xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 39268f44ebf8a8acf06f33e688f2893b35710d23)
1package xiangshan.mem
2
3import chisel3._
4import chisel3.util._
5import utils._
6import xiangshan._
7import xiangshan.cache._
8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
9import xiangshan.backend.LSUOpType
10import xiangshan.backend.roq.RoqPtr
11
12
13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { }
14
15object SqPtr extends HasXSParameter {
16  def apply(f: Bool, v: UInt): SqPtr = {
17    val ptr = Wire(new SqPtr)
18    ptr.flag := f
19    ptr.value := v
20    ptr
21  }
22}
23
24class SqEnqIO extends XSBundle {
25  val canAccept = Output(Bool())
26  val lqCanAccept = Input(Bool())
27  val needAlloc = Vec(RenameWidth, Input(Bool()))
28  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
29  val resp = Vec(RenameWidth, Output(new SqPtr))
30}
31
32// Store Queue
33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
34  val io = IO(new Bundle() {
35    val enq = new SqEnqIO
36    val brqRedirect = Input(Valid(new Redirect))
37    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
38    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq))
39    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
40    val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO))
41    val commits = Flipped(new RoqCommitIO)
42    val uncache = new DCacheWordIO
43    val roqDeqPtr = Input(new RoqPtr)
44    // val refill = Flipped(Valid(new DCacheLineReq ))
45    val exceptionAddr = new ExceptionAddrIO
46    val sqempty = Output(Bool())
47  })
48
49  // data modules
50  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
51  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
52  val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
53  dataModule.io := DontCare
54  val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
55  vaddrModule.io := DontCare
56
57  // state & misc
58  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
59  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
60  val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB
61  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
62  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
63  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
64
65  // ptr
66  require(StoreQueueSize > RenameWidth)
67  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
68  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
69  val allowEnqueue = RegInit(true.B)
70
71  val enqPtr = enqPtrExt(0).value
72  val deqPtr = deqPtrExt(0).value
73
74  val tailMask = UIntToMask(deqPtr, StoreQueueSize)
75  val headMask = UIntToMask(enqPtr, StoreQueueSize)
76
77  // Read dataModule
78  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
79  // if !sbuffer.fire(), read the same ptr
80  // if sbuffer.fire(), read next
81  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
82    VecInit(deqPtrExt.map(_ + 2.U)),
83    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
84      VecInit(deqPtrExt.map(_ + 1.U)),
85      deqPtrExt
86    )
87  ))
88  val dataModuleRead = dataModule.io.rdata
89  for (i <- 0 until StorePipelineWidth) {
90    dataModule.io.raddr(i) := deqPtrExtNext(i).value
91  }
92  vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value
93
94  /**
95    * Enqueue at dispatch
96    *
97    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
98    */
99  io.enq.canAccept := allowEnqueue
100  for (i <- 0 until RenameWidth) {
101    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
102    val sqIdx = enqPtrExt(offset)
103    val index = sqIdx.value
104    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
105      uop(index) := io.enq.req(i).bits
106      allocated(index) := true.B
107      datavalid(index) := false.B
108      writebacked(index) := false.B
109      commited(index) := false.B
110      pending(index) := false.B
111    }
112    io.enq.resp(i) := sqIdx
113  }
114  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
115
116  /**
117    * Writeback store from store units
118    *
119    * Most store instructions writeback to regfile in the previous cycle.
120    * However,
121    *   (1) For an mmio instruction with exceptions, we need to mark it as datavalid
122    * (in this way it will trigger an exception when it reaches ROB's head)
123    * instead of pending to avoid sending them to lower level.
124    *   (2) For an mmio instruction without exceptions, we mark it as pending.
125    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
126    * Upon receiving the response, StoreQueue writes back the instruction
127    * through arbiter with store units. It will later commit as normal.
