1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 }) 48 49 // data modules 50 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 51 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 52 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 53 dataModule.io := DontCare 54 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 55 vaddrModule.io := DontCare 56 57 // state & misc 58 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 59 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 60 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 61 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 62 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 63 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 64 65 // ptr 66 require(StoreQueueSize > RenameWidth) 67 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 68 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 69 val allowEnqueue = RegInit(true.B) 70 71 val enqPtr = enqPtrExt(0).value 72 val deqPtr = deqPtrExt(0).value 73 74 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 75 val headMask = UIntToMask(enqPtr, StoreQueueSize) 76 77 // Read dataModule 78 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 79 // if !sbuffer.fire(), read the same ptr 80 // if sbuffer.fire(), read next 81 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 82 VecInit(deqPtrExt.map(_ + 2.U)), 83 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 84 VecInit(deqPtrExt.map(_ + 1.U)), 85 deqPtrExt 86 ) 87 )) 88 val dataModuleRead = dataModule.io.rdata 89 for (i <- 0 until StorePipelineWidth) { 90 dataModule.io.raddr(i) := deqPtrExtNext(i).value 91 } 92 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 93 94 /** 95 * Enqueue at dispatch 96 * 97 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 98 */ 99 io.enq.canAccept := allowEnqueue 100 for (i <- 0 until RenameWidth) { 101 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 102 val sqIdx = enqPtrExt(offset) 103 val index = sqIdx.value 104 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 105 uop(index) := io.enq.req(i).bits 106 allocated(index) := true.B 107 datavalid(index) := false.B 108 writebacked(index) := false.B 109 commited(index) := false.B 110 pending(index) := false.B 111 } 112 io.enq.resp(i) := sqIdx 113 } 114 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 115 116 /** 117 * Writeback store from store units 118 * 119 * Most store instructions writeback to regfile in the previous cycle. 120 * However, 121 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 122 * (in this way it will trigger an exception when it reaches ROB's head) 123 * instead of pending to avoid sending them to lower level. 124 * (2) For an mmio instruction without exceptions, we mark it as pending. 125 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 126 * Upon receiving the response, StoreQueue writes back the instruction 127 * through arbiter with store units. It will later commit as normal. 128 */ 129 for (i <- 0 until StorePipelineWidth) { 130 dataModule.io.wen(i) := false.B 131 vaddrModule.io.wen(i) := false.B 132 when (io.storeIn(i).fire()) { 133 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 134 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 135 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 136 pending(stWbIndex) := io.storeIn(i).bits.mmio 137 138 val storeWbData = Wire(new SQDataEntry) 139 storeWbData := DontCare 140 storeWbData.paddr := io.storeIn(i).bits.paddr 141 storeWbData.mask := io.storeIn(i).bits.mask 142 storeWbData.data := io.storeIn(i).bits.data 143 dataModule.io.waddr(i) := stWbIndex 144 dataModule.io.wdata(i) := storeWbData 145 dataModule.io.wen(i) := true.B 146 147 vaddrModule.io.waddr(i) := stWbIndex 148 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 149 vaddrModule.io.wen(i) := true.B 150 151 mmio(stWbIndex) := io.storeIn(i).bits.mmio 152 153 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 154 io.storeIn(i).bits.uop.sqIdx.value, 155 io.storeIn(i).bits.uop.cf.pc, 156 io.storeIn(i).bits.vaddr, 157 io.storeIn(i).bits.paddr, 158 io.storeIn(i).bits.data, 159 io.storeIn(i).bits.mmio 160 ) 161 } 162 } 163 164 /** 165 * load forward query 166 * 167 * Check store queue for instructions that is older than the load. 168 * The response will be valid at the next cycle after req. 169 */ 170 // check over all lq entries and forward data from the first matched store 171 for (i <- 0 until LoadPipelineWidth) { 172 io.forward(i).forwardMask := 0.U(8.W).asBools 173 io.forward(i).forwardData := DontCare 174 175 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 176 // (1) if they have the same flag, we need to check range(tail, sqIdx) 177 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 178 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 179 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 180 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 181 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 182 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 183 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 184 for (j <- 0 until StoreQueueSize) { 185 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 186 } 187 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 188 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 189 190 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 191 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 192 ) 193 194 // do real fwd query 195 dataModule.io.forwardQuery( 196 numForward = i, 197 paddr = io.forward(i).paddr, 198 needForward1 = needForward1, 199 needForward2 = needForward2 200 ) 201 202 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 203 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 204 } 205 206 /** 207 * Memory mapped IO / other uncached operations 208 * 209 * States: 210 * (1) writeback from store units: mark as pending 211 * (2) when they reach ROB's head, they can be sent to uncache channel 212 * (3) response from