1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(DataBits.W) 56 val mask = UInt((DataBits/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59} 60 61// Store Queue 62class StoreQueue(implicit p: Parameters) extends XSModule 63 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(8.W)) 66 val enq = new SqEnqIO 67 val brqRedirect = Flipped(ValidIO(new Redirect)) 68 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 69 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 70 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 71 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 72 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 73 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 74 val rob = Flipped(new RobLsqIO) 75 val uncache = new UncacheWordIO 76 // val refill = Flipped(Valid(new DCacheLineReq )) 77 val exceptionAddr = new ExceptionAddrIO 78 val sqempty = Output(Bool()) 79 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 80 val sqFull = Output(Bool()) 81 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 82 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 83 }) 84 85 println("StoreQueue: size:" + StoreQueueSize) 86 87 // data modules 88 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 89 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 90 val dataModule = Module(new SQDataModule( 91 numEntries = StoreQueueSize, 92 numRead = EnsbufferWidth, 93 numWrite = StorePipelineWidth, 94 numForward = StorePipelineWidth 95 )) 96 dataModule.io := DontCare 97 val paddrModule = Module(new SQAddrModule( 98 dataWidth = PAddrBits, 99 numEntries = StoreQueueSize, 100 numRead = EnsbufferWidth, 101 numWrite = StorePipelineWidth, 102 numForward = StorePipelineWidth 103 )) 104 paddrModule.io := DontCare 105 val vaddrModule = Module(new SQAddrModule( 106 dataWidth = VAddrBits, 107 numEntries = StoreQueueSize, 108 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 109 numWrite = StorePipelineWidth, 110 numForward = StorePipelineWidth 111 )) 112 vaddrModule.io := DontCare 113 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 114 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 115 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 116 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 117 118 // state & misc 119 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 120 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 121 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 122 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 123 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 124 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 125 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 126 127 // ptr 128 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 129 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 130 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 131 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 132 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 133 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 134 135 val enqPtr = enqPtrExt(0).value 136 val deqPtr = deqPtrExt(0).value 137 val cmtPtr = cmtPtrExt(0).value 138 139 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 140 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 141 142 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 143 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 144 145 val commitCount = RegNext(io.rob.scommit) 146 147 // Read dataModule 148 assert(EnsbufferWidth <= 2) 149 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 150 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 151 VecInit(rdataPtrExt.map(_ + 2.U)), 152 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 153 VecInit(rdataPtrExt.map(_ + 1.U)), 154 rdataPtrExt 155 ) 156 )) 157 158 // deqPtrExtNext traces which inst is about to leave store queue 159 // 160 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 161 // Before data write finish, sbuffer is unable to provide store to load 162 // forward data. As an workaround, deqPtrExt and allocated flag update 163 // is delayed so that load can get the right data from store queue. 164 // 165 // Modify deqPtrExtNext and io.sqDeq with care! 166 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 167 VecInit(deqPtrExt.map(_ + 2.U)), 168 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 169 VecInit(deqPtrExt.map(_ + 1.U)), 170 deqPtrExt 171 ) 172 ) 173 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 174 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 175 )) 176 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 177 178 for (i <- 0 until EnsbufferWidth) { 179 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 180 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 181 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 182 } 183 184 // no inst will be committed 1 cycle before tval update 185 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 186 187 /** 188 * Enqueue at dispatch 189 * 190 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 191 */ 192 io.enq.canAccept := allowEnqueue 193 val canEnqueue = io.enq.req.map(_.valid) 194 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 195 for (i <- 0 until io.enq.req.length) { 196 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 197 val sqIdx = enqPtrExt(offset) 198 val index = io.enq.req(i).bits.sqIdx.value 199 when (canEnqueue(i) && !enqCancel(i)) { 200 uop(index).robIdx := io.enq.req(i).bits.robIdx 201 allocated(index) := true.B 202 datavalid(index) := false.B 203 addrvalid(index) := false.B 204 committed(index) := false.B 205 pending(index) := false.B 206 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 207 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 208 } 209 io.enq.resp(i) := sqIdx 210 } 211 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 212 213 /** 214 * Update issuePtr when issue from rs 215 */ 216 // update issuePtr 217 val IssuePtrMoveStride = 4 218 require(IssuePtrMoveStride >= 2) 219 220 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 221 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 222 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 223 issuePtrExt := nextIssuePtr 224 225 when (io.brqRedirect.valid) { 226 issuePtrExt := Mux( 227 isAfter(cmtPtrExt(0), deqPtrExt(0)), 228 cmtPtrExt(0), 229 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 230 ) 231 } 232 // send issuePtrExt to rs 233 // io.issuePtrExt := cmtPtrExt(0) 234 io.issuePtrExt := issuePtrExt 235 236 /** 237 * Writeback store from store units 238 * 239 * Most store instructions writeback to regfile in the previous cycle. 