1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.roq.{RoqLsqIO, RoqPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val flush = Input(Bool()) 59 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 60 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 61 val sbuffer = Vec(StorePipelineWidth, Decoupled(new SBufferWordReq)) // write commited store to sbuffer 62 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 63 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 64 val roq = Flipped(new RoqLsqIO) 65 val uncache = new DCacheWordIO 66 // val refill = Flipped(Valid(new DCacheLineReq )) 67 val exceptionAddr = new ExceptionAddrIO 68 val sqempty = Output(Bool()) 69 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 70 val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) // used to update issuePtrExt 71 val sqFull = Output(Bool()) 72 }) 73 74 println("StoreQueue: size:" + StoreQueueSize) 75 76 // data modules 77 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 78 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 79 val dataModule = Module(new SQDataModule( 80 numEntries = StoreQueueSize, 81 numRead = StorePipelineWidth, 82 numWrite = StorePipelineWidth, 83 numForward = StorePipelineWidth 84 )) 85 dataModule.io := DontCare 86 val paddrModule = Module(new SQAddrModule( 87 dataWidth = PAddrBits, 88 numEntries = StoreQueueSize, 89 numRead = StorePipelineWidth, 90 numWrite = StorePipelineWidth, 91 numForward = StorePipelineWidth 92 )) 93 paddrModule.io := DontCare 94 val vaddrModule = Module(new SQAddrModule( 95 dataWidth = VAddrBits, 96 numEntries = StoreQueueSize, 97 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 98 numWrite = StorePipelineWidth, 99 numForward = StorePipelineWidth 100 )) 101 vaddrModule.io := DontCare 102 103 // state & misc 104 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 105 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 106 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 107 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 108 val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs 109 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 110 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 111 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 112 113 // ptr 114 require(StoreQueueSize > RenameWidth) 115 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 116 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 117 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 118 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 119 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 120 val allowEnqueue = RegInit(true.B) 121 122 val enqPtr = enqPtrExt(0).value 123 val deqPtr = deqPtrExt(0).value 124 val cmtPtr = cmtPtrExt(0).value 125 126 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 127 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 128 129 val commitCount = RegNext(io.roq.scommit) 130 131 // Read dataModule 132 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 133 // if !sbuffer.fire(), read the same ptr 134 // if sbuffer.fire(), read next 135 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 136 VecInit(deqPtrExt.map(_ + 2.U)), 137 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 138 VecInit(deqPtrExt.map(_ + 1.U)), 139 deqPtrExt 140 ) 141 )) 142 for (i <- 0 until StorePipelineWidth) { 143 dataModule.io.raddr(i) := deqPtrExtNext(i).value 144 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 145 vaddrModule.io.raddr(i) := deqPtrExtNext(i).value 146 } 147 148 // no inst will be commited 1 cycle before tval update 149 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 150 151 /** 152 * Enqueue at dispatch 153 * 154 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 155 */ 156 io.enq.canAccept := allowEnqueue 157 for (i <- 0 until RenameWidth) { 158 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 159 val sqIdx = enqPtrExt(offset) 160 val index = sqIdx.value 161 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 162 uop(index) := io.enq.req(i).bits 163 allocated(index) := true.B 164 datavalid(index) := false.B 165 addrvalid(index) := false.B 166 issued(index) := false.B 167 commited(index) := false.B 168 pending(index) := false.B 169 } 170 io.enq.resp(i) := sqIdx 171 } 172 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 173 174 /** 175 * Update issuePtr when issue from rs 176 */ 177 178 // update state bit issued 179 for (i <- 0 until StorePipelineWidth) { 180 when (io.storeIssue(i).valid) { 181 issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B 182 } 183 } 184 185 // update issuePtr 186 val IssuePtrMoveStride = 4 187 require(IssuePtrMoveStride >= 2) 188 189 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 190 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0)) 191 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 192 issuePtrExt := nextIssuePtr 193 194 when (io.brqRedirect.valid || io.flush) { 195 issuePtrExt := Mux( 196 isAfter(cmtPtrExt(0), deqPtrExt(0)), 197 cmtPtrExt(0), 198 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 199 ) 200 } 201 // send issuePtrExt to rs 202 // io.issuePtrExt := cmtPtrExt(0) 203 io.issuePtrExt := issuePtrExt 204 205 /** 206 * Writeback store from store units 207 * 208 * Most store instructions writeback to regfile in the previous cycle. 