1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.backend._ 31import xiangshan.backend.rob.{RobLsqIO, RobPtr} 32import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 34import xiangshan.backend.fu.FuConfig._ 35import xiangshan.backend.fu.FuType 36import xiangshan.ExceptionNO._ 37import coupledL2.{CMOReq, CMOResp} 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70} 71 72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 73 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 74 // The 2nd StorePipelineWidth ports: sta af generated at s2 75 // The following VecStorePipelineWidth ports: vector st exception 76 // The last port: non-data error generated in SoC 77 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 78 79 val io = IO(new Bundle() { 80 val redirect = Flipped(ValidIO(new Redirect)) 81 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 82 val flushFrmMaBuf = Input(Bool()) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := req_valid || true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.gpaddr := req.gpaddr 149 io.exceptionAddr.vstart := req.uop.vpu.vstart 150 io.exceptionAddr.vl := req.uop.vpu.vl 151 io.exceptionAddr.isForVSnonLeafPTE:= req.isForVSnonLeafPTE 152 153 when(req_valid && io.flushFrmMaBuf) { 154 req_valid := false.B 155 } 156} 157 158// Store Queue 159class StoreQueue(implicit p: Parameters) extends XSModule 160 with HasDCacheParameters 161 with HasCircularQueuePtrHelper 162 with HasPerfEvents 163 with HasVLSUParameters { 164 val io = IO(new Bundle() { 165 val hartId = Input(UInt(hartIdLen.W)) 166 val enq = new SqEnqIO 167 val brqRedirect = Flipped(ValidIO(new Redirect)) 168 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 169 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 170 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 171 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 172 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 173 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 174 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 175 val uncacheOutstanding = Input(Bool()) 176 val cmoOpReq = DecoupledIO(new CMOReq) 177 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 178 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 179 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 180 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 181 // TODO: scommit is only for scalar store 182 val rob = Flipped(new RobLsqIO) 183 val uncache = new UncacheWordIO 184 // val refill = Flipped(Valid(new DCacheLineReq )) 185 val exceptionAddr = new ExceptionAddrIO 186 val flushSbuffer = new SbufferFlushBundle 187 val sqEmpty = Output(Bool()) 188 val stAddrReadySqPtr = Output(new SqPtr) 189 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 190 val stDataReadySqPtr = Output(new SqPtr) 191 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 192 val stIssuePtr = Output(new SqPtr) 193 val sqDeqPtr = Output(new SqPtr) 194 val sqFull = Output(Bool()) 195 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 196 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 197 val force_write = Output(Bool()) 198 val maControl = Flipped(new StoreMaBufToSqControlIO) 199 }) 200 201 println("StoreQueue: size:" + StoreQueueSize) 202 203 // data modules 204 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 205 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 206 val dataModule = Module(new SQDataModule( 207 numEntries = StoreQueueSize, 208 numRead = EnsbufferWidth, 209 numWrite = StorePipelineWidth, 210 numForward = LoadPipelineWidth 211 )) 212 dataModule.io := DontCare 213 val paddrModule = Module(new SQAddrModule( 214 dataWidth = PAddrBits, 215 numEntries = StoreQueueSize, 216 numRead = EnsbufferWidth, 217 numWrite = StorePipelineWidth, 218 numForward = LoadPipelineWidth 219 )) 220 paddrModule.io := DontCare 221 val vaddrModule = Module(new SQAddrModule( 222 dataWidth = VAddrBits, 223 numEntries = StoreQueueSize, 224 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 225 numWrite = StorePipelineWidth, 226 numForward = LoadPipelineWidth 227 )) 228 vaddrModule.io := DontCare 229 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 230 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 231 val exceptionBuffer = Module(new StoreExceptionBuffer) 232 exceptionBuffer.io.redirect := io.brqRedirect 233 exceptionBuffer.io.exceptionAddr.isStore := DontCare 234 // vlsu exception! 235 for (i <- 0 until VecStorePipelineWidth) { 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 261 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 262 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 263 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 264 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 265 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 266 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 267 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 268 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 269 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 270 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 271 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 272 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 273 274 // ptr 275 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 276 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 277 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 278 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 280 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 281 282 val enqPtr = enqPtrExt(0).value 283 val deqPtr = deqPtrExt(0).value 284 val cmtPtr = cmtPtrExt(0).value 285 286 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 287 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 288 289 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 290 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 291 292 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 293 val scommit = GatedRegNext(io.rob.scommit) 294 295 // RegNext misalign control for better timing 296 val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr)) 297 val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException) 