1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.backend._ 31import xiangshan.backend.rob.{RobLsqIO, RobPtr} 32import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 34import xiangshan.backend.fu.FuConfig._ 35import xiangshan.backend.fu.FuType 36import xiangshan.ExceptionNO._ 37import coupledL2.{CMOReq, CMOResp} 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70} 71 72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 73 val io = IO(new Bundle() { 74 val redirect = Flipped(ValidIO(new Redirect)) 75 val storeAddrIn = Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle()))) 76 val flushFrmMaBuf = Input(Bool()) 77 val exceptionAddr = new ExceptionAddrIO 78 }) 79 80 val req_valid = RegInit(false.B) 81 val req = Reg(new LsPipelineBundle()) 82 83 // enqueue 84 // S1: 85 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 86 val s1_valid = VecInit(io.storeAddrIn.map(x => 87 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 88 )) 89 90 // S2: delay 1 cycle 91 val s2_req = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i => 92 RegEnable(s1_req(i), s1_valid(i))) 93 val s2_valid = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i => 94 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 95 ) 96 97 val s2_enqueue = Wire(Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Bool())) 98 for (w <- 0 until StorePipelineWidth * 2 + VecStorePipelineWidth) { 99 s2_enqueue(w) := s2_valid(w) 100 } 101 102 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 103 req_valid := s2_enqueue.asUInt.orR 104 }.elsewhen (s2_enqueue.asUInt.orR) { 105 req_valid := req_valid || true.B 106 } 107 108 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 109 assert(valid.length == bits.length) 110 if (valid.length == 0 || valid.length == 1) { 111 (valid, bits) 112 } else if (valid.length == 2) { 113 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 114 for (i <- res.indices) { 115 res(i).valid := valid(i) 116 res(i).bits := bits(i) 117 } 118 val oldest = Mux(valid(0) && valid(1), 119 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 120 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 121 Mux(valid(0) && !valid(1), res(0), res(1))) 122 (Seq(oldest.valid), Seq(oldest.bits)) 123 } else { 124 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 125 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 126 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 127 } 128 } 129 130 val reqSel = selectOldest(s2_enqueue, s2_req) 131 132 when (req_valid) { 133 req := Mux( 134 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 135 reqSel._2(0), 136 req) 137 } .elsewhen (s2_enqueue.asUInt.orR) { 138 req := reqSel._2(0) 139 } 140 141 io.exceptionAddr.vaddr := req.vaddr 142 io.exceptionAddr.gpaddr := req.gpaddr 143 io.exceptionAddr.vstart := req.uop.vpu.vstart 144 io.exceptionAddr.vl := req.uop.vpu.vl 145 146 when(req_valid && io.flushFrmMaBuf) { 147 req_valid := false.B 148 } 149} 150 151// Store Queue 152class StoreQueue(implicit p: Parameters) extends XSModule 153 with HasDCacheParameters 154 with HasCircularQueuePtrHelper 155 with HasPerfEvents 156 with HasVLSUParameters { 157 val io = IO(new Bundle() { 158 val hartId = Input(UInt(hartIdLen.W)) 159 val enq = new SqEnqIO 160 val brqRedirect = Flipped(ValidIO(new Redirect)) 161 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 162 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 163 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 164 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 165 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 166 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 167 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 168 val uncacheOutstanding = Input(Bool()) 169 val cmoOpReq = DecoupledIO(new CMOReq) 170 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 171 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 172 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 173 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 174 // TODO: scommit is only for scalar store 175 val rob = Flipped(new RobLsqIO) 176 val uncache = new UncacheWordIO 177 // val refill = Flipped(Valid(new DCacheLineReq )) 178 val exceptionAddr = new ExceptionAddrIO 179 val flushSbuffer = new SbufferFlushBundle 180 val sqEmpty = Output(Bool()) 181 val stAddrReadySqPtr = Output(new SqPtr) 182 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 183 val stDataReadySqPtr = Output(new SqPtr) 184 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 185 val stIssuePtr = Output(new SqPtr) 186 val sqDeqPtr = Output(new SqPtr) 187 val sqFull = Output(Bool()) 188 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 189 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 190 val force_write = Output(Bool()) 191 val maControl = Flipped(new StoreMaBufToSqControlIO) 192 }) 193 194 println("StoreQueue: size:" + StoreQueueSize) 195 196 // data modules 197 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 198 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 199 val dataModule = Module(new SQDataModule( 200 numEntries = StoreQueueSize, 201 numRead = EnsbufferWidth, 202 numWrite = StorePipelineWidth, 203 numForward = LoadPipelineWidth 204 )) 205 dataModule.io := DontCare 206 val paddrModule = Module(new SQAddrModule( 207 dataWidth = PAddrBits, 208 numEntries = StoreQueueSize, 209 numRead = EnsbufferWidth, 210 numWrite = StorePipelineWidth, 211 numForward = LoadPipelineWidth 212 )) 213 paddrModule.io := DontCare 214 val vaddrModule = Module(new SQAddrModule( 215 dataWidth = VAddrBits, 216 numEntries = StoreQueueSize, 217 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 218 numWrite = StorePipelineWidth, 219 numForward = LoadPipelineWidth 220 )) 221 vaddrModule.io := DontCare 222 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 223 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 224 val exceptionBuffer = Module(new StoreExceptionBuffer) 225 exceptionBuffer.io.redirect := io.brqRedirect 226 exceptionBuffer.io.exceptionAddr.isStore := DontCare 227 // vlsu exception! 