xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 433cc30bcb8704dc6f79e3e21860a39e5689298b)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.cache.{CMOReq, CMOResp}
31import xiangshan.backend._
32import xiangshan.backend.rob.{RobLsqIO, RobPtr}
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
35import xiangshan.backend.fu.FuConfig._
36import xiangshan.backend.fu.FuType
37import xiangshan.ExceptionNO._
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70  val sqNeedDeq = Bool()
71}
72
73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
74  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
75  // The 2nd StorePipelineWidth ports: sta af generated at s2
76  // The following VecStorePipelineWidth ports: vector st exception
77  // The last port: non-data error generated in SoC
78  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
79
80  val io = IO(new Bundle() {
81    val redirect = Flipped(ValidIO(new Redirect))
82    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155}
156
157// Store Queue
158class StoreQueue(implicit p: Parameters) extends XSModule
159  with HasDCacheParameters
160  with HasCircularQueuePtrHelper
161  with HasPerfEvents
162  with HasVLSUParameters {
163  val io = IO(new Bundle() {
164    val hartId = Input(UInt(hartIdLen.W))
165    val enq = new SqEnqIO
166    val brqRedirect = Flipped(ValidIO(new Redirect))
167    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
168    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
169    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
170    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
171    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
172    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
173    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
174    val uncacheOutstanding = Input(Bool())
175    val cmoOpReq  = DecoupledIO(new CMOReq)
176    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
177    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
178    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
179    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
180    // TODO: scommit is only for scalar store
181    val rob = Flipped(new RobLsqIO)
182    val uncache = new UncacheWordIO
183    // val refill = Flipped(Valid(new DCacheLineReq ))
184    val exceptionAddr = new ExceptionAddrIO
185    val flushSbuffer = new SbufferFlushBundle
186    val sqEmpty = Output(Bool())
187    val stAddrReadySqPtr = Output(new SqPtr)
188    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
189    val stDataReadySqPtr = Output(new SqPtr)
190    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
191    val stIssuePtr = Output(new SqPtr)
192    val sqDeqPtr = Output(new SqPtr)
193    val sqFull = Output(Bool())
194    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
195    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
196    val force_write = Output(Bool())
197    val maControl   = Flipped(new StoreMaBufToSqControlIO)
198  })
199
200  println("StoreQueue: size:" + StoreQueueSize)
201
202  // data modules
203  val uop = Reg(Vec(StoreQueueSize, new DynInst))
204  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
205  val dataModule = Module(new SQDataModule(
206    numEntries = StoreQueueSize,
207    numRead = EnsbufferWidth,
208    numWrite = StorePipelineWidth,
209    numForward = LoadPipelineWidth
210  ))
211  dataModule.io := DontCare
212  val paddrModule = Module(new SQAddrModule(
213    dataWidth = PAddrBits,
214    numEntries = StoreQueueSize,
215    numRead = EnsbufferWidth,
216    numWrite = StorePipelineWidth,
217    numForward = LoadPipelineWidth
218  ))
219  paddrModule.io := DontCare
220  val vaddrModule = Module(new SQAddrModule(
221    dataWidth = VAddrBits,
222    numEntries = StoreQueueSize,
223    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
224    numWrite = StorePipelineWidth,
225    numForward = LoadPipelineWidth
226  ))
227  vaddrModule.io := DontCare
228  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
229  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
230  val exceptionBuffer = Module(new StoreExceptionBuffer)
231  exceptionBuffer.io.redirect := io.brqRedirect
232  exceptionBuffer.io.exceptionAddr.isStore := DontCare
233  // vlsu exception!
234  for (i <- 0 until VecStorePipelineWidth) {
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
246  }
247
248
249  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
250  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
251  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
252
253  // state & misc
254  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
255  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
256  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
257  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i)))
258  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
259  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
260  val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary
261  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
262  val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst
263  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
264  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
265  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
266  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
267  val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction
268  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
269  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
270  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
271  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
272  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
273  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
274  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
275
276  // ptr
277  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
278  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
279  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
280  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
281  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
282  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
283
284  val enqPtr = enqPtrExt(0).value
285  val deqPtr = deqPtrExt(0).value
286  val cmtPtr = cmtPtrExt(0).value
287
288  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
289  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
290
291  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
292  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
293
294  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
295  val scommit = GatedRegNext(io.rob.scommit)
296  val mmioReq = Wire(chiselTypeOf(io.uncache.req))
297  val ncReq = Wire(chiselTypeOf(io.uncache.req))
298  val ncResp = Wire(chiselTypeOf(io.uncache.resp))
299  val ncDoReq = Wire(Bool())
300  val ncDoResp = Wire(Bool())
301  val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp)
302  // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles.