298 val misalignBlock = doMisalignSt && !finishMisalignSt 299 300 // store miss align info 301 io.maControl.storeInfo.data := dataModule.io.rdata(0).data 302 io.maControl.storeInfo.dataReady := doMisalignSt 303 io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire 304 305 // store can be committed by ROB 306 io.rob.mmio := DontCare 307 io.rob.uop := DontCare 308 309 // Read dataModule 310 assert(EnsbufferWidth <= 2) 311 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 312 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 313 rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire, 314 VecInit(rdataPtrExt.map(_ + 2.U)), 315 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 316 VecInit(rdataPtrExt.map(_ + 1.U)), 317 rdataPtrExt 318 ) 319 )) 320 321 // deqPtrExtNext traces which inst is about to leave store queue 322 // 323 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 324 // Before data write finish, sbuffer is unable to provide store to load 325 // forward data. As an workaround, deqPtrExt and allocated flag update 326 // is delayed so that load can get the right data from store queue. 327 // 328 // Modify deqPtrExtNext and io.sqDeq with care! 329 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 330 deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire), 331 VecInit(deqPtrExt.map(_ + 2.U)), 332 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 333 VecInit(deqPtrExt.map(_ + 1.U)), 334 deqPtrExt 335 ) 336 ) 337 338 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U, 339 Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U) 340 )) 341 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 342 343 for (i <- 0 until EnsbufferWidth) { 344 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 345 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 346 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 347 } 348 349 /** 350 * Enqueue at dispatch 351 * 352 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 353 */ 354 io.enq.canAccept := allowEnqueue 355 val canEnqueue = io.enq.req.map(_.valid) 356 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 357 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 358 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 359 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 360 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 361 362 for (i <- 0 until io.enq.req.length) { 363 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 364 val index = io.enq.req(i).bits.sqIdx 365 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 366 when (canEnqueue(i) && !enqCancel(i)) { 367 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 368 // 16 2 2 2 2 2. 369 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 370 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 371 when (j.U < validVStoreOffset(i)) { 372 uop((index + j.U).value) := io.enq.req(i).bits 373 // NOTE: the index will be used when replay 374 uop((index + j.U).value).sqIdx := sqIdx + j.U 375 allocated((index + j.U).value) := true.B 376 datavalid((index + j.U).value) := false.B 377 addrvalid((index + j.U).value) := false.B 378 unaligned((index + j.U).value) := false.B 379 committed((index + j.U).value) := false.B 380 pending((index + j.U).value) := false.B 381 prefetch((index + j.U).value) := false.B 382 mmio((index + j.U).value) := false.B 383 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 384 vecMbCommit((index + j.U).value) := false.B 385 vecDataValid((index + j.U).value) := false.B 386 hasException((index + j.U).value) := false.B 387 waitStoreS2((index + j.U).value) := true.B 388 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 389 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 390 } 391 } 392 } 393 io.enq.resp(i) := sqIdx 394 } 395 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 396 397 /** 398 * Update addr/dataReadyPtr when issue from rs 399 */ 400 // update issuePtr 401 val IssuePtrMoveStride = 4 402 require(IssuePtrMoveStride >= 2) 403 404 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 405 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 406 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 407 && ptr =/= enqPtrExt(0)) 408 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 409 addrReadyPtrExt := nextAddrReadyPtr 410 411 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 412 (0 until StoreQueueSize).map(i => { 413 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 414 }) 415 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 416 417 when (io.brqRedirect.valid) { 418 addrReadyPtrExt := Mux( 419 isAfter(cmtPtrExt(0), deqPtrExt(0)), 420 cmtPtrExt(0), 421 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 422 ) 423 } 424 425 io.stAddrReadySqPtr := addrReadyPtrExt 426 427 // update 428 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 429 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 430 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 431 && ptr =/= enqPtrExt(0)) 432 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 433 dataReadyPtrExt := nextDataReadyPtr 434 435 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 436 (0 until StoreQueueSize).map(i => { 437 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 438 }) 439 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 440 441 when (io.brqRedirect.valid) { 442 dataReadyPtrExt := Mux( 443 isAfter(cmtPtrExt(0), deqPtrExt(0)), 444 cmtPtrExt(0), 445 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 446 ) 447 } 448 449 io.stDataReadySqPtr := dataReadyPtrExt 450 io.stIssuePtr := enqPtrExt(0) 451 io.sqDeqPtr := deqPtrExt(0) 452 453 /** 454 * Writeback store from store units 455 * 456 * Most store instructions writeback to regfile in the previous cycle. 457 * However, 458 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 459 * (in this way it will trigger an exception when it reaches ROB's head) 460 * instead of pending to avoid sending them to lower level. 461 * (2) For an mmio instruction without exceptions, we mark it as pending. 462 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 463 * Upon receiving the response, StoreQueue writes back the instruction 464 * through arbiter with store units. It will later commit as normal. 