StoreQueueSize, 194 numRead = EnsbufferWidth, 195 numWrite = StorePipelineWidth, 196 numForward = LoadPipelineWidth 197 )) 198 paddrModule.io := DontCare 199 val vaddrModule = Module(new SQAddrModule( 200 dataWidth = VAddrBits, 201 numEntries = StoreQueueSize, 202 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 203 numWrite = StorePipelineWidth, 204 numForward = LoadPipelineWidth 205 )) 206 vaddrModule.io := DontCare 207 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 208 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 209 val exceptionBuffer = Module(new StoreExceptionBuffer) 210 exceptionBuffer.io.redirect := io.brqRedirect 211 exceptionBuffer.io.exceptionAddr.isStore := DontCare 212 // vlsu exception! 213 for (i <- 0 until VecStorePipelineWidth) { 214 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 215 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := DontCare 216 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 217 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 218 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 219 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 220 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 221 } 222 223 224 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 225 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 226 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 227 228 // state & misc 229 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 230 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 231 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 232 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 233 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 234 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 235 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 236 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 237 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 238 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 239 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 240 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 241 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 242 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 243 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 244 245 // ptr 246 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 247 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 248 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 249 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 250 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 251 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 252 253 val enqPtr = enqPtrExt(0).value 254 val deqPtr = deqPtrExt(0).value 255 val cmtPtr = cmtPtrExt(0).value 256 257 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 258 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 259 260 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 261 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 262 263 // TODO: count commit numbers for scalar / vector store separately 264 val scalarCommitCount = RegInit(0.U(log2Ceil(StoreQueueSize + 1).W)) 265 val scalarCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 266 val vecCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 267 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 268 val scommit = RegNext(io.rob.scommit) 269 270 scalarCommitCount := scalarCommitCount + scommit - scalarCommitted 271 272 // store can be committed by ROB 273 io.rob.mmio := DontCare 274 io.rob.uop := DontCare 275 276 // Read dataModule 277 assert(EnsbufferWidth <= 2) 278 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 279 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 280 VecInit(rdataPtrExt.map(_ + 2.U)), 281 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 282 VecInit(rdataPtrExt.map(_ + 1.U)), 283 rdataPtrExt 284 ) 285 )) 286 287 // deqPtrExtNext traces which inst is about to leave store queue 288 // 289 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 290 // Before data write finish, sbuffer is unable to provide store to load 291 // forward data. As an workaround, deqPtrExt and allocated flag update 292 // is delayed so that load can get the right data from store queue. 293 // 294 // Modify deqPtrExtNext and io.sqDeq with care! 295 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 296 VecInit(deqPtrExt.map(_ + 2.U)), 297 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 298 VecInit(deqPtrExt.map(_ + 1.U)), 299 deqPtrExt 300 ) 301 ) 302 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 303 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U) 304 )) 305 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 306 307 for (i <- 0 until EnsbufferWidth) { 308 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 309 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 310 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 311 } 312 313 /** 314 * Enqueue at dispatch 315 * 316 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 317 */ 318 io.enq.canAccept := allowEnqueue 319 val canEnqueue = io.enq.req.map(_.valid) 320 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 321 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 322 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)} 323 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 324 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 325 326 for (i <- 0 until io.enq.req.length) { 327 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 328 val index = io.enq.req(i).bits.sqIdx 329 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 330 when (canEnqueue(i) && !enqCancel(i)) { 331 for (j <- 0 until VecMemDispatchMaxNumber) { 332 when (j.U < validVStoreOffset(i)) { 333 uop((index + j.U).value) := io.enq.req(i).bits 334 // NOTE: the index will be used when replay 335 uop((index + j.U).value).sqIdx := sqIdx + j.U 336 allocated((index + j.U).value) := true.B 337 datavalid((index + j.U).value) := false.B 338 addrvalid((index + j.U).value) := false.B 339 committed((index + j.U).value) := false.B 340 pending((index + j.U).value) := false.B 341 prefetch((index + j.U).value) := false.B 342 mmio((index + j.U).value) := false.B 343 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 344 vecMbCommit((index + j.U).value) := false.B 345 vecDataValid((index + j.U).value) := false.B 346 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 347 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 348 } 349 } 350 } 351 io.enq.resp(i) := sqIdx 352 } 353 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 354 355 /** 356 * Update addr/dataReadyPtr when issue from rs 357 */ 358 // update issuePtr 359 val IssuePtrMoveStride = 4 360 require(IssuePtrMoveStride >= 2) 361 362 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 363 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 364 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 365 && ptr =/= enqPtrExt(0)) 366 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 367 addrReadyPtrExt := nextAddrReadyPtr 368 369 (0 until StoreQueueSize).map(i => { 370 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 371 }) 372 373 when (io.brqRedirect.valid) { 374 addrReadyPtrExt := Mux( 375 isAfter(cmtPtrExt(0), deqPtrExt(0)), 376 cmtPtrExt(0), 377 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 378 ) 379 } 380 381 io.stAddrReadySqPtr := addrReadyPtrExt 382 383 // update 384 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 385 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 386 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 387 && ptr =/= enqPtrExt(0)) 388 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 389 dataReadyPtrExt := nextDataReadyPtr 390 391 (0 until StoreQueueSize).map(i => { 392 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 393 }) 394 395 when (io.brqRedirect.valid) { 396 dataReadyPtrExt := Mux( 397 isAfter(cmtPtrExt(0), deqPtrExt(0)), 398 cmtPtrExt(0), 399 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 400 ) 401 } 402 403 io.stDataReadySqPtr := dataReadyPtrExt 404 io.stIssuePtr := enqPtrExt(0) 405 io.sqDeqPtr := deqPtrExt(0) 406 407 /** 408 * Writeback store from store units 409 * 410 * Most store instructions writeback to regfile in the previous cycle. 411 * However, 412 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 413 * (in this way it will trigger an exception when it reaches ROB's head) 414 * instead of pending to avoid sending them to lower level. 415 * (2) For an mmio instruction without exceptions, we mark it as pending. 416 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 417 * Upon receiving the response, StoreQueue writes back the instruction 418 * through arbiter with store units. It will later commit as normal. 419 */ 420 421 // Write addr to sq 422 for (i <- 0 until StorePipelineWidth) { 423 paddrModule.io.wen(i) := false.B 424 vaddrModule.io.wen(i) := false.B 425 dataModule.io.mask.wen(i) := false.B 426 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 427 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 428 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 429 430 when (io.storeAddrIn(i).fire) { 431 val addr_valid = !io.storeAddrIn(i).bits.miss 432 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 433 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 434 435 paddrModule.io.waddr(i) := stWbIndex 436 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 437 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 438 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 439 paddrModule.io.wen(i) := true.B 440 441 vaddrModule.io.waddr(i) := stWbIndex 442 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 443 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 444 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 445 vaddrModule.io.wen(i) := true.B 446 447 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 448 449 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 450 451 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 452 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 453 454 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 455 456 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 457 io.storeAddrIn(i).bits.uop.sqIdx.value, 458 io.storeAddrIn(i).bits.uop.pc, 459 io.storeAddrIn(i).bits.miss, 460 io.storeAddrIn(i).bits.vaddr, 461 io.storeAddrIn(i).bits.paddr, 462 io.storeAddrIn(i).bits.mmio, 463 io.storeAddrIn(i).bits.isvec 464 ) 465 } 466 467 // re-replinish mmio, for pma/pmp will get mmio one cycle later 468 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 469 val stWbIndexReg = RegNext(stWbIndex) 470 when (storeAddrInFireReg) { 471 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 472 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 473 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 474 } 475 // dcache miss info (one cycle later than storeIn) 476 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 477 when (storeAddrInFireReg) { 478 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 479 } 480 481 when(vaddrModule.io.wen(i)){ 482 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 483 } 484 } 485 486 // Write data to sq 487 // Now store data pipeline is actually 2 stages 488 for (i <- 0 until StorePipelineWidth) { 489 dataModule.io.data.wen(i) := false.B 490 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 491 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 