1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.cache.{CMOReq, CMOResp} 31import xiangshan.backend._ 32import xiangshan.backend.rob.{RobLsqIO, RobPtr} 33import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 35import xiangshan.backend.fu.FuConfig._ 36import xiangshan.backend.fu.FuType 37import xiangshan.ExceptionNO._ 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70 val sqNeedDeq = Bool() 71} 72 73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 74 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 75 // The 2nd StorePipelineWidth ports: sta af generated at s2 76 // The following VecStorePipelineWidth ports: vector st exception 77 // The last port: non-data error generated in SoC 78 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 79 80 val io = IO(new Bundle() { 81 val redirect = Flipped(ValidIO(new Redirect)) 82 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary 261 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 262 val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst 263 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 264 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 265 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 266 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 267 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 268 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 269 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 270 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 271 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 272 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 273 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 274 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 275 276 // ptr 277 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 278 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 281 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 282 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 283 284 val enqPtr = enqPtrExt(0).value 285 val deqPtr = deqPtrExt(0).value 286 val cmtPtr = cmtPtrExt(0).value 287 288 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 289 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 290 291 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 292 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 293 294 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 295 val scommit = GatedRegNext(io.rob.scommit) 296 val mmioReq = Wire(chiselTypeOf(io.uncache.req)) 297 val ncReq = Wire(chiselTypeOf(io.uncache.req)) 298 val ncResp = Wire(chiselTypeOf(io.uncache.resp)) 299 val ncDoReq = Wire(Bool()) 300 val ncDoResp = Wire(Bool()) 301 val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp) 302 // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles. 303 // TODO lyq: to eliminate coupling by passing signals through ubuffer 304 val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp) 305 val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id) 306 307 // store can be committed by ROB 308 io.rob.mmio := DontCare 309 io.rob.uop := DontCare 310 311 // Read dataModule 312 assert(EnsbufferWidth <= 2) 313 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 314 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 315 rdataPtrExtNext := rdataPtrExt.map(i => i + 316 PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) + 317 PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 318 ) 319 320 // deqPtrExtNext traces which inst is about to leave store queue 321 // 322 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 323 // Before data write finish, sbuffer is unable to provide store to load 324 // forward data. As an workaround, deqPtrExt and allocated flag update 325 // is delayed so that load can get the right data from store queue. 326 // 327 // Modify deqPtrExtNext and io.sqDeq with care! 328 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 329 // Only sqNeedDeq can move the ptr 330 deqPtrExtNext := deqPtrExt.map(i => i + 331 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 332 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 333 ) 334 335 io.sqDeq := RegNext( 336 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 337 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 338 ) 339 340 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 341 342 for (i <- 0 until EnsbufferWidth) { 343 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 344 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 345 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 346 } 347 348 /** 349 * Enqueue at dispatch 350 * 351 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 352 */ 353 io.enq.canAccept := allowEnqueue 354 val canEnqueue = io.enq.req.map(_.valid) 355 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 356 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 357 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 358 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 359 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 360 361 for (i <- 0 until io.enq.req.length) { 362 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 363 val index = io.enq.req(i).bits.sqIdx 364 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 365 when (canEnqueue(i) && !enqCancel(i)) { 366 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 367 // 16 2 2 2 2 2. 