465 */ 466 467 // Write addr to sq 468 for (i <- 0 until StorePipelineWidth) { 469 paddrModule.io.wen(i) := false.B 470 vaddrModule.io.wen(i) := false.B 471 dataModule.io.mask.wen(i) := false.B 472 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 473 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 474 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 475 // will re-enter exceptionbuffer at store_s2 476 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 477 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 478 479 when (io.storeAddrIn(i).fire) { 480 val addr_valid = !io.storeAddrIn(i).bits.miss 481 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 482 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 483 unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned) 484 485 paddrModule.io.waddr(i) := stWbIndex 486 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 487 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 488 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 489 paddrModule.io.wen(i) := true.B 490 491 vaddrModule.io.waddr(i) := stWbIndex 492 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 493 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 494 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 495 vaddrModule.io.wen(i) := true.B 496 497 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 498 499 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 500 501 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 502 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 503 504 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 505 506 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 507 io.storeAddrIn(i).bits.uop.sqIdx.value, 508 io.storeAddrIn(i).bits.uop.pc, 509 io.storeAddrIn(i).bits.miss, 510 io.storeAddrIn(i).bits.vaddr, 511 io.storeAddrIn(i).bits.paddr, 512 io.storeAddrIn(i).bits.mmio, 513 io.storeAddrIn(i).bits.isvec 514 ) 515 } 516 517 // re-replinish mmio, for pma/pmp will get mmio one cycle later 518 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 519 //val stWbIndexReg = RegNext(stWbIndex) 520 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 521 when (storeAddrInFireReg) { 522 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 523 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 524 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 525 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af 526 waitStoreS2(stWbIndexReg) := false.B 527 } 528 // dcache miss info (one cycle later than storeIn) 529 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 530 when (storeAddrInFireReg) { 531 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 532 } 533 // enter exceptionbuffer again 534 when (storeAddrInFireReg) { 535 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af 536 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 537 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 538 } 539 540 when(vaddrModule.io.wen(i)){ 541 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 542 } 543 } 544 545 // Write data to sq 546 // Now store data pipeline is actually 2 stages 547 for (i <- 0 until StorePipelineWidth) { 548 dataModule.io.data.wen(i) := false.B 549 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 550 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 551 // sq data write takes 2 cycles: 552 // sq data write s0 553 when (io.storeDataIn(i).fire) { 554 // send data write req to data module 555 dataModule.io.data.waddr(i) := stWbIndex 556 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 557 0.U, 558 Mux(isVec, 559 io.storeDataIn(i).bits.data, 560 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 561 ) 562 dataModule.io.data.wen(i) := true.B 563 564 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 565 566 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 567 io.storeDataIn(i).bits.uop.sqIdx.value, 568 io.storeDataIn(i).bits.uop.pc, 569 io.storeDataIn(i).bits.data, 570 dataModule.io.data.wdata(i) 571 ) 572 } 573 // sq data write s1 574 when ( 575 RegNext(io.storeDataIn(i).fire) 576 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 577 ) { 578 datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B 579 } 580 } 581 582 // Write mask to sq 583 for (i <- 0 until StorePipelineWidth) { 584 // sq mask write s0 585 when (io.storeMaskIn(i).fire) { 586 // send data write req to data module 587 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 588 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 589 dataModule.io.mask.wen(i) := true.B 590 } 591 } 592 593 /** 594 * load forward query 595 * 596 * Check store queue for instructions that is older than the load. 597 * The response will be valid at the next cycle after req. 598 */ 599 // check over all lq entries and forward data from the first matched store 600 for (i <- 0 until LoadPipelineWidth) { 601 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 602 // (1) if they have the same flag, we need to check range(tail, sqIdx) 603 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 604 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 605 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 606 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 607 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 608 val forwardMask = io.forward(i).sqIdxMask 609 // all addrvalid terms need to be checked 610 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 611 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 612 // vector store will consider all inactive || secondInvalid flows as valid 613 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 614 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 615 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 616 617 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 618 val storeSetHitVec = Mux(lfstEnable, 619 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 620 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 621 ) 622 623 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 624 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 