209 * However, 210 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 211 * (in this way it will trigger an exception when it reaches ROB's head) 212 * instead of pending to avoid sending them to lower level. 213 * (2) For an mmio instruction without exceptions, we mark it as pending. 214 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 215 * Upon receiving the response, StoreQueue writes back the instruction 216 * through arbiter with store units. It will later commit as normal. 217 */ 218 219 // Write addr to sq 220 for (i <- 0 until StorePipelineWidth) { 221 paddrModule.io.wen(i) := false.B 222 vaddrModule.io.wen(i) := false.B 223 dataModule.io.mask.wen(i) := false.B 224 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 225 when (io.storeIn(i).fire()) { 226 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 227 pending(stWbIndex) := io.storeIn(i).bits.mmio 228 229 dataModule.io.mask.waddr(i) := stWbIndex 230 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 231 dataModule.io.mask.wen(i) := true.B 232 233 paddrModule.io.waddr(i) := stWbIndex 234 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 235 paddrModule.io.wen(i) := true.B 236 237 vaddrModule.io.waddr(i) := stWbIndex 238 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 239 vaddrModule.io.wen(i) := true.B 240 241 mmio(stWbIndex) := io.storeIn(i).bits.mmio 242 243 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 244 io.storeIn(i).bits.uop.sqIdx.value, 245 io.storeIn(i).bits.uop.cf.pc, 246 io.storeIn(i).bits.vaddr, 247 io.storeIn(i).bits.paddr, 248 io.storeIn(i).bits.mmio 249 ) 250 } 251 } 252 253 // Write data to sq 254 for (i <- 0 until StorePipelineWidth) { 255 dataModule.io.data.wen(i) := false.B 256 io.roq.storeDataRoqWb(i).valid := false.B 257 io.roq.storeDataRoqWb(i).bits := DontCare 258 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 259 when (io.storeDataIn(i).fire()) { 260 datavalid(stWbIndex) := true.B 261 262 dataModule.io.data.waddr(i) := stWbIndex 263 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 264 dataModule.io.data.wen(i) := true.B 265 266 io.roq.storeDataRoqWb(i).valid := true.B 267 io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx 268 269 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 270 io.storeDataIn(i).bits.uop.sqIdx.value, 271 io.storeDataIn(i).bits.uop.cf.pc, 272 io.storeDataIn(i).bits.data, 273 dataModule.io.data.wdata(i) 274 ) 275 } 276 } 277 278 /** 279 * load forward query 280 * 281 * Check store queue for instructions that is older than the load. 282 * The response will be valid at the next cycle after req. 283 */ 284 // check over all lq entries and forward data from the first matched store 285 for (i <- 0 until LoadPipelineWidth) { 286 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 287 // (1) if they have the same flag, we need to check range(tail, sqIdx) 288 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 289 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 290 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 291 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 292 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 293 val forwardMask = io.forward(i).sqIdxMask 294 // all addrvalid terms need to be checked 295 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 296 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 297 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 298 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 299 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 300 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 301 302 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 303 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 304 ) 305 306 // do real fwd query (cam lookup in load_s1) 307 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 308 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 309 310 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 311 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 312 313 // vaddr cam result does not equal to paddr cam result 314 // replay needed 315 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 316 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 317 