492 // sq data write takes 2 cycles: 493 // sq data write s0 494 when (io.storeDataIn(i).fire) { 495 // send data write req to data module 496 dataModule.io.data.waddr(i) := stWbIndex 497 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 498 0.U, 499 Mux(isVec, 500 io.storeDataIn(i).bits.data, 501 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 502 ) 503 dataModule.io.data.wen(i) := true.B 504 505 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 506 507 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 508 io.storeDataIn(i).bits.uop.sqIdx.value, 509 io.storeDataIn(i).bits.uop.pc, 510 io.storeDataIn(i).bits.data, 511 dataModule.io.data.wdata(i) 512 ) 513 } 514 // sq data write s1 515 when ( 516 RegNext(io.storeDataIn(i).fire) 517 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 518 ) { 519 datavalid(RegNext(stWbIndex)) := true.B 520 } 521 } 522 523 // Write mask to sq 524 for (i <- 0 until StorePipelineWidth) { 525 // sq mask write s0 526 when (io.storeMaskIn(i).fire) { 527 // send data write req to data module 528 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 529 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 530 dataModule.io.mask.wen(i) := true.B 531 } 532 } 533 534 /** 535 * load forward query 536 * 537 * Check store queue for instructions that is older than the load. 538 * The response will be valid at the next cycle after req. 539 */ 540 // check over all lq entries and forward data from the first matched store 541 for (i <- 0 until LoadPipelineWidth) { 542 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 543 // (1) if they have the same flag, we need to check range(tail, sqIdx) 544 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 545 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 546 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 547 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 548 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 549 val forwardMask = io.forward(i).sqIdxMask 550 // all addrvalid terms need to be checked 551 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 552 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 553 // vector store will consider all inactive || secondInvalid flows as valid 554 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 555 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 556 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 557 558 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR 559 val storeSetHitVec = Mux(lfstEnable, 560 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 561 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 562 ) 563 564 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 565 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 566 val canForward1 = forwardMask1 & allValidVec.asUInt 567 val canForward2 = forwardMask2 & allValidVec.asUInt 568 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 569 570 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 571 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 572 ) 573 574 // do real fwd query (cam lookup in load_s1) 575 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 576 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 577 578 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 579 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 580 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 581 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 582 583 584 // vaddr cam result does not equal to paddr cam result 585 // replay needed 586 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 587 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 588 val vpmaskNotEqual = ( 589 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 590 RegNext(needForward) & 591 RegNext(addrRealValidVec.asUInt) 592 ) =/= 0.U 593 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 594 when (vaddrMatchFailed) { 595 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 596 RegNext(io.forward(i).uop.pc), 597 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 598 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 599 ); 600 } 601 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 602 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 603 604 // Fast forward mask will be generated immediately (load_s1) 605 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 606 607 // Forward result will be generated 1 cycle later (load_s2) 608 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 609 io.forward(i).forwardData := dataModule.io.forwardData(i) 610 // If addr match, data not ready, mark it as dataInvalid 611 // load_s1: generate dataInvalid in load_s1 to set fastUop 612 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 613 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 614 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 615 io.forward(i).dataInvalidFast := dataInvalidMask.orR 616 617 // make chisel happy 618 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 619 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 620 // make chisel happy 621 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 622 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 623 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 624 625 // If SSID match, address not ready, mark it as addrInvalid 626 // load_s2: generate addrInvalid 627 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 628 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 629 // make chisel happy 630 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 631 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 632 // make chisel happy 633 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 634 