303  // TODO lyq: to eliminate coupling by passing signals through ubuffer
304  val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp)
305  val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id)
306
307  // store can be committed by ROB
308  io.rob.mmio := DontCare
309  io.rob.uop := DontCare
310
311  // Read dataModule
312  assert(EnsbufferWidth <= 2)
313  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
314  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
315  rdataPtrExtNext := rdataPtrExt.map(i => i +
316    PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) +
317    PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
318  )
319
320  // deqPtrExtNext traces which inst is about to leave store queue
321  //
322  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
323  // Before data write finish, sbuffer is unable to provide store to load
324  // forward data. As an workaround, deqPtrExt and allocated flag update
325  // is delayed so that load can get the right data from store queue.
326  //
327  // Modify deqPtrExtNext and io.sqDeq with care!
328  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
329  // Only sqNeedDeq can move the ptr
330  deqPtrExtNext := deqPtrExt.map(i =>  i +
331    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
332    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
333  )
334
335  io.sqDeq := RegNext(
336    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
337    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
338  )
339
340  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
341
342  for (i <- 0 until EnsbufferWidth) {
343    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
344    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
345    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
346  }
347
348  /**
349    * Enqueue at dispatch
350    *
351    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
352    */
353  io.enq.canAccept := allowEnqueue
354  val canEnqueue = io.enq.req.map(_.valid)
355  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
356  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
357  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)}
358  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
359  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
360
361  for (i <- 0 until io.enq.req.length) {
362    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
363    val index = io.enq.req(i).bits.sqIdx
364    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
365    when (canEnqueue(i) && !enqCancel(i)) {
366      // The maximum 'numLsElem' number that can be emitted per dispatch port is:
367      //    16 2 2 2 2 2.
368      // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2)
369      for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) {
370        when (j.U < validVStoreOffset(i)) {
371          uop((index + j.U).value) := io.enq.req(i).bits
372          // NOTE: the index will be used when replay
373          uop((index + j.U).value).sqIdx := sqIdx + j.U
374          vecLastFlow((index + j.U).value) := Mux((j + 1).U === validVStoreOffset(i), io.enq.req(i).bits.lastUop, false.B)
375          allocated((index + j.U).value) := true.B
376          datavalid((index + j.U).value) := false.B
377          addrvalid((index + j.U).value) := false.B
378          unaligned((index + j.U).value) := false.B
379          cross16Byte((index + j.U).value) := false.B
380          committed((index + j.U).value) := false.B
381          pending((index + j.U).value) := false.B
382          prefetch((index + j.U).value) := false.B
383          nc((index + j.U).value) := false.B
384          mmio((index + j.U).value) := false.B
385          isVec((index + j.U).value) :=  FuType.isVStore(io.enq.req(i).bits.fuType)
386          vecMbCommit((index + j.U).value) := false.B
387          vecDataValid((index + j.U).value) := false.B
388          hasException((index + j.U).value) := false.B
389          waitStoreS2((index + j.U).value) := true.B
390          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
391          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
392        }
393      }
394    }
395    io.enq.resp(i) := sqIdx
396  }
397  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
398
399  /**
400    * Update addr/dataReadyPtr when issue from rs
401    */
402  // update issuePtr
403  val IssuePtrMoveStride = 4
404  require(IssuePtrMoveStride >= 2)
405
406  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
407  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
408   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
409    && ptr =/= enqPtrExt(0))
410  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
411  addrReadyPtrExt := nextAddrReadyPtr
412
413  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
414  (0 until StoreQueueSize).map(i => {
415    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
416  })
417  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
418
419  when (io.brqRedirect.valid) {
420    addrReadyPtrExt := Mux(
421      isAfter(cmtPtrExt(0), deqPtrExt(0)),
422      cmtPtrExt(0),
423      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
424    )
425  }
426
427  io.stAddrReadySqPtr := addrReadyPtrExt
428
429  // update
430  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
431  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
432   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
433    && ptr =/= enqPtrExt(0))
434  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
435  dataReadyPtrExt := nextDataReadyPtr
436
437  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
438  (0 until StoreQueueSize).map(i => {
439    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
440  })
441  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
442
443  when (io.brqRedirect.valid) {
444    dataReadyPtrExt := Mux(
445      isAfter(cmtPtrExt(0), deqPtrExt(0)),
446      cmtPtrExt(0),
447      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
448    )
449  }
450
451  io.stDataReadySqPtr := dataReadyPtrExt
452  io.stIssuePtr := enqPtrExt(0)
453  io.sqDeqPtr := deqPtrExt(0)
454
455  /**
456    * Writeback store from store units
457    *
458    * Most store instructions writeback to regfile in the previous cycle.
459    * However,
460    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
461    * (in this way it will trigger an exception when it reaches ROB's head)
462    * instead of pending to avoid sending them to lower level.
463    *   (2) For an mmio instruction without exceptions, we mark it as pending.
464    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
465    * Upon receiving the response, StoreQueue writes back the instruction
466    * through arbiter with store units. It will later commit as normal.