228 for (i <- 0 until VecStorePipelineWidth) { 229 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 230 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 231 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 232 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 233 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 234 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 237 } 238 239 240 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 241 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 242 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 243 244 // state & misc 245 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 246 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 247 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 248 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 249 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 250 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 251 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 252 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 253 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 254 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 255 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 256 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 257 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 258 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 259 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 260 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 261 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 262 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 263 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 264 265 // ptr 266 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 267 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 268 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 269 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 270 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 271 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 272 273 val enqPtr = enqPtrExt(0).value 274 val deqPtr = deqPtrExt(0).value 275 val cmtPtr = cmtPtrExt(0).value 276 277 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 278 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 279 280 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 281 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 282 283 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 284 val scommit = GatedRegNext(io.rob.scommit) 285 286 // RegNext misalign control for better timing 287 val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr)) 288 val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException) 289 val misalignBlock = doMisalignSt && !finishMisalignSt 290 291 // store miss align info 292 io.maControl.storeInfo.data := dataModule.io.rdata(0).data 293 io.maControl.storeInfo.dataReady := doMisalignSt 294 io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire 295 296 // store can be committed by ROB 297 io.rob.mmio := DontCare 298 io.rob.uop := DontCare 299 300 // Read dataModule 301 assert(EnsbufferWidth <= 2) 302 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 303 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 304 rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire, 305 VecInit(rdataPtrExt.map(_ + 2.U)), 306 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 307 VecInit(rdataPtrExt.map(_ + 1.U)), 308 rdataPtrExt 309 ) 310 )) 311 312 // deqPtrExtNext traces which inst is about to leave store queue 313 // 314 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 315 // Before data write finish, sbuffer is unable to provide store to load 316 // forward data. As an workaround, deqPtrExt and allocated flag update 317 // is delayed so that load can get the right data from store queue. 318 // 319 // Modify deqPtrExtNext and io.sqDeq with care! 320 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 321 deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire), 322 VecInit(deqPtrExt.map(_ + 2.U)), 323 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 324 VecInit(deqPtrExt.map(_ + 1.U)), 325 deqPtrExt 326 ) 327 ) 328 329 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U, 330 Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U) 331 )) 332 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 333 334 for (i <- 0 until EnsbufferWidth) { 335 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 336 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 337 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 338 } 339 340 /** 341 * Enqueue at dispatch 342 * 343 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 344 */ 345 io.enq.canAccept := allowEnqueue 346 val canEnqueue = io.enq.req.map(_.valid) 347 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 348 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 349 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 350 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 351 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 352 353 for (i <- 0 until io.enq.req.length) { 354 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 355 val index = io.enq.req(i).bits.sqIdx 356 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 357 when (canEnqueue(i) && !enqCancel(i)) { 358 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 359 // 16 2 2 2 2 2. 