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 635 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 636 637 // load_s2 638 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 639 // check if vaddr forward mismatched 640 io.forward(i).matchInvalid := vaddrMatchFailed 641 642 // data invalid sq index 643 // check whether false fail 644 // check flag 645 val s2_differentFlag = RegNext(differentFlag) 646 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 647 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 648 649 // addr invalid sq index 650 // make chisel happy 651 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 652 addrInvalidMaskRegWire := addrInvalidMaskReg 653 val addrInvalidFlag = addrInvalidMaskRegWire.orR 654 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 655 656 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 657 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 658 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 659 660 // store-set content management 661 // +-----------------------+ 662 // | Search a SSID for the | 663 // | load operation | 664 // +-----------------------+ 665 // | 666 // V 667 // +-------------------+ 668 // | load wait strict? | 669 // +-------------------+ 670 // | 671 // V 672 // +----------------------+ 673 // Set| |Clean 674 // V V 675 // +------------------------+ +------------------------------+ 676 // | Waiting for all older | | Wait until the corresponding | 677 // | stores operations | | older store operations | 678 // +------------------------+ +------------------------------+ 679 680 681 682 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 683 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 684 } .elsewhen (addrInvalidFlag) { 685 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 686 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 687 } .otherwise { 688 // may be store inst has been written to sbuffer already. 689 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 690 } 691 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 692 693 // data invalid sq index 694 // make chisel happy 695 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 696 dataInvalidMaskRegWire := dataInvalidMaskReg 697 val dataInvalidFlag = dataInvalidMaskRegWire.orR 698 699 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 700 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 701 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 702 703 when (dataInvalidFlag) { 704 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 705 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 706 } .otherwise { 707 // may be store inst has been written to sbuffer already. 708 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 709 } 710 } 711 712 /** 713 * Memory mapped IO / other uncached operations 714 * 715 * States: 716 * (1) writeback from store units: mark as pending 717 * (2) when they reach ROB's head, they can be sent to uncache channel 718 * (3) response from uncache channel: mark as datavalidmask.wen 719 * (4) writeback to ROB (and other units): mark as writebacked 720 * (5) ROB commits the instruction: same as normal instructions 721 */ 722 //(2) when they reach ROB's head, they can be sent to uncache channel 723 // TODO: CAN NOT deal with vector mmio now! 724 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 725 val uncacheState = RegInit(s_idle) 726 switch(uncacheState) { 727 is(s_idle) { 728 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 729 uncacheState := s_req 730 } 731 } 732 is(s_req) { 733 when (io.uncache.req.fire) { 734 when (io.uncacheOutstanding) { 735 uncacheState := s_wb 736 } .otherwise { 737 uncacheState := s_resp 738 } 739 } 740 } 741 is(s_resp) { 742 when(io.uncache.resp.fire) { 743 uncacheState := s_wb 744 } 745 } 746 is(s_wb) { 747 when (io.mmioStout.fire || io.vecmmioStout.fire) { 748 uncacheState := s_wait 749 } 750 } 751 is(s_wait) { 752 // A MMIO store can always move cmtPtrExt as it must be ROB head 753 when(scommit > 0.U) { 754 uncacheState := s_idle // ready for next mmio 755 } 756 } 757 } 758 io.uncache.req.valid := uncacheState === s_req 759 760 io.uncache.req.bits := DontCare 761 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 762 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 763 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 764 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 765 766 // CBO op type check can be delayed for 1 cycle, 767 // as uncache op will not start in s_idle 768 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 769 val cbo_mmio_op = 0.U //TODO 770 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 771 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 772 io.uncache.req.bits.addr := DontCare // TODO 773 io.uncache.req.bits.data := paddrModule.io.rdata(0) 774 io.uncache.req.bits.mask := DontCare // TODO 775 } 776 777 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 778 779 when(io.uncache.req.fire){ 780 // mmio store should not be committed until uncache req is sent 781 pending(deqPtr) := false.B 782 783 XSDebug( 784 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 785 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 786 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 787 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 788 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 789 ) 790 } 791 792 // (3) response from uncache channel: mark as datavalid 793 io.uncache.resp.ready := true.B 794 795 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 796 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 797 io.mmioStout.bits.uop := uop(deqPtr) 798 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 799 