467    */
468
469  // Write addr to sq
470  for (i <- 0 until StorePipelineWidth) {
471    paddrModule.io.wen(i) := false.B
472    vaddrModule.io.wen(i) := false.B
473    dataModule.io.mask.wen(i) := false.B
474    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
475    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
476    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
477    // will re-enter exceptionbuffer at store_s2
478    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
479    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
480
481    when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) {
482      val addr_valid = !io.storeAddrIn(i).bits.miss
483      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
484      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
485      nc(stWbIndex) := io.storeAddrIn(i).bits.nc
486
487    }
488    when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) {
489      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
490      unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign
491      cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte
492
493      paddrModule.io.waddr(i) := stWbIndex
494      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
495      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
496      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
497      paddrModule.io.wen(i) := true.B
498
499      vaddrModule.io.waddr(i) := stWbIndex
500      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
501      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
502      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
503      vaddrModule.io.wen(i) := true.B
504
505      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
506
507      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
508
509      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
510        io.storeAddrIn(i).bits.uop.sqIdx.value,
511        io.storeAddrIn(i).bits.uop.pc,
512        io.storeAddrIn(i).bits.miss,
513        io.storeAddrIn(i).bits.vaddr,
514        io.storeAddrIn(i).bits.paddr,
515        io.storeAddrIn(i).bits.mmio,
516        io.storeAddrIn(i).bits.isvec
517      )
518    }
519    when (io.storeAddrIn(i).fire) {
520      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
521      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
522    }
523
524    // re-replinish mmio, for pma/pmp will get mmio one cycle later
525    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid
526    //val stWbIndexReg = RegNext(stWbIndex)
527    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
528    when (storeAddrInFireReg) {
529      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
530      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
531      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
532      hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR ||
533                                    TriggerAction.isDmode(uop(stWbIndexReg).trigger) || io.storeAddrInRe(i).af
534      waitStoreS2(stWbIndexReg) := false.B
535    }
536    // dcache miss info (one cycle later than storeIn)
537    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
538    when (storeAddrInFireReg) {
539      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
540    }
541    // enter exceptionbuffer again
542    when (storeAddrInFireReg) {
543      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af && !io.storeAddrInRe(i).isvec
544      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i)
545      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
546    }
547
548    when(vaddrModule.io.wen(i)){
549      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
550    }
551  }
552
553  // Write data to sq
554  // Now store data pipeline is actually 2 stages
555  for (i <- 0 until StorePipelineWidth) {
556    dataModule.io.data.wen(i) := false.B
557    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
558    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
559    // sq data write takes 2 cycles:
560    // sq data write s0
561    when (io.storeDataIn(i).fire) {
562      // send data write req to data module
563      dataModule.io.data.waddr(i) := stWbIndex
564      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
565        0.U,
566        Mux(isVec,
567          io.storeDataIn(i).bits.data,
568          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
569      )
570      dataModule.io.data.wen(i) := true.B
571
572      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
573
574      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
575        io.storeDataIn(i).bits.uop.sqIdx.value,
576        io.storeDataIn(i).bits.uop.pc,
577        io.storeDataIn(i).bits.data,
578        dataModule.io.data.wdata(i)
579      )
580    }
581    // sq data write s1
582    val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire)
583    when (
584      RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex)
585      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
586    ) {
587      datavalid(lastStWbIndex) := true.B
588    }
589  }
590
591  // Write mask to sq
592  for (i <- 0 until StorePipelineWidth) {
593    // sq mask write s0
594    when (io.storeMaskIn(i).fire) {
595      // send data write req to data module
596      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
597      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
598      dataModule.io.mask.wen(i) := true.B
599    }
600  }
601
602  /**
603    * load forward query
604    *
605    * Check store queue for instructions that is older than the load.
606    * The response will be valid at the next cycle after req.
607    */
608  // check over all lq entries and forward data from the first matched store
609  for (i <- 0 until LoadPipelineWidth) {
610    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
611    // (1) if they have the same flag, we need to check range(tail, sqIdx)
612    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
613    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
614    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
615    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
616    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
617    val forwardMask = io.forward(i).sqIdxMask
618    // all addrvalid terms need to be checked
619    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
620    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
621    // vector store will consider all inactive || secondInvalid flows as valid
622    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
623    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
624    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
625
626    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
627    val storeSetHitVec = Mux(lfstEnable,
628      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
629      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
630    )
631
632    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
633    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
634    val canForward1 = forwardMask1 & allValidVec.asUInt
635    val canForward2 = forwardMask2 & allValidVec.asUInt
636    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
637
638    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
639      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
640    )
641
642    // do real fwd query (cam lookup in load_s1)
643    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
644    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
645
646    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
647    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
648    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
649    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
650
651    // vaddr cam result does not equal to paddr cam result
652    // replay needed
653    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
654    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
655    val vpmaskNotEqual = (
656      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
657      RegNext(needForward) &
658      GatedRegNext(addrRealValidVec.asUInt)
659    ) =/= 0.U
660    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
661    when (vaddrMatchFailed) {
662      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
663        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
664        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
665        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
666      );
667    }
668    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
669    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
670
671    // Fast forward mask will be generated immediately (load_s1)
672    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
673
674    // Forward result will be generated 1 cycle later (load_s2)
675    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
676    io.forward(i).forwardData := dataModule.io.forwardData(i)
677    // If addr match, data not ready, mark it as dataInvalid
678    // load_s1: generate dataInvalid in load_s1 to set fastUop
679    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
680    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
681    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
682    io.forward(i).dataInvalidFast := dataInvalidMask.orR
683
684    //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it.