128    */
129  for (i <- 0 until StorePipelineWidth) {
130    dataModule.io.wen(i) := false.B
131    vaddrModule.io.wen(i) := false.B
132    when (io.storeIn(i).fire()) {
133      val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
134      datavalid(stWbIndex) := !io.storeIn(i).bits.mmio
135      writebacked(stWbIndex) := !io.storeIn(i).bits.mmio
136      pending(stWbIndex) := io.storeIn(i).bits.mmio
137
138      val storeWbData = Wire(new SQDataEntry)
139      storeWbData := DontCare
140      storeWbData.paddr := io.storeIn(i).bits.paddr
141      storeWbData.mask := io.storeIn(i).bits.mask
142      storeWbData.data := io.storeIn(i).bits.data
143      dataModule.io.waddr(i) := stWbIndex
144      dataModule.io.wdata(i) := storeWbData
145      dataModule.io.wen(i) := true.B
146
147      vaddrModule.io.waddr(i) := stWbIndex
148      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
149      vaddrModule.io.wen(i) := true.B
150
151      mmio(stWbIndex) := io.storeIn(i).bits.mmio
152
153      XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n",
154        io.storeIn(i).bits.uop.sqIdx.value,
155        io.storeIn(i).bits.uop.cf.pc,
156        io.storeIn(i).bits.vaddr,
157        io.storeIn(i).bits.paddr,
158        io.storeIn(i).bits.data,
159        io.storeIn(i).bits.mmio
160        )
161    }
162  }
163
164  /**
165    * load forward query
166    *
167    * Check store queue for instructions that is older than the load.
168    * The response will be valid at the next cycle after req.
169    */
170  // check over all lq entries and forward data from the first matched store
171  for (i <- 0 until LoadPipelineWidth) {
172    io.forward(i).forwardMask := 0.U(8.W).asBools
173    io.forward(i).forwardData := DontCare
174
175    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
176    // (1) if they have the same flag, we need to check range(tail, sqIdx)
177    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
178    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
179    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
180    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
181    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
182    val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize)
183    val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B)))
184    for (j <- 0 until StoreQueueSize) {
185      storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked
186    }
187    val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt
188    val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt
189
190    XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " +
191      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
192    )
193
194    // do real fwd query
195    dataModule.io.forwardQuery(
196      numForward = i,
197      paddr = io.forward(i).paddr,
198      needForward1 = needForward1,
199      needForward2 = needForward2
200    )
201
202    io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask
203    io.forward(i).forwardData := dataModule.io.forward(i).forwardData
204  }
205
206  /**
207    * Memory mapped IO / other uncached operations
208    *
209    * States:
210    * (1) writeback from store units: mark as pending
211    * (2) when they reach ROB's head, they can be sent to uncache channel
212    * (3) response from uncache channel: mark as datavalid
213    * (4) writeback to ROB (and other units): mark as writebacked
214    * (5) ROB commits the instruction: same as normal instructions
215    */
216  //(2) when they reach ROB's head, they can be sent to uncache channel
217  io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) &&
218    io.commits.info(0).commitType === CommitType.STORE &&
219    io.roqDeqPtr === uop(deqPtr).roqIdx &&
220    !io.commits.isWalk
221
222  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
223  io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0)
224  io.uncache.req.bits.data := dataModule.io.rdata(0).data
225  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
226
227  io.uncache.req.bits.id   := DontCare
228
229  when(io.uncache.req.fire()){
230    pending(deqPtr) := false.B
231
232    XSDebug(
233      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
234      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
235      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
236      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
237      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
238    )
239  }
240
241  // (3) response from uncache channel: mark as datavalid
242  io.uncache.resp.ready := true.B
243  when (io.uncache.resp.fire()) {
244    datavalid(deqPtr) := true.B
245  }
246
247  // (4) writeback to ROB (and other units): mark as writebacked
248  io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr)
249  io.mmioStout.bits.uop := uop(deqPtr)
250  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
251  io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr)
252  io.mmioStout.bits.redirectValid := false.B
253  io.mmioStout.bits.redirect := DontCare
254  io.mmioStout.bits.brUpdate := DontCare
255  io.mmioStout.bits.debug.isMMIO := true.B
256  io.mmioStout.bits.debug.isPerfCnt := false.B
257  io.mmioStout.bits.fflags := DontCare
258  when (io.mmioStout.fire()) {
259    writebacked(deqPtr) := true.B
260    allocated(deqPtr) := false.B
261  }
262
263  /**
264    * ROB commits store instructions (mark them as commited)
265    *
266    * (1) When store commits, mark it as commited.