625 val canForward1 = forwardMask1 & allValidVec.asUInt 626 val canForward2 = forwardMask2 & allValidVec.asUInt 627 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 628 629 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 630 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 631 ) 632 633 // do real fwd query (cam lookup in load_s1) 634 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 635 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 636 637 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 638 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 639 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 640 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 641 642 // vaddr cam result does not equal to paddr cam result 643 // replay needed 644 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 645 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 646 val vpmaskNotEqual = ( 647 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 648 RegNext(needForward) & 649 GatedRegNext(addrRealValidVec.asUInt) 650 ) =/= 0.U 651 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 652 when (vaddrMatchFailed) { 653 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 654 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 655 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 656 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 657 ); 658 } 659 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 660 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 661 662 // Fast forward mask will be generated immediately (load_s1) 663 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 664 665 // Forward result will be generated 1 cycle later (load_s2) 666 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 667 io.forward(i).forwardData := dataModule.io.forwardData(i) 668 // If addr match, data not ready, mark it as dataInvalid 669 // load_s1: generate dataInvalid in load_s1 to set fastUop 670 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 671 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 672 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 673 io.forward(i).dataInvalidFast := dataInvalidMask.orR 674 675 // make chisel happy 676 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 677 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 678 // make chisel happy 679 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 680 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 681 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 682 683 // If SSID match, address not ready, mark it as addrInvalid 684 // load_s2: generate addrInvalid 685 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 686 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 687 // make chisel happy 688 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 689 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 690 // make chisel happy 691 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 692 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 693 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 694 695 // load_s2 696 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 697 // check if vaddr forward mismatched 698 io.forward(i).matchInvalid := vaddrMatchFailed 699 700 // data invalid sq index 701 // check whether false fail 702 // check flag 703 val s2_differentFlag = RegNext(differentFlag) 704 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 705 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 706 707 // addr invalid sq index 708 // make chisel happy 709 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 710 addrInvalidMaskRegWire := addrInvalidMaskReg 711 val addrInvalidFlag = addrInvalidMaskRegWire.orR 712 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 713 714 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 715 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 716 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 717 718 // store-set content management 719 // +-----------------------+ 720 // | Search a SSID for the | 721 // | load operation | 722 // +-----------------------+ 723 // | 724 // V 725 // +-------------------+ 726 // | load wait strict? | 727 // +-------------------+ 728 // | 729 // V 730 // +----------------------+ 731 // Set| |Clean 732 // V V 733 // +------------------------+ +------------------------------+ 734 // | Waiting for all older | | Wait until the corresponding | 735 // | stores operations | | older store operations | 736 // +------------------------+ +------------------------------+ 737 738 739 740 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 741 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 742 } .elsewhen (addrInvalidFlag) { 743 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 744 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 745 } .otherwise { 746 // may be store inst has been written to sbuffer already. 747 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 748 } 749 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 750 751 // data invalid sq index 752 // make chisel happy 753 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 754 dataInvalidMaskRegWire := dataInvalidMaskReg 755 val dataInvalidFlag = dataInvalidMaskRegWire.orR 756 757 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 758 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 759 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 760 761 when (dataInvalidFlag) { 762 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 763 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 764 } .otherwise { 765 // may be store inst has been written to sbuffer already. 