240 * However, 241 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 242 * (in this way it will trigger an exception when it reaches ROB's head) 243 * instead of pending to avoid sending them to lower level. 244 * (2) For an mmio instruction without exceptions, we mark it as pending. 245 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 246 * Upon receiving the response, StoreQueue writes back the instruction 247 * through arbiter with store units. It will later commit as normal. 248 */ 249 250 // Write addr to sq 251 for (i <- 0 until StorePipelineWidth) { 252 paddrModule.io.wen(i) := false.B 253 vaddrModule.io.wen(i) := false.B 254 dataModule.io.mask.wen(i) := false.B 255 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 256 when (io.storeIn(i).fire()) { 257 val addr_valid = !io.storeIn(i).bits.miss 258 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 259 // pending(stWbIndex) := io.storeIn(i).bits.mmio 260 261 dataModule.io.mask.waddr(i) := stWbIndex 262 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 263 dataModule.io.mask.wen(i) := addr_valid 264 265 paddrModule.io.waddr(i) := stWbIndex 266 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 267 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 268 paddrModule.io.wen(i) := addr_valid 269 270 vaddrModule.io.waddr(i) := stWbIndex 271 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 272 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 273 vaddrModule.io.wen(i) := addr_valid 274 275 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 276 277 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 278 279 uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl 280 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 281 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 282 io.storeIn(i).bits.uop.sqIdx.value, 283 io.storeIn(i).bits.uop.cf.pc, 284 io.storeIn(i).bits.miss, 285 io.storeIn(i).bits.vaddr, 286 io.storeIn(i).bits.paddr, 287 io.storeIn(i).bits.mmio 288 ) 289 } 290 291 // re-replinish mmio, for pma/pmp will get mmio one cycle later 292 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 293 val stWbIndexReg = RegNext(stWbIndex) 294 when (storeInFireReg) { 295 pending(stWbIndexReg) := io.storeInRe(i).mmio 296 mmio(stWbIndexReg) := io.storeInRe(i).mmio 297 } 298 299 when(vaddrModule.io.wen(i)){ 300 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 301 } 302 } 303 304 // Write data to sq 305 for (i <- 0 until StorePipelineWidth) { 306 dataModule.io.data.wen(i) := false.B 307 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 308 when (io.storeDataIn(i).fire()) { 309 datavalid(stWbIndex) := true.B 310 311 dataModule.io.data.waddr(i) := stWbIndex 312 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 313 0.U, 314 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 315 ) 316 dataModule.io.data.wen(i) := true.B 317 318 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 319 320 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 321 io.storeDataIn(i).bits.uop.sqIdx.value, 322 io.storeDataIn(i).bits.uop.cf.pc, 323 io.storeDataIn(i).bits.data, 324 dataModule.io.data.wdata(i) 325 ) 326 } 327 } 328 329 /** 330 * load forward query 331 * 332 * Check store queue for instructions that is older than the load. 333 * The response will be valid at the next cycle after req. 334 */ 335 // check over all lq entries and forward data from the first matched store 336 for (i <- 0 until LoadPipelineWidth) { 337 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 338 // (1) if they have the same flag, we need to check range(tail, sqIdx) 339 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 340 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 341 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 342 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 343 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 344 val forwardMask = io.forward(i).sqIdxMask 345 // all addrvalid terms need to be checked 346 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 347 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 348 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 349 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 350 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 351 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 352 353 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 354 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 355 ) 356 357 // do real fwd query (cam lookup in load_s1) 358 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 359 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 360 361 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 362 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 363 364 // vaddr cam result does not equal to paddr cam result 365 // replay needed 366 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 367 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 368 val vpmaskNotEqual = ( 369 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 370 RegNext(needForward) & 371 RegNext(addrValidVec.asUInt) 372 ) =/= 0.U 373 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 374 when (vaddrMatchFailed) { 375 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 376 RegNext(io.forward(i).uop.cf.pc), 377 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 378 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 