685    //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward.
686    val unalignedMask1 = unaligned.asUInt & forwardMask1.asUInt & allocated.asUInt
687    val unalignedMask2 = unaligned.asUInt & forwardMask2.asUInt & allocated.asUInt
688    val forwardPreWithUnaligned = (unalignedMask1 | unalignedMask2).asUInt.orR
689
690    // make chisel happy
691    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
692    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
693    // make chisel happy
694    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
695    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
696    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
697
698    // If SSID match, address not ready, mark it as addrInvalid
699    // load_s2: generate addrInvalid
700    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
701    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
702    // make chisel happy
703    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
704    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
705    // make chisel happy
706    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
707    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
708    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
709
710    // load_s2
711    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) || RegNext(forwardPreWithUnaligned)
712    // check if vaddr forward mismatched
713    io.forward(i).matchInvalid := vaddrMatchFailed
714
715    // data invalid sq index
716    // check whether false fail
717    // check flag
718    val s2_differentFlag = RegNext(differentFlag)
719    val s2_enqPtrExt = RegNext(enqPtrExt(0))
720    val s2_deqPtrExt = RegNext(deqPtrExt(0))
721
722    // addr invalid sq index
723    // make chisel happy
724    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
725    addrInvalidMaskRegWire := addrInvalidMaskReg
726    val addrInvalidFlag = addrInvalidMaskRegWire.orR
727    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
728
729    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
730    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
731    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
732
733    // store-set content management
734    //                +-----------------------+
735    //                | Search a SSID for the |
736    //                |    load operation     |
737    //                +-----------------------+
738    //                           |
739    //                           V
740    //                 +-------------------+
741    //                 | load wait strict? |
742    //                 +-------------------+
743    //                           |
744    //                           V
745    //               +----------------------+
746    //            Set|                      |Clean
747    //               V                      V
748    //  +------------------------+   +------------------------------+
749    //  | Waiting for all older  |   | Wait until the corresponding |
750    //  |   stores operations    |   | older store operations       |
751    //  +------------------------+   +------------------------------+
752
753
754
755    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
756      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
757    } .elsewhen (addrInvalidFlag) {
758      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
759      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
760    } .otherwise {
761      // may be store inst has been written to sbuffer already.
762      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
763    }
764    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
765
766    // data invalid sq index
767    // make chisel happy
768    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
769    dataInvalidMaskRegWire := dataInvalidMaskReg
770    val dataInvalidFlag = dataInvalidMaskRegWire.orR
771
772    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
773    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
774    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
775
776    when (dataInvalidFlag) {
777      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
778      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
779    } .otherwise {
780      // may be store inst has been written to sbuffer already.
781      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
782    }
783  }
784
785  /**
786    * Memory mapped IO / other uncached operations / CMO
787    *
788    * States:
789    * (1) writeback from store units: mark as pending
790    * (2) when they reach ROB's head, they can be sent to uncache channel
791    * (3) response from uncache channel: mark as datavalidmask.wen
792    * (4) writeback to ROB (and other units): mark as writebacked
793    * (5) ROB commits the instruction: same as normal instructions
794    */
795  //(2) when they reach ROB's head, they can be sent to uncache channel
796  // TODO: CAN NOT deal with vector mmio now!