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 800 io.mmioStout.bits.debug.isMMIO := true.B 801 io.mmioStout.bits.debug.paddr := DontCare 802 io.mmioStout.bits.debug.isPerfCnt := false.B 803 io.mmioStout.bits.debug.vaddr := DontCare 804 // Remove MMIO inst from store queue after MMIO request is being sent 805 // That inst will be traced by uncache state machine 806 when (io.mmioStout.fire) { 807 allocated(deqPtr) := false.B 808 } 809 810 // (4) or vector store: 811 // TODO: implement it! 812 io.vecmmioStout := DontCare 813 io.vecmmioStout.valid := uncacheState === s_wb && isVec(deqPtr) 814 io.vecmmioStout.bits.uop := uop(deqPtr) 815 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 816 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 817 io.vecmmioStout.bits.debug.isMMIO := true.B 818 io.vecmmioStout.bits.debug.paddr := DontCare 819 io.vecmmioStout.bits.debug.isPerfCnt := false.B 820 io.vecmmioStout.bits.debug.vaddr := DontCare 821 // Remove MMIO inst from store queue after MMIO request is being sent 822 // That inst will be traced by uncache state machine 823 when (io.vecmmioStout.fire) { 824 allocated(deqPtr) := false.B 825 } 826 827 /** 828 * ROB commits store instructions (mark them as committed) 829 * 830 * (1) When store commits, mark it as committed. 831 * (2) They will not be cancelled and can be sent to lower level. 832 */ 833 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 834 "should not commit instruction when MMIO has not been finished\n") 835 836 val scalarcommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 837 val veccommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 838 // TODO: Deal with vector store mmio 839 for (i <- 0 until CommitWidth) { 840 val veccount = PopCount(veccommitVec.take(i)) 841 when (allocated(cmtPtrExt(i).value) && isVec(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, io.rob.pendingPtr) && vecMbCommit(cmtPtrExt(i).value)) { 842 if (i == 0){ 843 // TODO: fixme for vector mmio 844 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 845 committed(cmtPtrExt(0).value) := true.B 846 veccommitVec(i) := true.B 847 } 848 } else { 849 committed(cmtPtrExt(i).value) := true.B 850 veccommitVec(i) := veccommitVec(i - 1) || scalarcommitVec(i - 1) 851 } 852 } .elsewhen (scalarCommitCount > i.U - veccount) { 853 if (i == 0){ 854 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 855 committed(cmtPtrExt(0).value) := true.B 856 scalarcommitVec(i) := true.B 857 } 858 } else { 859 committed(cmtPtrExt(i).value) := true.B 860 scalarcommitVec(i) := veccommitVec(i - 1) || scalarcommitVec(i - 1) 861 } 862 } 863 } 864 865 scalarCommitted := PopCount(scalarcommitVec) 866 vecCommitted := PopCount(veccommitVec) 867 commitCount := scalarCommitted + vecCommitted 868 869 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 870 871 // committed stores will not be cancelled and can be sent to lower level. 872 // remove retired insts from sq, add retired store to sbuffer 873 874 // Read data from data module 875 // As store queue grows larger and larger, time needed to read data from data 876 // module keeps growing higher. Now we give data read a whole cycle. 877 val mmioStall = mmio(rdataPtrExt(0).value) 878 for (i <- 0 until EnsbufferWidth) { 879 val ptr = rdataPtrExt(i).value 880 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 881 // Note that store data/addr should both be valid after store's commit 882 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vecMbCommit(ptr))) 883 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 884 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 885 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 886 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 887 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 888 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 889 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 890 dataBuffer.io.enq(i).bits.vecValid := !isVec(ptr) || vecDataValid(ptr) // scalar is always valid 891 } 892 893 // Send data stored in sbufferReqBitsReg to sbuffer 894 for (i <- 0 until EnsbufferWidth) { 895 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 896 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 897 // Write line request should have all 1 mask 898 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR)) 899 io.sbuffer(i).bits := DontCare 900 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 901 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 902 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 903 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 904 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 905 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 906 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 907 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 908 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 909 // Before data write finish, sbuffer is unable to provide store to load 910 // forward data. As an workaround, deqPtrExt and allocated flag update 911 // is delayed so that load can get the right data from store queue. 