368 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 369 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 370 when (j.U < validVStoreOffset(i)) { 371 uop((index + j.U).value) := io.enq.req(i).bits 372 // NOTE: the index will be used when replay 373 uop((index + j.U).value).sqIdx := sqIdx + j.U 374 vecLastFlow((index + j.U).value) := Mux((j + 1).U === validVStoreOffset(i), io.enq.req(i).bits.lastUop, false.B) 375 allocated((index + j.U).value) := true.B 376 datavalid((index + j.U).value) := false.B 377 addrvalid((index + j.U).value) := false.B 378 unaligned((index + j.U).value) := false.B 379 cross16Byte((index + j.U).value) := false.B 380 committed((index + j.U).value) := false.B 381 pending((index + j.U).value) := false.B 382 prefetch((index + j.U).value) := false.B 383 nc((index + j.U).value) := false.B 384 mmio((index + j.U).value) := false.B 385 isVec((index + j.U).value) := FuType.isVStore(io.enq.req(i).bits.fuType) 386 vecMbCommit((index + j.U).value) := false.B 387 vecDataValid((index + j.U).value) := false.B 388 hasException((index + j.U).value) := false.B 389 waitStoreS2((index + j.U).value) := true.B 390 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 391 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 392 } 393 } 394 } 395 io.enq.resp(i) := sqIdx 396 } 397 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 398 399 /** 400 * Update addr/dataReadyPtr when issue from rs 401 */ 402 // update issuePtr 403 val IssuePtrMoveStride = 4 404 require(IssuePtrMoveStride >= 2) 405 406 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 407 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 408 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 409 && ptr =/= enqPtrExt(0)) 410 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 411 addrReadyPtrExt := nextAddrReadyPtr 412 413 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 414 (0 until StoreQueueSize).map(i => { 415 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 416 }) 417 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 418 419 when (io.brqRedirect.valid) { 420 addrReadyPtrExt := Mux( 421 isAfter(cmtPtrExt(0), deqPtrExt(0)), 422 cmtPtrExt(0), 423 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 424 ) 425 } 426 427 io.stAddrReadySqPtr := addrReadyPtrExt 428 429 // update 430 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 431 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 432 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 433 && ptr =/= enqPtrExt(0)) 434 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 435 dataReadyPtrExt := nextDataReadyPtr 436 437 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 438 (0 until StoreQueueSize).map(i => { 439 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 440 }) 441 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 442 443 when (io.brqRedirect.valid) { 444 dataReadyPtrExt := Mux( 445 isAfter(cmtPtrExt(0), deqPtrExt(0)), 446 cmtPtrExt(0), 447 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 448 ) 449 } 450 451 io.stDataReadySqPtr := dataReadyPtrExt 452 io.stIssuePtr := enqPtrExt(0) 453 io.sqDeqPtr := deqPtrExt(0) 454 455 /** 456 * Writeback store from store units 457 * 458 * Most store instructions writeback to regfile in the previous cycle. 459 * However, 460 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 461 * (in this way it will trigger an exception when it reaches ROB's head) 462 * instead of pending to avoid sending them to lower level. 463 * (2) For an mmio instruction without exceptions, we mark it as pending. 464 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 465 * Upon receiving the response, StoreQueue writes back the instruction 466 * through arbiter with store units. It will later commit as normal. 467 */ 468 469 // Write addr to sq 470 for (i <- 0 until StorePipelineWidth) { 471 paddrModule.io.wen(i) := false.B 472 vaddrModule.io.wen(i) := false.B 473 dataModule.io.mask.wen(i) := false.B 474 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 475 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 476 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 477 // will re-enter exceptionbuffer at store_s2 478 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 479 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 480 481 when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) { 482 val addr_valid = !io.storeAddrIn(i).bits.miss 483 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 484 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 485 nc(stWbIndex) := io.storeAddrIn(i).bits.nc 486 487 } 488 when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) { 489 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 490 unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign 491 cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte 492 493 paddrModule.io.waddr(i) := stWbIndex 494 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 495 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 496 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 497 paddrModule.io.wen(i) := true.B 498 499 vaddrModule.io.waddr(i) := stWbIndex 500 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 501 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 502 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 503 vaddrModule.io.wen(i) := true.B 504 505 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 506 507 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 508 509 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 510 io.storeAddrIn(i).bits.uop.sqIdx.value, 511 io.storeAddrIn(i).bits.uop.pc, 512 io.storeAddrIn(i).bits.miss, 513 io.storeAddrIn(i).bits.vaddr, 514 io.storeAddrIn(i).bits.paddr, 515 io.storeAddrIn(i).bits.mmio, 516 io.storeAddrIn(i).bits.isvec 517 ) 518 } 519 when (io.storeAddrIn(i).fire) { 520 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 521 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 522 } 523 524 // re-replinish mmio, for pma/pmp will get mmio one cycle later 525 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid 526 //val stWbIndexReg = RegNext(stWbIndex) 527 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 528 when (storeAddrInFireReg) { 529 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 530 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 531 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 532 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || 533 TriggerAction.isDmode(uop(stWbIndexReg).trigger) || io.storeAddrInRe(i).af 534 waitStoreS2(stWbIndexReg) := false.B 535 } 536 // dcache miss info (one cycle later than storeIn) 537 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 538 when (storeAddrInFireReg) { 539 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 540 } 541 // enter exceptionbuffer again 542 when (storeAddrInFireReg) { 543 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af && !io.storeAddrInRe(i).isvec 