360 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 361 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 362 when (j.U < validVStoreOffset(i)) { 363 uop((index + j.U).value) := io.enq.req(i).bits 364 // NOTE: the index will be used when replay 365 uop((index + j.U).value).sqIdx := sqIdx + j.U 366 allocated((index + j.U).value) := true.B 367 datavalid((index + j.U).value) := false.B 368 addrvalid((index + j.U).value) := false.B 369 unaligned((index + j.U).value) := false.B 370 committed((index + j.U).value) := false.B 371 pending((index + j.U).value) := false.B 372 prefetch((index + j.U).value) := false.B 373 mmio((index + j.U).value) := false.B 374 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 375 vecMbCommit((index + j.U).value) := false.B 376 vecDataValid((index + j.U).value) := false.B 377 hasException((index + j.U).value) := false.B 378 waitStoreS2((index + j.U).value) := true.B 379 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 380 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 381 } 382 } 383 } 384 io.enq.resp(i) := sqIdx 385 } 386 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 387 388 /** 389 * Update addr/dataReadyPtr when issue from rs 390 */ 391 // update issuePtr 392 val IssuePtrMoveStride = 4 393 require(IssuePtrMoveStride >= 2) 394 395 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 396 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 397 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 398 && ptr =/= enqPtrExt(0)) 399 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 400 addrReadyPtrExt := nextAddrReadyPtr 401 402 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 403 (0 until StoreQueueSize).map(i => { 404 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 405 }) 406 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 407 408 when (io.brqRedirect.valid) { 409 addrReadyPtrExt := Mux( 410 isAfter(cmtPtrExt(0), deqPtrExt(0)), 411 cmtPtrExt(0), 412 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 413 ) 414 } 415 416 io.stAddrReadySqPtr := addrReadyPtrExt 417 418 // update 419 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 420 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 421 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 422 && ptr =/= enqPtrExt(0)) 423 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 424 dataReadyPtrExt := nextDataReadyPtr 425 426 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 427 (0 until StoreQueueSize).map(i => { 428 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 429 }) 430 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 431 432 when (io.brqRedirect.valid) { 433 dataReadyPtrExt := Mux( 434 isAfter(cmtPtrExt(0), deqPtrExt(0)), 435 cmtPtrExt(0), 436 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 437 ) 438 } 439 440 io.stDataReadySqPtr := dataReadyPtrExt 441 io.stIssuePtr := enqPtrExt(0) 442 io.sqDeqPtr := deqPtrExt(0) 443 444 /** 445 * Writeback store from store units 446 * 447 * Most store instructions writeback to regfile in the previous cycle. 448 * However, 449 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 450 * (in this way it will trigger an exception when it reaches ROB's head) 451 * instead of pending to avoid sending them to lower level. 452 * (2) For an mmio instruction without exceptions, we mark it as pending. 453 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 454 * Upon receiving the response, StoreQueue writes back the instruction 455 * through arbiter with store units. It will later commit as normal. 456 */ 457 458 // Write addr to sq 459 for (i <- 0 until StorePipelineWidth) { 460 paddrModule.io.wen(i) := false.B 461 vaddrModule.io.wen(i) := false.B 462 dataModule.io.mask.wen(i) := false.B 463 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 464 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 465 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 466 // will re-enter exceptionbuffer at store_s2 467 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 468 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 469 470 when (io.storeAddrIn(i).fire) { 471 val addr_valid = !io.storeAddrIn(i).bits.miss 472 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 473 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 474 unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned) 475 476 paddrModule.io.waddr(i) := stWbIndex 477 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 478 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 479 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 480 paddrModule.io.wen(i) := true.B 481 482 vaddrModule.io.waddr(i) := stWbIndex 483 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 484 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 485 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 486 vaddrModule.io.wen(i) := true.B 487 488 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 489 490 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 491 492 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 493 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 494 495 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 496 497 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 498 io.storeAddrIn(i).bits.uop.sqIdx.value, 499 io.storeAddrIn(i).bits.uop.pc, 500 io.storeAddrIn(i).bits.miss, 501 io.storeAddrIn(i).bits.vaddr, 502 io.storeAddrIn(i).bits.paddr, 503 io.storeAddrIn(i).bits.mmio, 504 io.storeAddrIn(i).bits.isvec 505 ) 506 } 507 508 // re-replinish mmio, for pma/pmp will get mmio one cycle later 509 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 