797  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
798  val mmioState = RegInit(s_idle)
799  val uncacheUop = Reg(new DynInst)
800  val uncacheVAddr = Reg(UInt(VAddrBits.W))
801  val cboFlushedSb = RegInit(false.B)
802  val cmoOpCode = uncacheUop.fuOpType(1, 0)
803  val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc
804  switch(mmioState) {
805    is(s_idle) {
806      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
807        mmioState := s_req
808        uncacheUop := uop(deqPtr)
809        cboFlushedSb := false.B
810      }
811    }
812    is(s_req) {
813      when (mmioDoReq) {
814        mmioState := s_resp
815      }
816    }
817    is(s_resp) {
818      when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) {
819        mmioState := s_wb
820
821        when (io.uncache.resp.bits.nderr) {
822          uncacheUop.exceptionVec(storeAccessFault) := true.B
823        }
824      }
825    }
826    is(s_wb) {
827      when (io.mmioStout.fire || io.vecmmioStout.fire) {
828        when (uncacheUop.exceptionVec(storeAccessFault)) {
829          mmioState := s_idle
830        }.otherwise {
831          mmioState := s_wait
832        }
833      }
834    }
835    is(s_wait) {
836      // A MMIO store can always move cmtPtrExt as it must be ROB head
837      when(scommit > 0.U) {
838        mmioState := s_idle // ready for next mmio
839      }
840    }
841  }
842
843  mmioReq.valid := mmioState === s_req
844  mmioReq.bits := DontCare
845  mmioReq.bits.cmd  := MemoryOpConstants.M_XWR
846  mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
847  mmioReq.bits.vaddr:= vaddrModule.io.rdata(0)
848  mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
849  mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
850  mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
851  mmioReq.bits.nc := false.B
852  mmioReq.bits.id := rdataPtrExt(0).value
853
854  /**
855    * NC Store
856    * (1) req: when it has been commited, it can be sent to lower level.
857    * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received
858    */
859  // TODO: CAN NOT deal with vector nc now!
860  val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3)
861  val ncState = RegInit(nc_idle)
862  val rptr0 = rdataPtrExt(0).value
863  switch(ncState){
864    is(nc_idle) {
865      when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) {
866        ncState := nc_req
867      }
868    }
869    is(nc_req) {
870      when(ncDoReq) {
871        when(io.uncacheOutstanding) {
872          ncState := nc_idle
873        }.otherwise{
874          ncState := nc_resp
875        }
876      }
877    }
878    is(nc_resp) {
879      when(ncResp.fire) {
880        ncState := nc_idle
881      }
882    }
883  }
884
885  ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc
886  ncDoResp := ncResp.fire
887
888  ncReq.valid := ncState === nc_req
889  ncReq.bits := DontCare
890  ncReq.bits.cmd  := MemoryOpConstants.M_XWR
891  ncReq.bits.addr := paddrModule.io.rdata(0)
892  ncReq.bits.vaddr:= vaddrModule.io.rdata(0)
893  ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
894  ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
895  ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
896  ncReq.bits.nc := true.B
897  ncReq.bits.id := rptr0
898
899  ncResp.ready := io.uncache.resp.ready
900  ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc
901  ncResp.bits <> io.uncache.resp.bits
902  when (ncDeqTrigger) {
903    allocated(ncPtr) := false.B
904    XSDebug("nc fire: ptr %d\n", ncPtr)
905  }
906
907  mmioReq.ready := io.uncache.req.ready
908  ncReq.ready := io.uncache.req.ready && !mmioReq.valid
909  io.uncache.req.valid := mmioReq.valid || ncReq.valid
910  io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits)
911
912  // CBO op type check can be delayed for 1 cycle,
913  // as uncache op will not start in s_idle
914  val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0))
915  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
916  when (deqCanDoCbo) {
917    // disable uncache channel
918    io.uncache.req.valid := false.B
919
920    when (io.cmoOpReq.fire) {
921      mmioState := s_resp
922    }
923
924    when (mmioState === s_resp) {
925      when (io.cmoOpResp.fire) {
926        mmioState := s_wb
927      }
928    }
929  }
930
931  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req)
932  io.cmoOpReq.bits.opcode  := cmoOpCode
933  io.cmoOpReq.bits.address := cboMmioAddr
934
935  io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp)
936
937  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty
938
939  when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) {
940    cboFlushedSb := true.B
941  }
942
943  when(mmioDoReq){
944    // mmio store should not be committed until uncache req is sent
945    pending(deqPtr) := false.B
946
947    XSDebug(
948      p"uncache mmio req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
949      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
950      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
951      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
952      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
953    )
954  }
955
956  // (3) response from uncache channel: mark as datavalid
957  io.uncache.resp.ready := true.B
958
959  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
960  io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr)
961  io.mmioStout.bits.uop := uncacheUop
962  io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg)
963  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
964  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
965  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
966  io.mmioStout.bits.isFromLoadUnit := DontCare
967  io.mmioStout.bits.debug.isMMIO := true.B
968  io.mmioStout.bits.debug.isNC := false.B
969  io.mmioStout.bits.debug.paddr := DontCare
970  io.mmioStout.bits.debug.isPerfCnt := false.B
971  io.mmioStout.bits.debug.vaddr := DontCare
972  // Remove MMIO inst from store queue after MMIO request is being sent
973  // That inst will be traced by uncache state machine
974  when (io.mmioStout.fire) {
975    allocated(deqPtr) := false.B
976  }
977
978  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
979  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
980  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
981  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
982  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
983
984  // (4) or vector store:
985  // TODO: implement it!