766 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 767 } 768 } 769 770 /** 771 * Memory mapped IO / other uncached operations / CMO 772 * 773 * States: 774 * (1) writeback from store units: mark as pending 775 * (2) when they reach ROB's head, they can be sent to uncache channel 776 * (3) response from uncache channel: mark as datavalidmask.wen 777 * (4) writeback to ROB (and other units): mark as writebacked 778 * (5) ROB commits the instruction: same as normal instructions 779 */ 780 //(2) when they reach ROB's head, they can be sent to uncache channel 781 // TODO: CAN NOT deal with vector mmio now! 782 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 783 val uncacheState = RegInit(s_idle) 784 val uncacheUop = Reg(new DynInst) 785 val uncacheVAddr = Reg(UInt(VAddrBits.W)) 786 val cboFlushedSb = RegInit(false.B) 787 switch(uncacheState) { 788 is(s_idle) { 789 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 790 uncacheState := s_req 791 uncacheUop := uop(deqPtr) 792 cboFlushedSb := false.B 793 } 794 } 795 is(s_req) { 796 when (io.uncache.req.fire) { 797 when (io.uncacheOutstanding) { 798 uncacheState := s_wb 799 } .otherwise { 800 uncacheState := s_resp 801 } 802 } 803 } 804 is(s_resp) { 805 when(io.uncache.resp.fire) { 806 uncacheState := s_wb 807 808 when (io.uncache.resp.bits.nderr) { 809 uncacheUop.exceptionVec(storeAccessFault) := true.B 810 } 811 } 812 } 813 is(s_wb) { 814 when (io.mmioStout.fire || io.vecmmioStout.fire) { 815 uncacheState := s_wait 816 } 817 } 818 is(s_wait) { 819 // A MMIO store can always move cmtPtrExt as it must be ROB head 820 when(scommit > 0.U) { 821 uncacheState := s_idle // ready for next mmio 822 } 823 } 824 } 825 io.uncache.req.valid := uncacheState === s_req 826 827 io.uncache.req.bits := DontCare 828 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 829 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 830 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 831 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 832 833 // CBO op type check can be delayed for 1 cycle, 834 // as uncache op will not start in s_idle 835 val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0)) 836 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 837 when (deqCanDoCbo) { 838 // disable uncache channel 839 io.uncache.req.valid := false.B 840 841 when (io.cmoOpReq.fire) { 842 uncacheState := s_resp 843 } 844 845 when (uncacheState === s_resp) { 846 when (io.cmoOpResp.fire) { 847 uncacheState := s_wb 848 } 849 } 850 } 851 852 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req) 853 io.cmoOpReq.bits.opcode := uop(deqPtr).fuOpType(1, 0) 854 io.cmoOpReq.bits.address := cboMmioAddr 855 856 io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp) 857 858 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty 859 860 when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) { 861 cboFlushedSb := true.B 862 } 863 864 io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 865 866 when(io.uncache.req.fire){ 867 // mmio store should not be committed until uncache req is sent 868 pending(deqPtr) := false.B 869 870 XSDebug( 871 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 872 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 873 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 874 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 875 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 876 ) 877 } 878 879 // (3) response from uncache channel: mark as datavalid 880 io.uncache.resp.ready := true.B 881 882 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 883 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 884 io.mmioStout.bits.uop := uncacheUop 885 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 886 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 887 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 888 io.mmioStout.bits.debug.isMMIO := true.B 889 io.mmioStout.bits.debug.paddr := DontCare 890 io.mmioStout.bits.debug.isPerfCnt := false.B 891 io.mmioStout.bits.debug.vaddr := DontCare 892 // Remove MMIO inst from store queue after MMIO request is being sent 893 // That inst will be traced by uncache state machine 894 when (io.mmioStout.fire) { 895 allocated(deqPtr) := false.B 896 } 897 898 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 899 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 900 exceptionBuffer.io.storeAddrIn.last.bits.vaddr := vaddrModule.io.rdata.head 901 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 902 903 // (4) or vector store: 904 // TODO: implement it! 905 io.vecmmioStout := DontCare 906 io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr) 907 io.vecmmioStout.bits.uop := uop(deqPtr) 908 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 909 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 910 io.vecmmioStout.bits.debug.isMMIO := true.B 911 io.vecmmioStout.bits.debug.paddr := DontCare 912 io.vecmmioStout.bits.debug.isPerfCnt := false.B 913 io.vecmmioStout.bits.debug.vaddr := DontCare 914 // Remove MMIO inst from store queue after MMIO request is being sent 915 // That inst will be traced by uncache state machine 916 when (io.vecmmioStout.fire) { 917 allocated(deqPtr) := false.B 918 } 919 920 /** 921 * ROB commits store instructions (mark them as committed) 922 * 923 * (1) When store commits, mark it as committed. 924 * (2) They will not be cancelled and can be sent to lower level. 925 */ 926 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 927 "should not commit instruction when MMIO has not been finished\n") 928 929 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 930 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 931 dontTouch(commitVec) 932 // TODO: Deal with vector store mmio 933 for (i <- 0 until CommitWidth) { 934 when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 935 // don't commit while doing misalign 936 if (i == 0){ 937 // TODO: fixme for vector mmio 938 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 939 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 940 committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B) 941 commitVec(0) := Mux(misalignBlock, false.B, true.B) 942 } 943 } 944 } else { 945 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 946 committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value)) 947 commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1)) 948 } 949 } 950 } 951 } 952 953 commitCount := PopCount(commitVec) 954 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 955 956 // committed stores will not be cancelled and can be sent to lower level. 