544 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i) 545 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 546 } 547 548 when(vaddrModule.io.wen(i)){ 549 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 550 } 551 } 552 553 // Write data to sq 554 // Now store data pipeline is actually 2 stages 555 for (i <- 0 until StorePipelineWidth) { 556 dataModule.io.data.wen(i) := false.B 557 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 558 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 559 // sq data write takes 2 cycles: 560 // sq data write s0 561 when (io.storeDataIn(i).fire) { 562 // send data write req to data module 563 dataModule.io.data.waddr(i) := stWbIndex 564 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 565 0.U, 566 Mux(isVec, 567 io.storeDataIn(i).bits.data, 568 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 569 ) 570 dataModule.io.data.wen(i) := true.B 571 572 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 573 574 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 575 io.storeDataIn(i).bits.uop.sqIdx.value, 576 io.storeDataIn(i).bits.uop.pc, 577 io.storeDataIn(i).bits.data, 578 dataModule.io.data.wdata(i) 579 ) 580 } 581 // sq data write s1 582 val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire) 583 when ( 584 RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex) 585 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 586 ) { 587 datavalid(lastStWbIndex) := true.B 588 } 589 } 590 591 // Write mask to sq 592 for (i <- 0 until StorePipelineWidth) { 593 // sq mask write s0 594 when (io.storeMaskIn(i).fire) { 595 // send data write req to data module 596 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 597 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 598 dataModule.io.mask.wen(i) := true.B 599 } 600 } 601 602 /** 603 * load forward query 604 * 605 * Check store queue for instructions that is older than the load. 606 * The response will be valid at the next cycle after req. 607 */ 608 // check over all lq entries and forward data from the first matched store 609 for (i <- 0 until LoadPipelineWidth) { 610 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 611 // (1) if they have the same flag, we need to check range(tail, sqIdx) 612 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 613 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 614 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 615 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 616 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 617 val forwardMask = io.forward(i).sqIdxMask 618 // all addrvalid terms need to be checked 619 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 620 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 621 // vector store will consider all inactive || secondInvalid flows as valid 622 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 623 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 624 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 625 626 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 627 val storeSetHitVec = Mux(lfstEnable, 628 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 629 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 630 ) 631 632 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 633 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 634 val canForward1 = forwardMask1 & allValidVec.asUInt 635 val canForward2 = forwardMask2 & allValidVec.asUInt 636 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 637 638 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 639 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 640 ) 641 642 // do real fwd query (cam lookup in load_s1) 643 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 644 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 645 646 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 647 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 648 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 649 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 650 651 // vaddr cam result does not equal to paddr cam result 652 // replay needed 653 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 654 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 655 val vpmaskNotEqual = ( 656 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 657 RegNext(needForward) & 658 GatedRegNext(addrRealValidVec.asUInt) 659 ) =/= 0.U 660 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 661 when (vaddrMatchFailed) { 662 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 663 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 664 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 665 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 666 ); 667 } 668 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 669 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 670 671 // Fast forward mask will be generated immediately (load_s1) 672 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 673 674 // Forward result will be generated 1 cycle later (load_s2) 675 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 676 io.forward(i).forwardData := dataModule.io.forwardData(i) 677 // If addr match, data not ready, mark it as dataInvalid 678 // load_s1: generate dataInvalid in load_s1 to set fastUop 679 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 680 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 681 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 682 io.forward(i).dataInvalidFast := dataInvalidMask.orR 683 684 //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it. 685 //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward. 686 val unalignedMask1 = unaligned.asUInt & forwardMask1.asUInt & allocated.asUInt 687 val unalignedMask2 = unaligned.asUInt & forwardMask2.asUInt & allocated.asUInt 688 val forwardPreWithUnaligned = (unalignedMask1 | unalignedMask2).asUInt.orR 689 690 // make chisel happy 691 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 692 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 693 // make chisel happy 694 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 