uncache channel: mark as datavalid 213 * (4) writeback to ROB (and other units): mark as writebacked 214 * (5) ROB commits the instruction: same as normal instructions 215 */ 216 //(2) when they reach ROB's head, they can be sent to uncache channel 217 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 218 io.commits.info(0).commitType === CommitType.STORE && 219 io.roqDeqPtr === uop(deqPtr).roqIdx && 220 !io.commits.isWalk 221 222 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 223 io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0) 224 io.uncache.req.bits.data := dataModule.io.rdata(0).data 225 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 226 227 io.uncache.req.bits.id := DontCare 228 229 when(io.uncache.req.fire()){ 230 pending(deqPtr) := false.B 231 232 XSDebug( 233 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 234 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 235 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 236 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 237 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 238 ) 239 } 240 241 // (3) response from uncache channel: mark as datavalid 242 io.uncache.resp.ready := true.B 243 when (io.uncache.resp.fire()) { 244 datavalid(deqPtr) := true.B 245 } 246 247 // (4) writeback to ROB (and other units): mark as writebacked 248 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 249 io.mmioStout.bits.uop := uop(deqPtr) 250 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 251 io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr) 252 io.mmioStout.bits.redirectValid := false.B 253 io.mmioStout.bits.redirect := DontCare 254 io.mmioStout.bits.brUpdate := DontCare 255 io.mmioStout.bits.debug.isMMIO := true.B 256 io.mmioStout.bits.debug.isPerfCnt := false.B 257 io.mmioStout.bits.fflags := DontCare 258 when (io.mmioStout.fire()) { 259 writebacked(deqPtr) := true.B 260 allocated(deqPtr) := false.B 261 } 262 263 /** 264 * ROB commits store instructions (mark them as commited) 265 * 266 * (1) When store commits, mark it as commited. 267 * (2) They will not be cancelled and can be sent to lower level. 268 */ 269 for (i <- 0 until CommitWidth) { 270 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 271 when (storeCommit) { 272 commited(io.commits.info(i).sqIdx.value) := true.B 273 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 274 } 275 } 276 277 // Commited stores will not be cancelled and can be sent to lower level. 278 // remove retired insts from sq, add retired store to sbuffer 279 for (i <- 0 until StorePipelineWidth) { 280 // We use RegNext to prepare data for sbuffer 281 val ptr = deqPtrExt(i).value 282 // if !sbuffer.fire(), read the same ptr 283 // if sbuffer.fire(), read next 284 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 285 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 286 io.sbuffer(i).bits.addr := dataModuleRead(i).paddr 287 io.sbuffer(i).bits.data := dataModuleRead(i).data 288 io.sbuffer(i).bits.mask := dataModuleRead(i).mask 289 io.sbuffer(i).bits.id := DontCare 290 291 when (io.sbuffer(i).fire()) { 292 allocated(ptr) := false.B 293 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 294 } 295 } 296 when (io.sbuffer(1).fire()) { 297 assert(io.sbuffer(0).fire()) 298 } 299 300 if (!env.FPGAPlatform) { 301 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 302 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 303 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 304 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 305 306 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 307 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 308 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 309 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 310 } 311 312 // Read vaddr for mem exception 313 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 314 315 // misprediction recovery / exception redirect 316 // invalidate sq term using robIdx 317 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 318 for (i <- 0 until StoreQueueSize) { 319 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 320 when (needCancel(i)) { 321 allocated(i) := false.B 322 } 323 } 324 325 /** 326 * update pointers 327 */ 328 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 329 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 330 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 331 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 332 when (lastCycleRedirect) { 333 // we recover the pointers in the next cycle after redirect 334 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 335 }.otherwise { 336 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 337 } 338 339 deqPtrExt := deqPtrExtNext 340 341 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 342 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 343 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 344 345 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 346 347 // io.sqempty will be used by sbuffer 348 // We delay it for 1 cycle for better timing 349 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 350 // for 1 cycle will also promise that sq is empty in that cycle 351 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 352 353 // debug info 354 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 355 356 def PrintFlag(flag: Bool, name: String): Unit = { 357 when(flag) { 358 XSDebug(false, true.B, name) 359 }.otherwise { 360 XSDebug(false, true.B, " ") 361 } 362 } 363 364 for (i <- 0 until StoreQueueSize) { 365 if (i % 4 == 0) XSDebug("") 366 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 367 PrintFlag(allocated(i), "a") 368 PrintFlag(allocated(i) && datavalid(i), "v") 369 PrintFlag(allocated(i) && writebacked(i), "w") 370 PrintFlag(allocated(i) && commited(i), "c") 371 PrintFlag(allocated(i) && pending(i), "p") 372 XSDebug(false, true.B, " ") 373 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 374 } 375 376} 377