xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 3d3419b91b243f8ce20bb52fd57da1c9ea9a7ec0)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33}
34
35object SqPtr {
36  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
37    val ptr = Wire(new SqPtr)
38    ptr.flag := f
39    ptr.value := v
40    ptr
41  }
42}
43
44class SqEnqIO(implicit p: Parameters) extends XSBundle {
45  val canAccept = Output(Bool())
46  val lqCanAccept = Input(Bool())
47  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
48  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
49  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
50}
51
52class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
53  val addr   = UInt(PAddrBits.W)
54  val vaddr  = UInt(VAddrBits.W)
55  val data   = UInt(DataBits.W)
56  val mask   = UInt((DataBits/8).W)
57  val wline = Bool()
58  val sqPtr  = new SqPtr
59}
60
61// Store Queue
62class StoreQueue(implicit p: Parameters) extends XSModule
63  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(8.W))
66    val enq = new SqEnqIO
67    val brqRedirect = Flipped(ValidIO(new Redirect))
68    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
69    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
70    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs
71    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
72    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
73    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
74    val rob = Flipped(new RobLsqIO)
75    val uncache = new UncacheWordIO
76    // val refill = Flipped(Valid(new DCacheLineReq ))
77    val exceptionAddr = new ExceptionAddrIO
78    val sqempty = Output(Bool())
79    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
80    val sqFull = Output(Bool())
81    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
82    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
83  })
84
85  println("StoreQueue: size:" + StoreQueueSize)
86
87  // data modules
88  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
89  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
90  val dataModule = Module(new SQDataModule(
91    numEntries = StoreQueueSize,
92    numRead = EnsbufferWidth,
93    numWrite = StorePipelineWidth,
94    numForward = StorePipelineWidth
95  ))
96  dataModule.io := DontCare
97  val paddrModule = Module(new SQAddrModule(
98    dataWidth = PAddrBits,
99    numEntries = StoreQueueSize,
100    numRead = EnsbufferWidth,
101    numWrite = StorePipelineWidth,
102    numForward = StorePipelineWidth
103  ))
104  paddrModule.io := DontCare
105  val vaddrModule = Module(new SQAddrModule(
106    dataWidth = VAddrBits,
107    numEntries = StoreQueueSize,
108    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
109    numWrite = StorePipelineWidth,
110    numForward = StorePipelineWidth
111  ))
112  vaddrModule.io := DontCare
113  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
114  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
115  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
116  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
117
118  // state & misc
119  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
120  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
121  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
122  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
123  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
124  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
125  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
126
127  // ptr
128  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
129  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
130  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
131  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
132  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
133  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
134
135  val enqPtr = enqPtrExt(0).value
136  val deqPtr = deqPtrExt(0).value
137  val cmtPtr = cmtPtrExt(0).value
138
139  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
140  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
141
142  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
143  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
144
145  val commitCount = RegNext(io.rob.scommit)
146
147  // Read dataModule
148  assert(EnsbufferWidth <= 2)
149  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
150  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
151    VecInit(rdataPtrExt.map(_ + 2.U)),
152    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
153      VecInit(rdataPtrExt.map(_ + 1.U)),
154      rdataPtrExt
155    )
156  ))
157
158  // deqPtrExtNext traces which inst is about to leave store queue
159  //
160  // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
161  // Before data write finish, sbuffer is unable to provide store to load
162  // forward data. As an workaround, deqPtrExt and allocated flag update
163  // is delayed so that load can get the right data from store queue.
164  //
165  // Modify deqPtrExtNext and io.sqDeq with care!
166  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()),
167    VecInit(deqPtrExt.map(_ + 2.U)),
168    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(),
169      VecInit(deqPtrExt.map(_ + 1.U)),
170      deqPtrExt
171    )
172  )
173  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U,
174    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U)
175  ))
176  assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire()))
177
178  for (i <- 0 until EnsbufferWidth) {
179    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
180    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
181    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
182  }
183
184  // no inst will be committed 1 cycle before tval update
185  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
186
187  /**
188    * Enqueue at dispatch
189    *
190    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
191    */
192  io.enq.canAccept := allowEnqueue
193  val canEnqueue = io.enq.req.map(_.valid)
194  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
195  for (i <- 0 until io.enq.req.length) {
196    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
197    val sqIdx = enqPtrExt(offset)
198    val index = io.enq.req(i).bits.sqIdx.value
199    when (canEnqueue(i) && !enqCancel(i)) {
200      uop(index).robIdx := io.enq.req(i).bits.robIdx
201      allocated(index) := true.B
202      datavalid(index) := false.B
203      addrvalid(index) := false.B
204      committed(index) := false.B
205      pending(index) := false.B
206      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
207      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
208    }
209    io.enq.resp(i) := sqIdx
210  }
211  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
212
213  /**
214    * Update issuePtr when issue from rs
215    */
216  // update issuePtr
217  val IssuePtrMoveStride = 4
218  require(IssuePtrMoveStride >= 2)
219
220  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
221  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
222  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
223  issuePtrExt := nextIssuePtr
224
225  when (io.brqRedirect.valid) {
226    issuePtrExt := Mux(
227      isAfter(cmtPtrExt(0), deqPtrExt(0)),
228      cmtPtrExt(0),
229      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
230    )
231  }
232  // send issuePtrExt to rs
233  // io.issuePtrExt := cmtPtrExt(0)
234  io.issuePtrExt := issuePtrExt
235
236  /**
237    * Writeback store from store units
238    *
239    * Most store instructions writeback to regfile in the previous cycle.