695 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 696 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 697 698 // If SSID match, address not ready, mark it as addrInvalid 699 // load_s2: generate addrInvalid 700 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 701 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 702 // make chisel happy 703 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 704 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 705 // make chisel happy 706 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 707 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 708 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 709 710 // load_s2 711 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) || RegNext(forwardPreWithUnaligned) 712 // check if vaddr forward mismatched 713 io.forward(i).matchInvalid := vaddrMatchFailed 714 715 // data invalid sq index 716 // check whether false fail 717 // check flag 718 val s2_differentFlag = RegNext(differentFlag) 719 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 720 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 721 722 // addr invalid sq index 723 // make chisel happy 724 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 725 addrInvalidMaskRegWire := addrInvalidMaskReg 726 val addrInvalidFlag = addrInvalidMaskRegWire.orR 727 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 728 729 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 730 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 731 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 732 733 // store-set content management 734 // +-----------------------+ 735 // | Search a SSID for the | 736 // | load operation | 737 // +-----------------------+ 738 // | 739 // V 740 // +-------------------+ 741 // | load wait strict? | 742 // +-------------------+ 743 // | 744 // V 745 // +----------------------+ 746 // Set| |Clean 747 // V V 748 // +------------------------+ +------------------------------+ 749 // | Waiting for all older | | Wait until the corresponding | 750 // | stores operations | | older store operations | 751 // +------------------------+ +------------------------------+ 752 753 754 755 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 756 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 757 } .elsewhen (addrInvalidFlag) { 758 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 759 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 760 } .otherwise { 761 // may be store inst has been written to sbuffer already. 762 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 763 } 764 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 765 766 // data invalid sq index 767 // make chisel happy 768 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 769 dataInvalidMaskRegWire := dataInvalidMaskReg 770 val dataInvalidFlag = dataInvalidMaskRegWire.orR 771 772 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 773 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 774 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 775 776 when (dataInvalidFlag) { 777 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 778 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 779 } .otherwise { 780 // may be store inst has been written to sbuffer already. 781 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 782 } 783 } 784 785 /** 786 * Memory mapped IO / other uncached operations / CMO 787 * 788 * States: 789 * (1) writeback from store units: mark as pending 790 * (2) when they reach ROB's head, they can be sent to uncache channel 791 * (3) response from uncache channel: mark as datavalidmask.wen 792 * (4) writeback to ROB (and other units): mark as writebacked 793 * (5) ROB commits the instruction: same as normal instructions 794 */ 795 //(2) when they reach ROB's head, they can be sent to uncache channel 796 // TODO: CAN NOT deal with vector mmio now! 797 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 798 val mmioState = RegInit(s_idle) 799 val uncacheUop = Reg(new DynInst) 800 val uncacheVAddr = Reg(UInt(VAddrBits.W)) 801 val cboFlushedSb = RegInit(false.B) 802 val cmoOpCode = uncacheUop.fuOpType(1, 0) 803 val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc 804 switch(mmioState) { 805 is(s_idle) { 806 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 807 mmioState := s_req 808 uncacheUop := uop(deqPtr) 809 cboFlushedSb := false.B 810 } 811 } 812 is(s_req) { 813 when (mmioDoReq) { 814 mmioState := s_resp 815 } 816 } 817 is(s_resp) { 818 when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) { 819 mmioState := s_wb 820 821 when (io.uncache.resp.bits.nderr) { 822 uncacheUop.exceptionVec(storeAccessFault) := true.B 823 } 824 } 825 } 826 is(s_wb) { 827 when (io.mmioStout.fire || io.vecmmioStout.fire) { 828 when (uncacheUop.exceptionVec(storeAccessFault)) { 829 mmioState := s_idle 830 }.otherwise { 831 mmioState := s_wait 832 } 833 } 834 } 835 is(s_wait) { 836 // A MMIO store can always move cmtPtrExt as it must be ROB head 837 when(scommit > 0.U) { 838 mmioState := s_idle // ready for next mmio 839 } 840 } 841 } 842 843 mmioReq.valid := mmioState === s_req 844 mmioReq.bits := DontCare 845 mmioReq.bits.cmd := MemoryOpConstants.M_XWR 846 mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 847 mmioReq.bits.vaddr:= vaddrModule.io.rdata(0) 848 mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 849 mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 850 mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 851 mmioReq.bits.nc := false.B 852 mmioReq.bits.id := rdataPtrExt(0).value 853 854 /** 855 * NC Store 856 * (1) req: when it has been commited, it can be sent to lower level. 