957 // remove retired insts from sq, add retired store to sbuffer 958 959 // Read data from data module 960 // As store queue grows larger and larger, time needed to read data from data 961 // module keeps growing higher. Now we give data read a whole cycle. 962 for (i <- 0 until EnsbufferWidth) { 963 val ptr = rdataPtrExt(i).value 964 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 965 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 966 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 967 } 968 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 969 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 970 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 971 if (i == 0) { 972 // use dataBuffer write port 0 to writeback missaligned store out 973 dataBuffer.io.enq(i).valid := Mux( 974 doMisalignSt, 975 io.maControl.control.writeSb, 976 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 977 ) 978 } else { 979 dataBuffer.io.enq(i).valid := Mux( 980 doMisalignSt, 981 false.B, 982 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 983 ) 984 } 985 // Note that store data/addr should both be valid after store's commit 986 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr))) 987 dataBuffer.io.enq(i).bits.addr := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i)) 988 dataBuffer.io.enq(i).bits.vaddr := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i)) 989 dataBuffer.io.enq(i).bits.data := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data) 990 dataBuffer.io.enq(i).bits.mask := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask) 991 dataBuffer.io.enq(i).bits.wline := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i)) 992 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 993 dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr)) 994 // when scalar has exception, will also not write into sbuffer 995 dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid) 996// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 997 } 998 999 // Send data stored in sbufferReqBitsReg to sbuffer 1000 for (i <- 0 until EnsbufferWidth) { 1001 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1002 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1003 io.sbuffer(i).bits := DontCare 1004 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1005 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1006 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1007 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1008 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1009 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1010 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1011 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1012 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1013 // Before data write finish, sbuffer is unable to provide store to load 1014 // forward data. As an workaround, deqPtrExt and allocated flag update 1015 // is delayed so that load can get the right data from store queue. 1016 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1017 when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) { 1018 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1019 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1020 } 1021 } 1022 1023 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1024 // Flags are used to record whether there are any exceptions when the queue is displayed. 1025 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1026 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1027 val ptr = rdataPtrExt(i).value 1028 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1029 val exceptionVliad = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr) 1030 (exceptionVliad, uop(ptr)) 1031 } 1032 1033 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1034 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1035 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1036 // Just select the last Uop tah has an exception. 1037 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1038 // If the last Uop with an exception is the LastUop of this instruction, the flag is not set. 1039 val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop 1040 1041 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1042 val ptr = rdataPtrExt(i).value 1043 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1044 val vecLastUopCommit = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && 1045 allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) 1046 vecLastUopCommit 1047 }.reduce(_ || _) 1048 1049 // When a LastUop with an exception instruction is commited, clear the flag. 1050 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) { 1051 vecExceptionFlag.valid := true.B 1052 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1053 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1054 vecExceptionFlag.valid := false.B 1055 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1056 } 1057 1058 // A dumb defensive code. The flag should not be placed for a long period of time. 1059 // A relatively large timeout period, not have any special meaning. 1060 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1061 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1062 1063 // Initialize when unenabled difftest. 1064 for (i <- 0 until EnsbufferWidth) { 1065 io.sbufferVecDifftestInfo(i) := DontCare 1066 } 1067 // Consistent with the logic above. 