912 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 913 when (RegNext(io.sbuffer(i).fire)) { 914 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 915 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 916 } 917 } 918 919 // Consistent with the logic above, only the vectore difftest required signal is separated from the rtl code 920 if (env.EnableDifftest) { 921 for (i <- 0 until EnsbufferWidth) { 922 val ptr = rdataPtrExt(i).value 923 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 924 difftestBuffer.get.io.enq(i).bits := uop(ptr) 925 } 926 for (i <- 0 until EnsbufferWidth) { 927 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 928 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 929 930 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 931 } 932 } 933 934 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 935 if (coreParams.dcacheParametersOpt.isEmpty) { 936 for (i <- 0 until EnsbufferWidth) { 937 val ptr = deqPtrExt(i).value 938 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 939 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 940 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 941 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 942 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 943 when (wen) { 944 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 945 } 946 } 947 } 948 949 // Read vaddr for mem exception 950 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 951 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 952 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 953 954 // vector commit or replay from 955 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 956 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 957 for (i <- 0 until StoreQueueSize) { 958 val fbk = io.vecFeedback 959 for (j <- 0 until VecStorePipelineWidth) { 960 vecCommittmp(i)(j) := fbk(j).valid && fbk(j).bits.isCommit && uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx 961 } 962 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 963 964 when (vecCommit(i)) { 965 vecMbCommit(i) := true.B 966 } 967 } 968 969 // misprediction recovery / exception redirect 970 // invalidate sq term using robIdx 971 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 972 for (i <- 0 until StoreQueueSize) { 973 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 974 when (needCancel(i)) { 975 allocated(i) := false.B 976 } 977 } 978 979 /** 980* update pointers 981**/ 982 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 983 v && x.bits.robIdx.needFlush(io.brqRedirect) 984 } 985 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 986 Mux(v, req.bits.numLsElem, 0.U) 987 } 988 val lastEnqCancel = RegNext(enqCancelNum.reduce(_ + _)) // 1 cycle after redirect 989 990 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 991 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 992 val enqNumber = validVStoreFlow.reduce(_ + _) 993 994 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 995 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 996 997 when (lastlastCycleRedirect) { 998 // we recover the pointers in 2 cycle after redirect for better timing 999 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1000 }.otherwise { 1001 // lastCycleRedirect.valid or nornal case 1002 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1003 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1004 } 1005 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1006 1007 deqPtrExt := deqPtrExtNext 1008 rdataPtrExt := rdataPtrExtNext 1009 1010 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1011 1012 // If redirect at T0, sqCancelCnt is at T2 1013 io.sqCancelCnt := redirectCancelCount 1014 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1015 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 1016 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1017 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 1018 1019 val valid_cnt = PopCount(allocated) 1020 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1021 1022 // io.sqempty will be used by sbuffer 1023 // We delay it for 1 cycle for better timing 1024 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1025 // for 1 cycle will also promise that sq is empty in that cycle 1026 io.sqEmpty := RegNext( 1027 enqPtrExt(0).value === deqPtrExt(0).value && 1028 enqPtrExt(0).flag === deqPtrExt(0).flag 1029 ) 1030 // perf counter 1031 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1032 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1033 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1034 io.sqFull := !allowEnqueue 1035 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1036 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1037 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1038 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1039 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1040 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1041 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1042 1043 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1044 val perfEvents = Seq( 1045 ("mmioCycle ", uncacheState =/= s_idle), 1046 ("mmioCnt ", io.uncache.req.fire), 1047 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1048 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1049 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1050 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1051 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1052 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1053 ) 1054 generatePerfEvent() 1055 1056 // debug info 1057 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1058 1059 def PrintFlag(flag: Bool, name: String): Unit = { 1060 when(flag) { 1061 XSDebug(false, true.B, name) 1062 }.otherwise { 1063 XSDebug(false, true.B, " ") 1064 } 1065 } 1066 1067 for (i <- 0 until StoreQueueSize) { 1068 XSDebug(i + ": pc %x va %x pa %x data %x ", 1069 uop(i).pc, 1070 debug_vaddr(i), 1071 debug_paddr(i), 1072 debug_data(i) 1073 ) 1074 PrintFlag(allocated(i), "a") 1075 PrintFlag(allocated(i) && addrvalid(i), "a") 1076 PrintFlag(allocated(i) && datavalid(i), "d") 1077 PrintFlag(allocated(i) && committed(i), "c") 1078 PrintFlag(allocated(i) && pending(i), "p") 1079 PrintFlag(allocated(i) && mmio(i), "m") 1080 XSDebug(false, true.B, "\n") 1081 } 1082 1083} 1084