857 * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received 858 */ 859 // TODO: CAN NOT deal with vector nc now! 860 val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3) 861 val ncState = RegInit(nc_idle) 862 val rptr0 = rdataPtrExt(0).value 863 switch(ncState){ 864 is(nc_idle) { 865 when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) { 866 ncState := nc_req 867 } 868 } 869 is(nc_req) { 870 when(ncDoReq) { 871 when(io.uncacheOutstanding) { 872 ncState := nc_idle 873 }.otherwise{ 874 ncState := nc_resp 875 } 876 } 877 } 878 is(nc_resp) { 879 when(ncResp.fire) { 880 ncState := nc_idle 881 } 882 } 883 } 884 885 ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc 886 ncDoResp := ncResp.fire 887 888 ncReq.valid := ncState === nc_req 889 ncReq.bits := DontCare 890 ncReq.bits.cmd := MemoryOpConstants.M_XWR 891 ncReq.bits.addr := paddrModule.io.rdata(0) 892 ncReq.bits.vaddr:= vaddrModule.io.rdata(0) 893 ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 894 ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 895 ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 896 ncReq.bits.nc := true.B 897 ncReq.bits.id := rptr0 898 899 ncResp.ready := io.uncache.resp.ready 900 ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc 901 ncResp.bits <> io.uncache.resp.bits 902 when (ncDeqTrigger) { 903 allocated(ncPtr) := false.B 904 XSDebug("nc fire: ptr %d\n", ncPtr) 905 } 906 907 mmioReq.ready := io.uncache.req.ready 908 ncReq.ready := io.uncache.req.ready && !mmioReq.valid 909 io.uncache.req.valid := mmioReq.valid || ncReq.valid 910 io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits) 911 912 // CBO op type check can be delayed for 1 cycle, 913 // as uncache op will not start in s_idle 914 val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0)) 915 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 916 when (deqCanDoCbo) { 917 // disable uncache channel 918 io.uncache.req.valid := false.B 919 920 when (io.cmoOpReq.fire) { 921 mmioState := s_resp 922 } 923 924 when (mmioState === s_resp) { 925 when (io.cmoOpResp.fire) { 926 mmioState := s_wb 927 } 928 } 929 } 930 931 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req) 932 io.cmoOpReq.bits.opcode := cmoOpCode 933 io.cmoOpReq.bits.address := cboMmioAddr 934 935 io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp) 936 937 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty 938 939 when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) { 940 cboFlushedSb := true.B 941 } 942 943 when(mmioDoReq){ 944 // mmio store should not be committed until uncache req is sent 945 pending(deqPtr) := false.B 946 947 XSDebug( 948 p"uncache mmio req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 949 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 950 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 951 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 952 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 953 ) 954 } 955 956 // (3) response from uncache channel: mark as datavalid 957 io.uncache.resp.ready := true.B 958 959 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 960 io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr) 961 io.mmioStout.bits.uop := uncacheUop 962 io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg) 963 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 964 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 965 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 966 io.mmioStout.bits.isFromLoadUnit := DontCare 967 io.mmioStout.bits.debug.isMMIO := true.B 968 io.mmioStout.bits.debug.isNC := false.B 969 io.mmioStout.bits.debug.paddr := DontCare 970 io.mmioStout.bits.debug.isPerfCnt := false.B 971 io.mmioStout.bits.debug.vaddr := DontCare 972 // Remove MMIO inst from store queue after MMIO request is being sent 973 // That inst will be traced by uncache state machine 974 when (io.mmioStout.fire) { 975 allocated(deqPtr) := false.B 976 } 977 978 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 979 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 980 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 981 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 982 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 983 984 // (4) or vector store: 985 // TODO: implement it! 986 io.vecmmioStout := DontCare 987 io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr) 988 io.vecmmioStout.bits.uop := uop(deqPtr) 989 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 990 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 991 io.vecmmioStout.bits.debug.isMMIO := true.B 992 io.vecmmioStout.bits.debug.isNC := false.B 993 io.vecmmioStout.bits.debug.paddr := DontCare 994 io.vecmmioStout.bits.debug.isPerfCnt := false.B 995 io.vecmmioStout.bits.debug.vaddr := DontCare 996 // Remove MMIO inst from store queue after MMIO request is being sent 997 // That inst will be traced by uncache state machine 998 when (io.vecmmioStout.fire) { 999 allocated(deqPtr) := false.B 1000 } 1001 1002 /** 1003 * ROB commits store instructions (mark them as committed) 1004 * 1005 * (1) When store commits, mark it as committed. 1006 * (2) They will not be cancelled and can be sent to lower level. 1007 */ 1008 XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U, 1009 "should not commit instruction when MMIO has not been finished\n") 1010 1011 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 1012 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 1013 1014 if (backendParams.debugEn){ dontTouch(commitVec) } 1015 1016 // TODO: Deal with vector store mmio 1017 for (i <- 0 until CommitWidth) { 1018 // don't mark misalign store as committed 1019 when ( 1020 allocated(cmtPtrExt(i).value) && 1021 isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && 1022 !needCancel(cmtPtrExt(i).value) && 1023 (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 1024 if (i == 0){ 1025 // TODO: fixme for vector mmio 1026 when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){ 1027 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1028 committed(cmtPtrExt(0).value) := true.B 1029 commitVec(0) := true.B 1030 } 1031 } 1032 } else { 1033 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1034 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 1035 commitVec(i) := commitVec(i - 1) 1036 } 1037 } 1038 } 1039 } 1040 1041 commitCount := PopCount(commitVec) 1042 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 1043 1044 /** 1045 * committed stores will not be cancelled and can be sent to lower level. 