267    * (2) They will not be cancelled and can be sent to lower level.
268    */
269  for (i <- 0 until CommitWidth) {
270    val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE
271    when (storeCommit) {
272      commited(io.commits.info(i).sqIdx.value) := true.B
273      XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value)
274    }
275  }
276
277  // Commited stores will not be cancelled and can be sent to lower level.
278  // remove retired insts from sq, add retired store to sbuffer
279  for (i <- 0 until StorePipelineWidth) {
280    // We use RegNext to prepare data for sbuffer
281    val ptr = deqPtrExt(i).value
282    // if !sbuffer.fire(), read the same ptr
283    // if sbuffer.fire(), read next
284    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
285    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
286    io.sbuffer(i).bits.addr := dataModuleRead(i).paddr
287    io.sbuffer(i).bits.data := dataModuleRead(i).data
288    io.sbuffer(i).bits.mask := dataModuleRead(i).mask
289    io.sbuffer(i).bits.id   := DontCare
290
291    when (io.sbuffer(i).fire()) {
292      allocated(ptr) := false.B
293      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
294    }
295  }
296  when (io.sbuffer(1).fire()) {
297    assert(io.sbuffer(0).fire())
298  }
299
300  if (!env.FPGAPlatform) {
301    val storeCommit = PopCount(io.sbuffer.map(_.fire()))
302    val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64)))
303    val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask)))
304    val wmask = VecInit(io.sbuffer.map(_.bits.mask))
305
306    ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug)
307    ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug)
308    ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug)
309    ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug)
310  }
311
312  // Read vaddr for mem exception
313  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
314
315  // misprediction recovery / exception redirect
316  // invalidate sq term using robIdx
317  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
318  for (i <- 0 until StoreQueueSize) {
319    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i)
320    when (needCancel(i)) {
321        allocated(i) := false.B
322    }
323  }
324
325  /**
326    * update pointers
327    */
328  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
329  val lastCycleCancelCount = PopCount(RegNext(needCancel))
330  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
331  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
332  when (lastCycleRedirect) {
333    // we recover the pointers in the next cycle after redirect
334    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
335  }.otherwise {
336    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
337  }
338
339  deqPtrExt := deqPtrExtNext
340
341  val lastLastCycleRedirect = RegNext(lastCycleRedirect)
342  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
343  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
344
345  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
346
347  // io.sqempty will be used by sbuffer
348  // We delay it for 1 cycle for better timing
349  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
350  // for 1 cycle will also promise that sq is empty in that cycle
351  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
352
353  // debug info
354  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
355
356  def PrintFlag(flag: Bool, name: String): Unit = {
357    when(flag) {
358      XSDebug(false, true.B, name)
359    }.otherwise {
360      XSDebug(false, true.B, " ")
361    }
362  }
363
364  for (i <- 0 until StoreQueueSize) {
365    if (i % 4 == 0) XSDebug("")
366    XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr)
367    PrintFlag(allocated(i), "a")
368    PrintFlag(allocated(i) && datavalid(i), "v")
369    PrintFlag(allocated(i) && writebacked(i), "w")
370    PrintFlag(allocated(i) && commited(i), "c")
371    PrintFlag(allocated(i) && pending(i), "p")
372    XSDebug(false, true.B, " ")
373    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
374  }
375
376}
377