val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U 318 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 319 when (vaddrMatchFailed) { 320 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 321 RegNext(io.forward(i).uop.cf.pc), 322 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 323 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 324 ); 325 } 326 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 327 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 328 329 // Fast forward mask will be generated immediately (load_s1) 330 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 331 332 // Forward result will be generated 1 cycle later (load_s2) 333 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 334 io.forward(i).forwardData := dataModule.io.forwardData(i) 335 336 // If addr match, data not ready, mark it as dataInvalid 337 // load_s1: generate dataInvalid in load_s1 to set fastUop to 338 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 339 // load_s2 340 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 341 342 // load_s2 343 // check if vaddr forward mismatched 344 io.forward(i).matchInvalid := vaddrMatchFailed 345 } 346 347 /** 348 * Memory mapped IO / other uncached operations 349 * 350 * States: 351 * (1) writeback from store units: mark as pending 352 * (2) when they reach ROB's head, they can be sent to uncache channel 353 * (3) response from uncache channel: mark as datavalidmask.wen 354 * (4) writeback to ROB (and other units): mark as writebacked 355 * (5) ROB commits the instruction: same as normal instructions 356 */ 357 //(2) when they reach ROB's head, they can be sent to uncache channel 358 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 359 val uncacheState = RegInit(s_idle) 360 switch(uncacheState) { 361 is(s_idle) { 362 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 363 uncacheState := s_req 364 } 365 } 366 is(s_req) { 367 when(io.uncache.req.fire()) { 368 uncacheState := s_resp 369 } 370 } 371 is(s_resp) { 372 when(io.uncache.resp.fire()) { 373 uncacheState := s_wb 374 } 375 } 376 is(s_wb) { 377 when (io.mmioStout.fire()) { 378 uncacheState := s_wait 379 } 380 } 381 is(s_wait) { 382 when(io.roq.commit) { 383 uncacheState := s_idle // ready for next mmio 384 } 385 } 386 } 387 io.uncache.req.valid := uncacheState === s_req 388 389 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 390 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 391 io.uncache.req.bits.data := dataModule.io.rdata(0).data 392 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 393 394 io.uncache.req.bits.id := DontCare 395 396 when(io.uncache.req.fire()){ 397 // mmio store should not be committed until uncache req is sent 398 pending(deqPtr) := false.B 399 400 XSDebug( 401 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 402 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 403 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 404 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 405 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 406 ) 407 } 408 409 // (3) response from uncache channel: mark as datavalid 410 io.uncache.resp.ready := true.B 411 412 // (4) writeback to ROB (and other units): mark as writebacked 413 io.mmioStout.valid := uncacheState === s_wb 414 io.mmioStout.bits.uop := uop(deqPtr) 415 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 416 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 417 io.mmioStout.bits.redirectValid := false.B 418 io.mmioStout.bits.redirect := DontCare 419 io.mmioStout.bits.debug.isMMIO := true.B 420 io.mmioStout.bits.debug.paddr := DontCare 421 io.mmioStout.bits.debug.isPerfCnt := false.B 422 io.mmioStout.bits.fflags := DontCare 423 // Remove MMIO inst from store queue after MMIO request is being sent 424 // That inst will be traced by uncache state machine 425 when (io.mmioStout.fire()) { 426 allocated(deqPtr) := false.B 427 } 428 429 /** 430 * ROB commits store instructions (mark them as commited) 431 * 432 * (1) When store commits, mark it as commited. 433 * (2) They will not be cancelled and can be sent to lower level. 434 */ 435 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 436 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 437 "should not commit instruction when MMIO has not been finished\n") 438 for (i <- 0 until CommitWidth) { 439 when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress 440 commited(cmtPtrExt(i).value) := true.B 441 } 442 } 443 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 444 445 // Commited stores will not be cancelled and can be sent to lower level. 