986  io.vecmmioStout := DontCare
987  io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr)
988  io.vecmmioStout.bits.uop := uop(deqPtr)
989  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
990  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
991  io.vecmmioStout.bits.debug.isMMIO := true.B
992  io.vecmmioStout.bits.debug.isNC   := false.B
993  io.vecmmioStout.bits.debug.paddr := DontCare
994  io.vecmmioStout.bits.debug.isPerfCnt := false.B
995  io.vecmmioStout.bits.debug.vaddr := DontCare
996  // Remove MMIO inst from store queue after MMIO request is being sent
997  // That inst will be traced by uncache state machine
998  when (io.vecmmioStout.fire) {
999    allocated(deqPtr) := false.B
1000  }
1001
1002  /**
1003    * ROB commits store instructions (mark them as committed)
1004    *
1005    * (1) When store commits, mark it as committed.
1006    * (2) They will not be cancelled and can be sent to lower level.
1007    */
1008  XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U,
1009   "should not commit instruction when MMIO has not been finished\n")
1010
1011  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
1012  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
1013
1014  if (backendParams.debugEn){ dontTouch(commitVec) }
1015
1016  // TODO: Deal with vector store mmio
1017  for (i <- 0 until CommitWidth) {
1018    // don't mark misalign store as committed
1019    when (
1020      allocated(cmtPtrExt(i).value) &&
1021      isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) &&
1022      !needCancel(cmtPtrExt(i).value) &&
1023      (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
1024      if (i == 0){
1025        // TODO: fixme for vector mmio
1026        when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){
1027          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1028            committed(cmtPtrExt(0).value) := true.B
1029            commitVec(0) := true.B
1030          }
1031        }
1032      } else {
1033        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1034          committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value)
1035          commitVec(i) := commitVec(i - 1)
1036        }
1037      }
1038    }
1039  }
1040
1041  commitCount := PopCount(commitVec)
1042  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
1043
1044  /**
1045   * committed stores will not be cancelled and can be sent to lower level.
1046   *
1047   * 1. Store NC: Read data to uncache
1048   *    implement as above
1049   *
1050   * 2. Store Cache: Read data from data module
1051   *    remove retired insts from sq, add retired store to sbuffer.
1052   *    as store queue grows larger and larger, time needed to read data from data
1053   *    module keeps growing higher. Now we give data read a whole cycle.
1054   */
1055
1056  //TODO An unaligned command can only be sent out if the databuffer can enter more than two.
1057  //TODO For now, hardcode the number of ENQs for the databuffer.
1058  val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready
1059  val firstWithMisalign = unaligned(rdataPtrExt(0).value)
1060  val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value)
1061
1062  val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit
1063  val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq
1064  // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr.
1065  io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0)
1066  io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire
1067  io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value)
1068  for (i <- 0 until EnsbufferWidth) {
1069    val ptr = rdataPtrExt(i).value
1070    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1071    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1072    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
1073      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
1074    }
1075    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
1076    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
1077    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
1078
1079    // Only the first interface can write unaligned directives.
1080    // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue.
1081    val assert_flag = WireInit(false.B)
1082    when(firstWithMisalign && firstWithCross16Byte) {
1083      dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1084        ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1085        (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall
1086
1087      dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1088        (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1089        (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall
1090      assert_flag := dataBuffer.io.enq(1).valid
1091    }.otherwise {
1092      if (i == 0) {
1093        dataBuffer.io.enq(i).valid := (
1094          allocated(ptr) && committed(ptr)
1095            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1096            && !mmioStall && !ncStall
1097            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1098          )
1099      }
1100      else {
1101        dataBuffer.io.enq(i).valid := (
1102          allocated(ptr) && committed(ptr)
1103            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1104            && !mmioStall && !ncStall
1105            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1106          )
1107      }
1108    }
1109
1110    val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0)
1111    val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0)
1112    val addrLow4bit = vaddrModule.io.rdata(i)(3, 0)
1113
1114    // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue.