240    * However,
241    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
242    * (in this way it will trigger an exception when it reaches ROB's head)
243    * instead of pending to avoid sending them to lower level.
244    *   (2) For an mmio instruction without exceptions, we mark it as pending.
245    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
246    * Upon receiving the response, StoreQueue writes back the instruction
247    * through arbiter with store units. It will later commit as normal.
248    */
249
250  // Write addr to sq
251  for (i <- 0 until StorePipelineWidth) {
252    paddrModule.io.wen(i) := false.B
253    vaddrModule.io.wen(i) := false.B
254    dataModule.io.mask.wen(i) := false.B
255    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
256    when (io.storeIn(i).fire()) {
257      val addr_valid = !io.storeIn(i).bits.miss
258      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
259      // pending(stWbIndex) := io.storeIn(i).bits.mmio
260
261      dataModule.io.mask.waddr(i) := stWbIndex
262      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
263      dataModule.io.mask.wen(i) := addr_valid
264
265      paddrModule.io.waddr(i) := stWbIndex
266      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
267      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
268      paddrModule.io.wen(i) := addr_valid
269
270      vaddrModule.io.waddr(i) := stWbIndex
271      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
272      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
273      vaddrModule.io.wen(i) := addr_valid
274
275      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
276
277      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
278
279      uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl
280      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
281      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
282        io.storeIn(i).bits.uop.sqIdx.value,
283        io.storeIn(i).bits.uop.cf.pc,
284        io.storeIn(i).bits.miss,
285        io.storeIn(i).bits.vaddr,
286        io.storeIn(i).bits.paddr,
287        io.storeIn(i).bits.mmio
288      )
289    }
290
291    // re-replinish mmio, for pma/pmp will get mmio one cycle later
292    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
293    val stWbIndexReg = RegNext(stWbIndex)
294    when (storeInFireReg) {
295      pending(stWbIndexReg) := io.storeInRe(i).mmio
296      mmio(stWbIndexReg) := io.storeInRe(i).mmio
297    }
298
299    when(vaddrModule.io.wen(i)){
300      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
301    }
302  }
303
304  // Write data to sq
305  for (i <- 0 until StorePipelineWidth) {
306    dataModule.io.data.wen(i) := false.B
307    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
308    when (io.storeDataIn(i).fire()) {
309      datavalid(stWbIndex) := true.B
310
311      dataModule.io.data.waddr(i) := stWbIndex
312      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
313        0.U,
314        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
315      )
316      dataModule.io.data.wen(i) := true.B
317
318      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
319
320      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
321        io.storeDataIn(i).bits.uop.sqIdx.value,
322        io.storeDataIn(i).bits.uop.cf.pc,
323        io.storeDataIn(i).bits.data,
324        dataModule.io.data.wdata(i)
325      )
326    }
327  }
328
329  /**
330    * load forward query
331    *
332    * Check store queue for instructions that is older than the load.
333    * The response will be valid at the next cycle after req.