446 // remove retired insts from sq, add retired store to sbuffer 447 for (i <- 0 until StorePipelineWidth) { 448 // We use RegNext to prepare data for sbuffer 449 val ptr = deqPtrExt(i).value 450 // if !sbuffer.fire(), read the same ptr 451 // if sbuffer.fire(), read next 452 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 453 // Note that store data/addr should both be valid after store's commit 454 assert(!io.sbuffer(i).valid || allvalid(ptr)) 455 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 456 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 457 io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i) 458 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 459 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 460 io.sbuffer(i).bits.id := DontCare 461 462 when (io.sbuffer(i).fire()) { 463 allocated(ptr) := false.B 464 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 465 } 466 } 467 when (io.sbuffer(1).fire()) { 468 assert(io.sbuffer(0).fire()) 469 } 470 if (useFakeDCache) { 471 for (i <- 0 until StorePipelineWidth) { 472 val ptr = deqPtrExt(i).value 473 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 474 fakeRAM.io.clk := clock 475 fakeRAM.io.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 476 fakeRAM.io.rIdx := 0.U 477 fakeRAM.io.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 478 fakeRAM.io.wdata := dataModule.io.rdata(i).data 479 fakeRAM.io.wmask := MaskExpand(dataModule.io.rdata(i).mask) 480 fakeRAM.io.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 481 } 482 } 483 484 if (!env.FPGAPlatform) { 485 for (i <- 0 until StorePipelineWidth) { 486 val storeCommit = io.sbuffer(i).fire() 487 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 488 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 489 val wmask = io.sbuffer(i).bits.mask 490 491 val difftest = Module(new DifftestStoreEvent) 492 difftest.io.clock := clock 493 difftest.io.coreid := hardId.U 494 difftest.io.index := i.U 495 difftest.io.valid := storeCommit 496 difftest.io.storeAddr := waddr 497 difftest.io.storeData := wdata 498 difftest.io.storeMask := wmask 499 } 500 } 501 502 // Read vaddr for mem exception 503 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 504 505 // misprediction recovery / exception redirect 506 // invalidate sq term using robIdx 507 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 508 for (i <- 0 until StoreQueueSize) { 509 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 510 when (needCancel(i)) { 511 allocated(i) := false.B 512 } 513 } 514 515 /** 516 * update pointers 517 */ 518 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 519 val lastCycleFlush = RegNext(io.flush) 520 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 521 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 522 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 523 when (lastCycleRedirect || lastCycleFlush) { 524 // we recover the pointers in the next cycle after redirect 525 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 526 }.otherwise { 527 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 528 } 529 530 deqPtrExt := deqPtrExtNext 531 532 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 533 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 534 535 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 536 537 // io.sqempty will be used by sbuffer 538 // We delay it for 1 cycle for better timing 539 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 540 // for 1 cycle will also promise that sq is empty in that cycle 541 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 542 543 // perf counter 544 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 545 io.sqFull := !allowEnqueue 546 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 547 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 548 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 549 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 550 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 551 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 552 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 553 554 // debug info 555 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 556 557 def PrintFlag(flag: Bool, name: String): Unit = { 558 when(flag) { 559 XSDebug(false, true.B, name) 560 }.otherwise { 561 XSDebug(false, true.B, " ") 562 } 563 } 564 565 for (i <- 0 until StoreQueueSize) { 566 if (i % 4 == 0) XSDebug("") 567 XSDebug(false, true.B, "%x v[%x] p[%x]", 568 uop(i).cf.pc, 569 vaddrModule.io.debug_data(i), 570 paddrModule.io.debug_data(i), 571 ) 572 PrintFlag(allocated(i), "a") 573 PrintFlag(allocated(i) && addrvalid(i), "a") 574 PrintFlag(allocated(i) && datavalid(i), "d") 575 PrintFlag(allocated(i) && commited(i), "c") 576 PrintFlag(allocated(i) && pending(i), "p") 577 PrintFlag(allocated(i) && mmio(i), "m") 578 XSDebug(false, true.B, " ") 579 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 580 } 581 582} 583