510 //val stWbIndexReg = RegNext(stWbIndex) 511 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 512 when (storeAddrInFireReg) { 513 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 514 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 515 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 516 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af 517 waitStoreS2(stWbIndexReg) := false.B 518 } 519 // dcache miss info (one cycle later than storeIn) 520 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 521 when (storeAddrInFireReg) { 522 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 523 } 524 // enter exceptionbuffer again 525 when (storeAddrInFireReg) { 526 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af 527 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 528 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 529 } 530 531 when(vaddrModule.io.wen(i)){ 532 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 533 } 534 } 535 536 // Write data to sq 537 // Now store data pipeline is actually 2 stages 538 for (i <- 0 until StorePipelineWidth) { 539 dataModule.io.data.wen(i) := false.B 540 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 541 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 542 // sq data write takes 2 cycles: 543 // sq data write s0 544 when (io.storeDataIn(i).fire) { 545 // send data write req to data module 546 dataModule.io.data.waddr(i) := stWbIndex 547 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 548 0.U, 549 Mux(isVec, 550 io.storeDataIn(i).bits.data, 551 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 552 ) 553 dataModule.io.data.wen(i) := true.B 554 555 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 556 557 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 558 io.storeDataIn(i).bits.uop.sqIdx.value, 559 io.storeDataIn(i).bits.uop.pc, 560 io.storeDataIn(i).bits.data, 561 dataModule.io.data.wdata(i) 562 ) 563 } 564 // sq data write s1 565 when ( 566 RegNext(io.storeDataIn(i).fire) 567 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 568 ) { 569 datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B 570 } 571 } 572 573 // Write mask to sq 574 for (i <- 0 until StorePipelineWidth) { 575 // sq mask write s0 576 when (io.storeMaskIn(i).fire) { 577 // send data write req to data module 578 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 579 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 580 dataModule.io.mask.wen(i) := true.B 581 } 582 } 583 584 /** 585 * load forward query 586 * 587 * Check store queue for instructions that is older than the load. 588 * The response will be valid at the next cycle after req. 589 */ 590 // check over all lq entries and forward data from the first matched store 591 for (i <- 0 until LoadPipelineWidth) { 592 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 593 // (1) if they have the same flag, we need to check range(tail, sqIdx) 594 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 595 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 596 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 597 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 598 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 599 val forwardMask = io.forward(i).sqIdxMask 600 // all addrvalid terms need to be checked 601 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 602 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 603 // vector store will consider all inactive || secondInvalid flows as valid 604 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 605 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 606 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 607 608 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 609 val storeSetHitVec = Mux(lfstEnable, 610 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 611 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 612 ) 613 614 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 615 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 616 val canForward1 = forwardMask1 & allValidVec.asUInt 617 val canForward2 = forwardMask2 & allValidVec.asUInt 618 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 619 620 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 621 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 622 ) 623 624 // do real fwd query (cam lookup in load_s1) 625 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 626 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 627 628 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 629 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 630 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 631 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 632 633 // vaddr cam result does not equal to paddr cam result 634 // replay needed 635 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 636 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 637 val vpmaskNotEqual = ( 638 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 639 RegNext(needForward) & 640 GatedRegNext(addrRealValidVec.asUInt) 641 ) =/= 0.U 642 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 643 when (vaddrMatchFailed) { 644 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 645 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 646 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 647 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 648 ); 649 } 650 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 651 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 652 653 // Fast forward mask will be generated immediately (load_s1) 654 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 