1046 * 1047 * 1. Store NC: Read data to uncache 1048 * implement as above 1049 * 1050 * 2. Store Cache: Read data from data module 1051 * remove retired insts from sq, add retired store to sbuffer. 1052 * as store queue grows larger and larger, time needed to read data from data 1053 * module keeps growing higher. Now we give data read a whole cycle. 1054 */ 1055 1056 //TODO An unaligned command can only be sent out if the databuffer can enter more than two. 1057 //TODO For now, hardcode the number of ENQs for the databuffer. 1058 val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready 1059 val firstWithMisalign = unaligned(rdataPtrExt(0).value) 1060 val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value) 1061 1062 val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit 1063 val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq 1064 // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr. 1065 io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0) 1066 io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire 1067 io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value) 1068 for (i <- 0 until EnsbufferWidth) { 1069 val ptr = rdataPtrExt(i).value 1070 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1071 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1072 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 1073 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 1074 } 1075 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 1076 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 1077 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 1078 1079 // Only the first interface can write unaligned directives. 1080 // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue. 1081 val assert_flag = WireInit(false.B) 1082 when(firstWithMisalign && firstWithCross16Byte) { 1083 dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1084 ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1085 (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall 1086 1087 dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1088 (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1089 (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall 1090 assert_flag := dataBuffer.io.enq(1).valid 1091 }.otherwise { 1092 if (i == 0) { 1093 dataBuffer.io.enq(i).valid := ( 1094 allocated(ptr) && committed(ptr) 1095 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1096 && !mmioStall && !ncStall 1097 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1098 ) 1099 } 1100 else { 1101 dataBuffer.io.enq(i).valid := ( 1102 allocated(ptr) && committed(ptr) 1103 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1104 && !mmioStall && !ncStall 1105 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1106 ) 1107 } 1108 } 1109 1110 val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0) 1111 val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0) 1112 val addrLow4bit = vaddrModule.io.rdata(i)(3, 0) 1113 1114 // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. 1115 val Cross16ByteMask = Wire(UInt(32.W)) 1116 val Cross16ByteData = Wire(UInt(256.W)) 1117 Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit 1118 Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3) 1119 1120 val paddrLow = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1121 val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1122 1123 val vaddrLow = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1124 val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1125 1126 val maskLow = Cross16ByteMask(15, 0) 1127 val maskHigh = Cross16ByteMask(31, 16) 1128 1129 val dataLow = Cross16ByteData(127, 0) 1130 val dataHigh = Cross16ByteData(255, 128) 1131 1132 val toSbufferVecValid = (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid 1133 when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) { 1134 when(isCross4KPage && isCross4KPageCanDeq) { 1135 if (i == 0) { 1136 dataBuffer.io.enq(i).bits.addr := paddrLow 1137 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1138 dataBuffer.io.enq(i).bits.data := dataLow 1139 dataBuffer.io.enq(i).bits.mask := maskLow 1140 dataBuffer.io.enq(i).bits.wline := false.B 1141 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1142 dataBuffer.io.enq(i).bits.prefetch := false.B 1143 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1144 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1145 } 1146 else { 1147 dataBuffer.io.enq(i).bits.addr := io.maControl.toStoreQueue.paddr 1148 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1149 dataBuffer.io.enq(i).bits.data := dataHigh 1150 dataBuffer.io.enq(i).bits.mask := maskHigh 1151 dataBuffer.io.enq(i).bits.wline := false.B 1152 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1153 dataBuffer.io.enq(i).bits.prefetch := false.B 1154 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1155 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1156 } 1157 } .otherwise { 1158 if (i == 0) { 1159 dataBuffer.io.enq(i).bits.addr := paddrLow 1160 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1161 dataBuffer.io.enq(i).bits.data := dataLow 1162 dataBuffer.io.enq(i).bits.mask := maskLow 1163 dataBuffer.io.enq(i).bits.wline := false.B 1164 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1165 dataBuffer.io.enq(i).bits.prefetch := false.B 1166 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1167 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1168 } 1169 else { 1170 dataBuffer.io.enq(i).bits.addr := paddrHigh 1171 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1172 dataBuffer.io.enq(i).bits.data := dataHigh 1173 dataBuffer.io.enq(i).bits.mask := maskHigh 1174 dataBuffer.io.enq(i).bits.wline := false.B 1175 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1176 dataBuffer.io.enq(i).bits.prefetch := false.B 1177 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1178 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1179 } 1180 } 1181 1182 1183 }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) { 1184 dataBuffer.io.enq(i).bits.addr := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W)) 1185 dataBuffer.io.enq(i).bits.vaddr := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W)) 