334    */
335  // check over all lq entries and forward data from the first matched store
336  for (i <- 0 until LoadPipelineWidth) {
337    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
338    // (1) if they have the same flag, we need to check range(tail, sqIdx)
339    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
340    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
341    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
342    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
343    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
344    val forwardMask = io.forward(i).sqIdxMask
345    // all addrvalid terms need to be checked
346    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
347    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
348    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
349    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
350    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
351    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
352
353    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
354      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
355    )
356
357    // do real fwd query (cam lookup in load_s1)
358    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
359    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
360
361    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
362    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
363
364    // vaddr cam result does not equal to paddr cam result
365    // replay needed
366    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
367    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
368    val vpmaskNotEqual = (
369      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
370      RegNext(needForward) &
371      RegNext(addrValidVec.asUInt)
372    ) =/= 0.U
373    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
374    when (vaddrMatchFailed) {
375      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
376        RegNext(io.forward(i).uop.cf.pc),
377        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
378        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
379      );
380    }
381    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
382    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
383
384    // Fast forward mask will be generated immediately (load_s1)
385    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
386
387    // Forward result will be generated 1 cycle later (load_s2)
388    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
389    io.forward(i).forwardData := dataModule.io.forwardData(i)
390
391    // If addr match, data not ready, mark it as dataInvalid
392    // load_s1: generate dataInvalid in load_s1 to set fastUop
393    val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt)
394    io.forward(i).dataInvalidFast := dataInvalidMask.orR
395    val dataInvalidMaskReg = RegNext(dataInvalidMask)
396    // load_s2
397    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
398    // check if vaddr forward mismatched
399    io.forward(i).matchInvalid := vaddrMatchFailed
400    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
401    dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy
402    io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire)
403  }
404
405  /**
406    * Memory mapped IO / other uncached operations
407    *
408    * States:
409    * (1) writeback from store units: mark as pending
410    * (2) when they reach ROB's head, they can be sent to uncache channel
411    * (3) response from uncache channel: mark as datavalidmask.wen
412    * (4) writeback to ROB (and other units): mark as writebacked
413    * (5) ROB commits the instruction: same as normal instructions
414    */
415  //(2) when they reach ROB's head, they can be sent to uncache channel
416  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
417  val uncacheState = RegInit(s_idle)
418  switch(uncacheState) {
419    is(s_idle) {
420      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
421        uncacheState := s_req
422      }
423    }
424    is(s_req) {
425      when(io.uncache.req.fire()) {
426        uncacheState := s_resp
427      }
428    }
429    is(s_resp) {
430      when(io.uncache.resp.fire()) {
431        uncacheState := s_wb
432      }
433    }
434    is(s_wb) {
435      when (io.mmioStout.fire()) {
436        uncacheState := s_wait
437      }
438    }
439    is(s_wait) {
440      when(commitCount > 0.U) {
441        uncacheState := s_idle // ready for next mmio
442      }
443    }
444  }
445  io.uncache.req.valid := uncacheState === s_req
446
447  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
448  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
449  io.uncache.req.bits.data := dataModule.io.rdata(0).data
450  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
451
452  // CBO op type check can be delayed for 1 cycle,
453  // as uncache op will not start in s_idle
454  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
455  val cbo_mmio_op = 0.U //TODO
456  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
457  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
458    io.uncache.req.bits.addr := DontCare // TODO
459    io.uncache.req.bits.data := paddrModule.io.rdata(0)
460    io.uncache.req.bits.mask := DontCare // TODO
461  }
462
463  io.uncache.req.bits.id   := DontCare
464  io.uncache.req.bits.instrtype   := DontCare
465
466  when(io.uncache.req.fire()){
467    // mmio store should not be committed until uncache req is sent
468    pending(deqPtr) := false.B
469
470    XSDebug(
471      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
472      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
473      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
474      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
475      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
476    )
477  }
478
479  // (3) response from uncache channel: mark as datavalid
480  io.uncache.resp.ready := true.B
481
482  // (4) writeback to ROB (and other units): mark as writebacked
483  io.mmioStout.valid := uncacheState === s_wb
484  io.mmioStout.bits.uop := uop(deqPtr)
485  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
486  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
487  io.mmioStout.bits.redirectValid := false.B
488  io.mmioStout.bits.redirect := DontCare
489  io.mmioStout.bits.debug.isMMIO := true.B
490  io.mmioStout.bits.debug.paddr := DontCare
491  io.mmioStout.bits.debug.isPerfCnt := false.B
492  io.mmioStout.bits.fflags := DontCare
493  io.mmioStout.bits.debug.vaddr := DontCare
494  // Remove MMIO inst from store queue after MMIO request is being sent
495  // That inst will be traced by uncache state machine
496  when (io.mmioStout.fire()) {
497    allocated(deqPtr) := false.B
498  }
499
500  /**
501    * ROB commits store instructions (mark them as committed)
502    *
503    * (1) When store commits, mark it as committed.
504    * (2) They will not be cancelled and can be sent to lower level.
505    */
506  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
507   "should not commit instruction when MMIO has not been finished\n")
508  for (i <- 0 until CommitWidth) {
509    when (commitCount > i.U) { // MMIO inst is not in progress
510      if(i == 0){
511        // MMIO inst should not update committed flag
512        // Note that commit count has been delayed for 1 cycle
513        when(uncacheState === s_idle){
514          committed(cmtPtrExt(0).value) := true.B
515        }
516      } else {
517        committed(cmtPtrExt(i).value) := true.B
518      }
519    }
520  }
521  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
522
523  // committed stores will not be cancelled and can be sent to lower level.
524  // remove retired insts from sq, add retired store to sbuffer
525
526  // Read data from data module
527  // As store queue grows larger and larger, time needed to read data from data
528  // module keeps growing higher. Now we give data read a whole cycle.