379 ); 380 } 381 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 382 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 383 384 // Fast forward mask will be generated immediately (load_s1) 385 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 386 387 // Forward result will be generated 1 cycle later (load_s2) 388 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 389 io.forward(i).forwardData := dataModule.io.forwardData(i) 390 391 // If addr match, data not ready, mark it as dataInvalid 392 // load_s1: generate dataInvalid in load_s1 to set fastUop 393 val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt) 394 io.forward(i).dataInvalidFast := dataInvalidMask.orR 395 val dataInvalidMaskReg = RegNext(dataInvalidMask) 396 // load_s2 397 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 398 // check if vaddr forward mismatched 399 io.forward(i).matchInvalid := vaddrMatchFailed 400 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 401 dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy 402 io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire) 403 } 404 405 /** 406 * Memory mapped IO / other uncached operations 407 * 408 * States: 409 * (1) writeback from store units: mark as pending 410 * (2) when they reach ROB's head, they can be sent to uncache channel 411 * (3) response from uncache channel: mark as datavalidmask.wen 412 * (4) writeback to ROB (and other units): mark as writebacked 413 * (5) ROB commits the instruction: same as normal instructions 414 */ 415 //(2) when they reach ROB's head, they can be sent to uncache channel 416 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 417 val uncacheState = RegInit(s_idle) 418 switch(uncacheState) { 419 is(s_idle) { 420 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 421 uncacheState := s_req 422 } 423 } 424 is(s_req) { 425 when(io.uncache.req.fire()) { 426 uncacheState := s_resp 427 } 428 } 429 is(s_resp) { 430 when(io.uncache.resp.fire()) { 431 uncacheState := s_wb 432 } 433 } 434 is(s_wb) { 435 when (io.mmioStout.fire()) { 436 uncacheState := s_wait 437 } 438 } 439 is(s_wait) { 440 when(commitCount > 0.U) { 441 uncacheState := s_idle // ready for next mmio 442 } 443 } 444 } 445 io.uncache.req.valid := uncacheState === s_req 446 447 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 448 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 449 io.uncache.req.bits.data := dataModule.io.rdata(0).data 450 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 451 452 // CBO op type check can be delayed for 1 cycle, 453 // as uncache op will not start in s_idle 454 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 455 val cbo_mmio_op = 0.U //TODO 456 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 457 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 458 io.uncache.req.bits.addr := DontCare // TODO 459 io.uncache.req.bits.data := paddrModule.io.rdata(0) 460 io.uncache.req.bits.mask := DontCare // TODO 461 } 462 463 io.uncache.req.bits.id := DontCare 464 io.uncache.req.bits.instrtype := DontCare 465 466 when(io.uncache.req.fire()){ 467 // mmio store should not be committed until uncache req is sent 468 pending(deqPtr) := false.B 469 470 XSDebug( 471 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 472 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 473 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 474 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 475 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 476 ) 477 } 478 479 // (3) response from uncache channel: mark as datavalid 480 io.uncache.resp.ready := true.B 481 482 // (4) writeback to ROB (and other units): mark as writebacked 483 io.mmioStout.valid := uncacheState === s_wb 484 io.mmioStout.bits.uop := uop(deqPtr) 485 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 486 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 487 io.mmioStout.bits.redirectValid := false.B 488 io.mmioStout.bits.redirect := DontCare 489 io.mmioStout.bits.debug.isMMIO := true.B 490 io.mmioStout.bits.debug.paddr := DontCare 491 io.mmioStout.bits.debug.isPerfCnt := false.B 492 io.mmioStout.bits.fflags := DontCare 493 io.mmioStout.bits.debug.vaddr := DontCare 494 // Remove MMIO inst from store queue after MMIO request is being sent 495 // That inst will be traced by uncache state machine 496 when (io.mmioStout.fire()) { 497 allocated(deqPtr) := false.B 498 } 499 500 /** 501 * ROB commits store instructions (mark them as committed) 502 * 503 * (1) When store commits, mark it as committed. 504 * (2) They will not be cancelled and can be sent to lower level. 505 */ 506 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 507 "should not commit instruction when MMIO has not been finished\n") 508 for (i <- 0 until CommitWidth) { 509 when (commitCount > i.U) { // MMIO inst is not in progress 510 if(i == 0){ 511 // MMIO inst should not update committed flag 512 // Note that commit count has been delayed for 1 cycle 513 when(uncacheState === s_idle){ 514 committed(cmtPtrExt(0).value) := true.B 515 } 516 } else { 517 committed(cmtPtrExt(i).value) := true.B 518 } 519 } 520 } 521 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 522 523 // committed stores will not be cancelled and can be sent to lower level. 524 // remove retired insts from sq, add retired store to sbuffer 525 526 // Read data from data module 527 // As store queue grows larger and larger, time needed to read data from data 528 // module keeps growing higher. Now we give data read a whole cycle. 