1186 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data << (addrLow4bit << 3) 1187 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1188 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1189 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1190 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1191 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1192 // when scalar has exception, will also not write into sbuffer 1193 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1194 }.otherwise { 1195 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 1196 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 1197 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 1198 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1199 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1200 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1201 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1202 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1203 // when scalar has exception, will also not write into sbuffer 1204 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1205 1206 } 1207 1208 // Note that store data/addr should both be valid after store's commit 1209 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag) 1210// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 1211 } 1212 1213 // Send data stored in sbufferReqBitsReg to sbuffer 1214 for (i <- 0 until EnsbufferWidth) { 1215 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1216 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1217 io.sbuffer(i).bits := DontCare 1218 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1219 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1220 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1221 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1222 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1223 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1224 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1225 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1226 io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq 1227 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1228 // Before data write finish, sbuffer is unable to provide store to load 1229 // forward data. As an workaround, deqPtrExt and allocated flag update 1230 // is delayed so that load can get the right data from store queue. 1231 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1232 when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) { 1233 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1234 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1235 } 1236 } 1237 1238 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1239 // Flags are used to record whether there are any exceptions when the queue is displayed. 1240 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1241 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1242 val ptr = rdataPtrExt(i).value 1243 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1244 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1245 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1246 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1247 } 1248 1249 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1250 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1251 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1252 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1253 // Just select the last Uop tah has an exception. 1254 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1255 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1256 // compare robidx to select the last flow 1257 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1258 val robidxEQ = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid && 1259 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1260 val robidxNE = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid && ( 1261 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1262 ) 1263 val onlyCommit0 = dataBuffer.io.enq(0).valid && !dataBuffer.io.enq(1).valid 1264 1265 val vecCommitLastFlow = 1266 // robidx equal => check if 1 is last flow 1267 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1268 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1269 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1270 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1271 1272 1273 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1274 val ptr = rdataPtrExt(i).value 1275 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1276 vecLastFlowCommit 1277 }.reduce(_ || _) 1278 1279 // When a LastFlow with an exception instruction is commited, clear the flag. 1280 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1281 vecExceptionFlag.valid := true.B 1282 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1283 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1284 vecExceptionFlag.valid := false.B 1285 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1286 } 1287 1288 // A dumb defensive code. The flag should not be placed for a long period of time. 1289 // A relatively large timeout period, not have any special meaning. 1290 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1291 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1292 1293 // Initialize when unenabled difftest. 1294 for (i <- 0 until EnsbufferWidth) { 1295 io.sbufferVecDifftestInfo(i) := DontCare 1296 } 1297 // Consistent with the logic above. 