529
530  val mmioStall = mmio(rdataPtrExt(0).value)
531  for (i <- 0 until EnsbufferWidth) {
532    val ptr = rdataPtrExt(i).value
533    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
534    // Note that store data/addr should both be valid after store's commit
535    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
536    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
537    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
538    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
539    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
540    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
541    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
542  }
543
544  // Send data stored in sbufferReqBitsReg to sbuffer
545  for (i <- 0 until EnsbufferWidth) {
546    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
547    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
548    // Write line request should have all 1 mask
549    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
550    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
551    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
552    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
553    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
554    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
555    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
556    io.sbuffer(i).bits.id    := DontCare
557    io.sbuffer(i).bits.instrtype    := DontCare
558
559    // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
560    // Before data write finish, sbuffer is unable to provide store to load
561    // forward data. As an workaround, deqPtrExt and allocated flag update
562    // is delayed so that load can get the right data from store queue.
563    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
564    when (RegNext(io.sbuffer(i).fire())) {
565      allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B
566      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
567    }
568  }
569  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
570  if (coreParams.dcacheParametersOpt.isEmpty) {
571    for (i <- 0 until EnsbufferWidth) {
572      val ptr = deqPtrExt(i).value
573      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
574      fakeRAM.clk   := clock
575      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
576      fakeRAM.rIdx  := 0.U
577      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
578      fakeRAM.wdata := dataModule.io.rdata(i).data
579      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
580      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
581    }
582  }
583
584  if (env.EnableDifftest) {
585    for (i <- 0 until EnsbufferWidth) {
586      val storeCommit = io.sbuffer(i).fire()
587      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
588      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
589      val wmask = io.sbuffer(i).bits.mask
590
591      val difftest = Module(new DifftestStoreEvent)
592      difftest.io.clock       := clock
593      difftest.io.coreid      := io.hartId
594      difftest.io.index       := i.U
595      difftest.io.valid       := RegNext(RegNext(storeCommit))
596      difftest.io.storeAddr   := RegNext(RegNext(waddr))
597      difftest.io.storeData   := RegNext(RegNext(wdata))
598      difftest.io.storeMask   := RegNext(RegNext(wmask))
599    }
600  }
601
602  // Read vaddr for mem exception
603  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
604
605  // misprediction recovery / exception redirect
606  // invalidate sq term using robIdx
607  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
608  for (i <- 0 until StoreQueueSize) {
609    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
610    when (needCancel(i)) {
611      allocated(i) := false.B
612    }
613  }
614
615  /**
616    * update pointers
617    */
618  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
619  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
620  val lastCycleCancelCount = PopCount(RegNext(needCancel))
621  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
622  when (lastCycleRedirect) {
623    // we recover the pointers in the next cycle after redirect
624    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
625  }.otherwise {
626    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
627  }
628
629  deqPtrExt := deqPtrExtNext
630  rdataPtrExt := rdataPtrExtNext
631
632  // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
633
634  // If redirect at T0, sqCancelCnt is at T2
635  io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
636
637  // io.sqempty will be used by sbuffer
638  // We delay it for 1 cycle for better timing
639  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
640  // for 1 cycle will also promise that sq is empty in that cycle
641  io.sqempty := RegNext(
642    enqPtrExt(0).value === deqPtrExt(0).value &&
643    enqPtrExt(0).flag === deqPtrExt(0).flag
644  )
645
646  // perf counter
647  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
648  io.sqFull := !allowEnqueue
649  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
650  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
651  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
652  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
653  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
654  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
655  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
656
657  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
658  val perfEvents = Seq(
659    ("mmioCycle      ", uncacheState =/= s_idle),
660    ("mmioCnt        ", io.uncache.req.fire()),
661    ("mmio_wb_success", io.mmioStout.fire()),
662    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
663    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
664    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
665    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
666    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
667  )
668  generatePerfEvent()
669
670  // debug info
671  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
672
673  def PrintFlag(flag: Bool, name: String): Unit = {
674    when(flag) {
675      XSDebug(false, true.B, name)
676    }.otherwise {
677      XSDebug(false, true.B, " ")
678    }
679  }
680
681  for (i <- 0 until StoreQueueSize) {
682    XSDebug(i + ": pc %x va %x pa %x data %x ",
683      uop(i).cf.pc,
684      debug_vaddr(i),
685      debug_paddr(i),
686      debug_data(i)
687    )
688    PrintFlag(allocated(i), "a")
689    PrintFlag(allocated(i) && addrvalid(i), "a")
690    PrintFlag(allocated(i) && datavalid(i), "d")
691    PrintFlag(allocated(i) && committed(i), "c")
692    PrintFlag(allocated(i) && pending(i), "p")
693    PrintFlag(allocated(i) && mmio(i), "m")
694    XSDebug(false, true.B, "\n")
695  }
696
697}
698