529 530 val mmioStall = mmio(rdataPtrExt(0).value) 531 for (i <- 0 until EnsbufferWidth) { 532 val ptr = rdataPtrExt(i).value 533 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 534 // Note that store data/addr should both be valid after store's commit 535 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 536 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 537 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 538 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 539 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 540 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 541 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 542 } 543 544 // Send data stored in sbufferReqBitsReg to sbuffer 545 for (i <- 0 until EnsbufferWidth) { 546 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 547 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 548 // Write line request should have all 1 mask 549 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 550 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 551 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 552 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 553 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 554 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 555 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 556 io.sbuffer(i).bits.id := DontCare 557 io.sbuffer(i).bits.instrtype := DontCare 558 559 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 560 // Before data write finish, sbuffer is unable to provide store to load 561 // forward data. As an workaround, deqPtrExt and allocated flag update 562 // is delayed so that load can get the right data from store queue. 563 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 564 when (RegNext(io.sbuffer(i).fire())) { 565 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 566 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 567 } 568 } 569 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 570 if (coreParams.dcacheParametersOpt.isEmpty) { 571 for (i <- 0 until EnsbufferWidth) { 572 val ptr = deqPtrExt(i).value 573 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 574 fakeRAM.clk := clock 575 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 576 fakeRAM.rIdx := 0.U 577 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 578 fakeRAM.wdata := dataModule.io.rdata(i).data 579 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 580 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 581 } 582 } 583 584 if (env.EnableDifftest) { 585 for (i <- 0 until EnsbufferWidth) { 586 val storeCommit = io.sbuffer(i).fire() 587 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 588 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 589 val wmask = io.sbuffer(i).bits.mask 590 591 val difftest = Module(new DifftestStoreEvent) 592 difftest.io.clock := clock 593 difftest.io.coreid := io.hartId 594 difftest.io.index := i.U 595 difftest.io.valid := RegNext(RegNext(storeCommit)) 596 difftest.io.storeAddr := RegNext(RegNext(waddr)) 597 difftest.io.storeData := RegNext(RegNext(wdata)) 598 difftest.io.storeMask := RegNext(RegNext(wmask)) 599 } 600 } 601 602 // Read vaddr for mem exception 603 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 604 605 // misprediction recovery / exception redirect 606 // invalidate sq term using robIdx 607 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 608 for (i <- 0 until StoreQueueSize) { 609 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 610 when (needCancel(i)) { 611 allocated(i) := false.B 612 } 613 } 614 615 /** 616 * update pointers 617 */ 618 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 619 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 620 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 621 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 622 when (lastCycleRedirect) { 623 // we recover the pointers in the next cycle after redirect 624 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 625 }.otherwise { 626 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 627 } 628 629 deqPtrExt := deqPtrExtNext 630 rdataPtrExt := rdataPtrExtNext 631 632 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 633 634 // If redirect at T0, sqCancelCnt is at T2 635 io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 636 637 // io.sqempty will be used by sbuffer 638 // We delay it for 1 cycle for better timing 639 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 640 // for 1 cycle will also promise that sq is empty in that cycle 641 io.sqempty := RegNext( 642 enqPtrExt(0).value === deqPtrExt(0).value && 643 enqPtrExt(0).flag === deqPtrExt(0).flag 644 ) 645 646 // perf counter 647 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 648 io.sqFull := !allowEnqueue 649 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 650 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 651 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 652 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 653 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 654 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 655 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 656 657 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 658 val perfEvents = Seq( 659 ("mmioCycle ", uncacheState =/= s_idle), 660 ("mmioCnt ", io.uncache.req.fire()), 661 ("mmio_wb_success", io.mmioStout.fire()), 662 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 663 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 664 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 665 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 666 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 667 ) 668 generatePerfEvent() 669 670 // debug info 671 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 672 673 def PrintFlag(flag: Bool, name: String): Unit = { 674 when(flag) { 675 XSDebug(false, true.B, name) 676 }.otherwise { 677 XSDebug(false, true.B, " ") 678 } 679 } 680 681 for (i <- 0 until StoreQueueSize) { 682 XSDebug(i + ": pc %x va %x pa %x data %x ", 683 uop(i).cf.pc, 684 debug_vaddr(i), 685 debug_paddr(i), 686 debug_data(i) 687 ) 688 PrintFlag(allocated(i), "a") 689 PrintFlag(allocated(i) && addrvalid(i), "a") 690 PrintFlag(allocated(i) && datavalid(i), "d") 691 PrintFlag(allocated(i) && committed(i), "c") 692 PrintFlag(allocated(i) && pending(i), "p") 693 PrintFlag(allocated(i) && mmio(i), "m") 694 XSDebug(false, true.B, "\n") 695 } 696 697} 698