1115    val Cross16ByteMask = Wire(UInt(32.W))
1116    val Cross16ByteData = Wire(UInt(256.W))
1117    Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit
1118    Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3)
1119
1120    val paddrLow  = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1121    val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1122
1123    val vaddrLow  = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1124    val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1125
1126    val maskLow   = Cross16ByteMask(15, 0)
1127    val maskHigh  = Cross16ByteMask(31, 16)
1128
1129    val dataLow   = Cross16ByteData(127, 0)
1130    val dataHigh  = Cross16ByteData(255, 128)
1131
1132    val toSbufferVecValid = (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid
1133    when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) {
1134      when(isCross4KPage && isCross4KPageCanDeq) {
1135        if (i == 0) {
1136          dataBuffer.io.enq(i).bits.addr      := paddrLow
1137          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1138          dataBuffer.io.enq(i).bits.data      := dataLow
1139          dataBuffer.io.enq(i).bits.mask      := maskLow
1140          dataBuffer.io.enq(i).bits.wline     := false.B
1141          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1142          dataBuffer.io.enq(i).bits.prefetch  := false.B
1143          dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1144          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1145        }
1146        else {
1147          dataBuffer.io.enq(i).bits.addr      := io.maControl.toStoreQueue.paddr
1148          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1149          dataBuffer.io.enq(i).bits.data      := dataHigh
1150          dataBuffer.io.enq(i).bits.mask      := maskHigh
1151          dataBuffer.io.enq(i).bits.wline     := false.B
1152          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1153          dataBuffer.io.enq(i).bits.prefetch  := false.B
1154          dataBuffer.io.enq(i).bits.sqNeedDeq := false.B
1155          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1156        }
1157      } .otherwise {
1158        if (i == 0) {
1159          dataBuffer.io.enq(i).bits.addr      := paddrLow
1160          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1161          dataBuffer.io.enq(i).bits.data      := dataLow
1162          dataBuffer.io.enq(i).bits.mask      := maskLow
1163          dataBuffer.io.enq(i).bits.wline     := false.B
1164          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1165          dataBuffer.io.enq(i).bits.prefetch  := false.B
1166          dataBuffer.io.enq(i).bits.sqNeedDeq  := true.B
1167          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1168        }
1169        else {
1170          dataBuffer.io.enq(i).bits.addr      := paddrHigh
1171          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1172          dataBuffer.io.enq(i).bits.data      := dataHigh
1173          dataBuffer.io.enq(i).bits.mask      := maskHigh
1174          dataBuffer.io.enq(i).bits.wline     := false.B
1175          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1176          dataBuffer.io.enq(i).bits.prefetch  := false.B
1177          dataBuffer.io.enq(i).bits.sqNeedDeq  := false.B
1178          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1179        }
1180      }
1181
1182
1183    }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) {
1184      dataBuffer.io.enq(i).bits.addr     := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W))
1185      dataBuffer.io.enq(i).bits.vaddr    := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W))
1186      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data << (addrLow4bit << 3)
1187      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1188      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1189      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1190      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1191      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1192      // when scalar has exception, will also not write into sbuffer
1193      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1194    }.otherwise {
1195      dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
1196      dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
1197      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
1198      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1199      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1200      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1201      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1202      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1203      // when scalar has exception, will also not write into sbuffer
1204      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1205
1206    }
1207
1208    // Note that store data/addr should both be valid after store's commit
1209    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag)
1210//    dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr)
1211  }
1212
1213  // Send data stored in sbufferReqBitsReg to sbuffer
1214  for (i <- 0 until EnsbufferWidth) {
1215    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1216    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1217    io.sbuffer(i).bits := DontCare
1218    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1219    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1220    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1221    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1222    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1223    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1224    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1225    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1226    io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq
1227    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1228    // Before data write finish, sbuffer is unable to provide store to load
1229    // forward data. As an workaround, deqPtrExt and allocated flag update
1230    // is delayed so that load can get the right data from store queue.
1231    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1232    when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) {
1233      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1234      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
1235    }
1236  }
1237
1238  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1239  // Flags are used to record whether there are any exceptions when the queue is displayed.
1240  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1241  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1242    val ptr = rdataPtrExt(i).value
1243    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1244    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1245    val exceptionVliad      = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire
1246    (exceptionVliad, uop(ptr), vecLastFlow(ptr))
1247  }
1248
1249  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1250  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1251  val vecCommitHasExceptionLastFlow   = vecCommitHasException.map(_._3)
1252  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1253  // Just select the last Uop tah has an exception.
1254  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1255  // If the last flow with an exception is the LastFlow of this instruction, the flag is not set.
1256  // compare robidx to select the last flow
1257  require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.")
1258  val robidxEQ = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid &&
1259    uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx
1260  val robidxNE = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid && (
1261    uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx
1262  )
1263  val onlyCommit0 = dataBuffer.io.enq(0).valid && !dataBuffer.io.enq(1).valid
1264
1265  val vecCommitLastFlow =
1266    // robidx equal => check if 1 is last flow
1267    robidxEQ && vecCommitHasExceptionLastFlow(1) ||
1268    // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception
1269    robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) ||
1270    onlyCommit0 && vecCommitHasExceptionLastFlow(0)
1271
1272
1273  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1274    val ptr = rdataPtrExt(i).value
1275    val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire
1276    vecLastFlowCommit
1277  }.reduce(_ || _)
1278
1279  // When a LastFlow with an exception instruction is commited, clear the flag.
1280  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) {
1281    vecExceptionFlag.valid  := true.B
1282    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1283  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1284    vecExceptionFlag.valid  := false.B
1285    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1286  }
1287
1288  // A dumb defensive code. The flag should not be placed for a long period of time.
1289  // A relatively large timeout period, not have any special meaning.
1290  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1291  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1292
1293  // Initialize when unenabled difftest.
1294  for (i <- 0 until EnsbufferWidth) {
1295    io.sbufferVecDifftestInfo(i) := DontCare
1296  }
1297  // Consistent with the logic above.