1068 // Only the vector store difftest required signal is separated from the rtl code. 1069 if (env.EnableDifftest) { 1070 for (i <- 0 until EnsbufferWidth) { 1071 val ptr = rdataPtrExt(i).value 1072 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1073 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1074 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1075 } 1076 for (i <- 0 until EnsbufferWidth) { 1077 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1078 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1079 1080 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1081 } 1082 } 1083 1084 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1085 if (coreParams.dcacheParametersOpt.isEmpty) { 1086 for (i <- 0 until EnsbufferWidth) { 1087 val ptr = deqPtrExt(i).value 1088 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1089 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1090 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1091 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1092 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1093 when (wen) { 1094 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1095 } 1096 } 1097 } 1098 1099 // Read vaddr for mem exception 1100 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1101 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1102 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1103 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1104 io.exceptionAddr.isForVSnonLeafPTE:= exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1105 1106 // vector commit or replay from 1107 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1108 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1109 for (i <- 0 until StoreQueueSize) { 1110 val fbk = io.vecFeedback 1111 for (j <- 0 until VecStorePipelineWidth) { 1112 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1113 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1114 } 1115 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1116 1117 when (vecCommit(i)) { 1118 vecMbCommit(i) := true.B 1119 } 1120 } 1121 1122 // misprediction recovery / exception redirect 1123 // invalidate sq term using robIdx 1124 for (i <- 0 until StoreQueueSize) { 1125 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1126 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1127 when (needCancel(i)) { 1128 allocated(i) := false.B 1129 } 1130 } 1131 1132 /** 1133* update pointers 1134**/ 1135 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1136 v && x.bits.robIdx.needFlush(io.brqRedirect) 1137 } 1138 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1139 Mux(v, req.bits.numLsElem, 0.U) 1140 } 1141 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1142 1143 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1144 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1145 val enqNumber = validVStoreFlow.reduce(_ + _) 1146 1147 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1148 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1149 1150 when (lastlastCycleRedirect) { 1151 // we recover the pointers in 2 cycle after redirect for better timing 1152 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1153 }.otherwise { 1154 // lastCycleRedirect.valid or nornal case 1155 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1156 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1157 } 1158 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1159 1160 exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt 1161 // special case (store miss align) in updating ptr 1162 when (doMisalignSt) { 1163 when (!finishMisalignSt) { 1164 // dont move deqPtr and rdataPtr until all split store has been written to sb 1165 deqPtrExtNext := deqPtrExt 1166 rdataPtrExtNext := rdataPtrExt 1167 } .otherwise { 1168 // remove this unaligned store from sq 1169 allocated(deqPtr) := false.B 1170 committed(deqPtr) := true.B 1171 cmtPtrExt := cmtPtrExt.map(_ + 1.U) 1172 deqPtrExtNext := deqPtrExt.map(_ + 1.U) 1173 rdataPtrExtNext := rdataPtrExt.map(_ + 1.U) 1174 } 1175 } 1176 1177 deqPtrExt := deqPtrExtNext 1178 rdataPtrExt := rdataPtrExtNext 1179 1180 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1181 1182 // If redirect at T0, sqCancelCnt is at T2 1183 io.sqCancelCnt := redirectCancelCount 1184 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1185 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1186 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1187 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1188 1189 val valid_cnt = PopCount(allocated) 1190 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1191 1192 // io.sqempty will be used by sbuffer 1193 // We delay it for 1 cycle for better timing 1194 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1195 // for 1 cycle will also promise that sq is empty in that cycle 1196 io.sqEmpty := RegNext( 1197 enqPtrExt(0).value === deqPtrExt(0).value && 1198 enqPtrExt(0).flag === deqPtrExt(0).flag 1199 ) 1200 // perf counter 1201 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1202 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1203 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1204 io.sqFull := !allowEnqueue 1205 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1206 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1207 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1208 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1209 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1210 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1211 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1212 1213 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1214 val perfEvents = Seq( 1215 ("mmioCycle ", uncacheState =/= s_idle), 1216 ("mmioCnt ", io.uncache.req.fire), 1217 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1218 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1219 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1220 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1221 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1222 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1223 ) 1224 generatePerfEvent() 1225 1226 // debug info 1227 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1228 1229 def PrintFlag(flag: Bool, name: String): Unit = { 1230 when(flag) { 1231 XSDebug(false, true.B, name) 1232 }.otherwise { 1233 XSDebug(false, true.B, " ") 1234 } 1235 } 1236 1237 for (i <- 0 until StoreQueueSize) { 1238 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1239 uop(i).pc, 1240 debug_vaddr(i), 1241 debug_paddr(i), 1242 debug_data(i) 1243 ) 1244 PrintFlag(allocated(i), "a") 1245 PrintFlag(allocated(i) && addrvalid(i), "a") 1246 PrintFlag(allocated(i) && datavalid(i), "d") 1247 PrintFlag(allocated(i) && committed(i), "c") 1248 PrintFlag(allocated(i) && pending(i), "p") 1249 PrintFlag(allocated(i) && mmio(i), "m") 1250 XSDebug(false, true.B, "\n") 1251 } 1252 1253} 1254