1298 // Only the vector store difftest required signal is separated from the rtl code. 1299 if (env.EnableDifftest) { 1300 for (i <- 0 until EnsbufferWidth) { 1301 val ptr = dataBuffer.io.enq(i).bits.sqPtr.value 1302 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1303 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1304 } 1305 for (i <- 0 until EnsbufferWidth) { 1306 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1307 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1308 1309 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1310 } 1311 1312 // commit cbo.inval to difftest 1313 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1314 cmoInvalEvent.coreid := io.hartId 1315 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1316 cmoInvalEvent.addr := cboMmioAddr 1317 } 1318 1319 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1320 if (coreParams.dcacheParametersOpt.isEmpty) { 1321 for (i <- 0 until EnsbufferWidth) { 1322 val ptr = deqPtrExt(i).value 1323 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1324 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1325 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1326 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1327 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1328 when (wen) { 1329 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1330 } 1331 } 1332 } 1333 1334 // Read vaddr for mem exception 1335 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1336 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1337 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1338 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1339 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1340 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1341 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1342 1343 // vector commit or replay from 1344 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1345 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1346 for (i <- 0 until StoreQueueSize) { 1347 val fbk = io.vecFeedback 1348 for (j <- 0 until VecStorePipelineWidth) { 1349 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1350 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1351 } 1352 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1353 1354 when (vecCommit(i)) { 1355 vecMbCommit(i) := true.B 1356 } 1357 } 1358 1359 // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed. 1360 // TODO FIXME Can vecMbCommit be removed? 1361 when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) { 1362 vecMbCommit(rdataPtrExt(0).value) := true.B 1363 } 1364 1365 // misprediction recovery / exception redirect 1366 // invalidate sq term using robIdx 1367 for (i <- 0 until StoreQueueSize) { 1368 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1369 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1370 when (needCancel(i)) { 1371 allocated(i) := false.B 1372 } 1373 } 1374 1375 /** 1376* update pointers 1377**/ 1378 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1379 v && x.bits.robIdx.needFlush(io.brqRedirect) 1380 } 1381 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1382 Mux(v, req.bits.numLsElem, 0.U) 1383 } 1384 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1385 1386 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1387 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1388 val enqNumber = validVStoreFlow.reduce(_ + _) 1389 1390 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1391 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1392 1393 when (lastlastCycleRedirect) { 1394 // we recover the pointers in 2 cycle after redirect for better timing 1395 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1396 }.otherwise { 1397 // lastCycleRedirect.valid or nornal case 1398 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1399 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1400 } 1401 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1402 1403 deqPtrExt := deqPtrExtNext 1404 rdataPtrExt := rdataPtrExtNext 1405 1406 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1407 1408 // If redirect at T0, sqCancelCnt is at T2 1409 io.sqCancelCnt := redirectCancelCount 1410 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1411 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1412 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1413 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1414 1415 val valid_cnt = PopCount(allocated) 1416 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1417 1418 // io.sqempty will be used by sbuffer 1419 // We delay it for 1 cycle for better timing 1420 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1421 // for 1 cycle will also promise that sq is empty in that cycle 1422 io.sqEmpty := RegNext( 1423 enqPtrExt(0).value === deqPtrExt(0).value && 1424 enqPtrExt(0).flag === deqPtrExt(0).flag 1425 ) 1426 // perf counter 1427 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1428 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1429 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1430 io.sqFull := !allowEnqueue 1431 XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req 1432 XSPerfAccumulate("mmioCnt", mmioDoReq) 1433 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1434 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1435 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1436 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1437 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1438 1439 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1440 val perfEvents = Seq( 1441 ("mmioCycle ", mmioState =/= s_idle), 1442 ("mmioCnt ", mmioDoReq), 1443 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1444 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1445 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1446 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1447 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1448 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1449 ) 1450 generatePerfEvent() 1451 1452 // debug info 1453 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1454 1455 def PrintFlag(flag: Bool, name: String): Unit = { 1456 when(flag) { 1457 XSDebug(false, true.B, name) 1458 }.otherwise { 1459 XSDebug(false, true.B, " ") 1460 } 1461 } 1462 1463 for (i <- 0 until StoreQueueSize) { 1464 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1465 uop(i).pc, 1466 debug_vaddr(i), 1467 debug_paddr(i), 1468 debug_data(i) 1469 ) 1470 PrintFlag(allocated(i), "a") 1471 PrintFlag(allocated(i) && addrvalid(i), "a") 1472 PrintFlag(allocated(i) && datavalid(i), "d") 1473 PrintFlag(allocated(i) && committed(i), "c") 1474 PrintFlag(allocated(i) && pending(i), "p") 1475 PrintFlag(allocated(i) && mmio(i), "m") 1476 XSDebug(false, true.B, "\n") 1477 } 1478 1479} 1480