1298  // Only the vector store difftest required signal is separated from the rtl code.
1299  if (env.EnableDifftest) {
1300    for (i <- 0 until EnsbufferWidth) {
1301      val ptr = dataBuffer.io.enq(i).bits.sqPtr.value
1302      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1303      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1304    }
1305    for (i <- 0 until EnsbufferWidth) {
1306      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1307      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1308
1309      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1310    }
1311
1312    // commit cbo.inval to difftest
1313    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1314    cmoInvalEvent.coreid := io.hartId
1315    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1316    cmoInvalEvent.addr   := cboMmioAddr
1317  }
1318
1319  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1320  if (coreParams.dcacheParametersOpt.isEmpty) {
1321    for (i <- 0 until EnsbufferWidth) {
1322      val ptr = deqPtrExt(i).value
1323      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1324      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1325      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1326      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1327      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1328      when (wen) {
1329        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1330      }
1331    }
1332  }
1333
1334  // Read vaddr for mem exception
1335  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1336  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1337  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1338  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1339  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1340  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1341  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1342
1343  // vector commit or replay from
1344  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1345  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1346  for (i <- 0 until StoreQueueSize) {
1347    val fbk = io.vecFeedback
1348    for (j <- 0 until VecStorePipelineWidth) {
1349      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1350        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1351    }
1352    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1353
1354    when (vecCommit(i)) {
1355      vecMbCommit(i) := true.B
1356    }
1357  }
1358
1359  // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed.
1360  // TODO FIXME Can vecMbCommit be removed?
1361  when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) {
1362    vecMbCommit(rdataPtrExt(0).value) := true.B
1363  }
1364
1365  // misprediction recovery / exception redirect
1366  // invalidate sq term using robIdx
1367  for (i <- 0 until StoreQueueSize) {
1368    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1369      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1370    when (needCancel(i)) {
1371      allocated(i) := false.B
1372    }
1373  }
1374
1375 /**
1376* update pointers
1377**/
1378  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1379    v && x.bits.robIdx.needFlush(io.brqRedirect)
1380  }
1381  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1382    Mux(v, req.bits.numLsElem, 0.U)
1383  }
1384  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1385
1386  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1387  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1388  val enqNumber = validVStoreFlow.reduce(_ + _)
1389
1390  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1391  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1392
1393  when (lastlastCycleRedirect) {
1394    // we recover the pointers in 2 cycle after redirect for better timing
1395    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1396  }.otherwise {
1397    // lastCycleRedirect.valid or nornal case
1398    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1399    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1400  }
1401  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1402
1403  deqPtrExt := deqPtrExtNext
1404  rdataPtrExt := rdataPtrExtNext
1405
1406  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1407
1408  // If redirect at T0, sqCancelCnt is at T2
1409  io.sqCancelCnt := redirectCancelCount
1410  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1411  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1412  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1413  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1414
1415  val valid_cnt = PopCount(allocated)
1416  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1417
1418  // io.sqempty will be used by sbuffer
1419  // We delay it for 1 cycle for better timing
1420  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1421  // for 1 cycle will also promise that sq is empty in that cycle
1422  io.sqEmpty := RegNext(
1423    enqPtrExt(0).value === deqPtrExt(0).value &&
1424    enqPtrExt(0).flag === deqPtrExt(0).flag
1425  )
1426  // perf counter
1427  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1428  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1429  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1430  io.sqFull := !allowEnqueue
1431  XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req
1432  XSPerfAccumulate("mmioCnt", mmioDoReq)
1433  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1434  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1435  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1436  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1437  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1438
1439  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1440  val perfEvents = Seq(
1441    ("mmioCycle      ", mmioState =/= s_idle),
1442    ("mmioCnt        ", mmioDoReq),
1443    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1444    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1445    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1446    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1447    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1448    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1449  )
1450  generatePerfEvent()
1451
1452  // debug info
1453  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1454
1455  def PrintFlag(flag: Bool, name: String): Unit = {
1456    when(flag) {
1457      XSDebug(false, true.B, name)
1458    }.otherwise {
1459      XSDebug(false, true.B, " ")
1460    }
1461  }
1462
1463  for (i <- 0 until StoreQueueSize) {
1464    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1465      uop(i).pc,
1466      debug_vaddr(i),
1467      debug_paddr(i),
1468      debug_data(i)
1469    )
1470    PrintFlag(allocated(i), "a")
1471    PrintFlag(allocated(i) && addrvalid(i), "a")
1472    PrintFlag(allocated(i) && datavalid(i), "d")
1473    PrintFlag(allocated(i) && committed(i), "c")
1474    PrintFlag(allocated(i) && pending(i), "p")
1475    PrintFlag(allocated(i) && mmio(i), "m")
1476    XSDebug(false, true.B, "\n")
1477  }
1478
1479}
1480