655 656 // Forward result will be generated 1 cycle later (load_s2) 657 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 658 io.forward(i).forwardData := dataModule.io.forwardData(i) 659 // If addr match, data not ready, mark it as dataInvalid 660 // load_s1: generate dataInvalid in load_s1 to set fastUop 661 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 662 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 663 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 664 io.forward(i).dataInvalidFast := dataInvalidMask.orR 665 666 // make chisel happy 667 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 668 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 669 // make chisel happy 670 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 671 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 672 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 673 674 // If SSID match, address not ready, mark it as addrInvalid 675 // load_s2: generate addrInvalid 676 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 677 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 678 // make chisel happy 679 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 680 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 681 // make chisel happy 682 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 683 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 684 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 685 686 // load_s2 687 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 688 // check if vaddr forward mismatched 689 io.forward(i).matchInvalid := vaddrMatchFailed 690 691 // data invalid sq index 692 // check whether false fail 693 // check flag 694 val s2_differentFlag = RegNext(differentFlag) 695 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 696 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 697 698 // addr invalid sq index 699 // make chisel happy 700 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 701 addrInvalidMaskRegWire := addrInvalidMaskReg 702 val addrInvalidFlag = addrInvalidMaskRegWire.orR 703 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 704 705 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 706 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 707 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 708 709 // store-set content management 710 // +-----------------------+ 711 // | Search a SSID for the | 712 // | load operation | 713 // +-----------------------+ 714 // | 715 // V 716 // +-------------------+ 717 // | load wait strict? | 718 // +-------------------+ 719 // | 720 // V 721 // +----------------------+ 722 // Set| |Clean 723 // V V 724 // +------------------------+ +------------------------------+ 725 // | Waiting for all older | | Wait until the corresponding | 726 // | stores operations | | older store operations | 727 // +------------------------+ +------------------------------+ 728 729 730 731 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 732 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 733 } .elsewhen (addrInvalidFlag) { 734 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 735 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 736 } .otherwise { 737 // may be store inst has been written to sbuffer already. 738 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 739 } 740 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 741 742 // data invalid sq index 743 // make chisel happy 744 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 745 dataInvalidMaskRegWire := dataInvalidMaskReg 746 val dataInvalidFlag = dataInvalidMaskRegWire.orR 747 748 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 749 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 750 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 751 752 when (dataInvalidFlag) { 753 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 754 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 755 } .otherwise { 756 // may be store inst has been written to sbuffer already. 757 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 758 } 759 } 760 761 /** 762 * Memory mapped IO / other uncached operations / CMO 763 * 764 * States: 765 * (1) writeback from store units: mark as pending 766 * (2) when they reach ROB's head, they can be sent to uncache channel 767 * (3) response from uncache channel: mark as datavalidmask.wen 768 * (4) writeback to ROB (and other units): mark as writebacked 769 * (5) ROB commits the instruction: same as normal instructions 770 */ 771 //(2) when they reach ROB's head, they can be sent to uncache channel 772 // TODO: CAN NOT deal with vector mmio now! 773 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 774 val uncacheState = RegInit(s_idle) 775 val uncacheUop = Reg(new DynInst) 776 val cboFlushedSb = RegInit(false.B) 777 switch(uncacheState) { 778 is(s_idle) { 779 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 780 uncacheState := s_req 781 uncacheUop := uop(deqPtr) 782 cboFlushedSb := false.B 783 } 784 } 785 is(s_req) { 786 when (io.uncache.req.fire) { 787 when (io.uncacheOutstanding) { 788 uncacheState := s_wb 789 } .otherwise { 790 uncacheState := s_resp 791 } 792 } 793 } 794 is(s_resp) { 795 when(io.uncache.resp.fire) { 796 uncacheState := s_wb 797 798 when (io.uncache.resp.bits.nderr) { 799 uop(deqPtr).exceptionVec(storeAccessFault) := true.B 800 } 801 } 802 } 803 is(s_wb) { 804 when (io.mmioStout.fire || io.vecmmioStout.fire) { 805 uncacheState := s_wait 806 } 807 } 808 is(s_wait) { 809 // A MMIO store can always move cmtPtrExt as it must be ROB head 810 when(scommit > 0.U) { 811 uncacheState := s_idle // ready for next mmio 812 } 813 } 814 } 815 io.uncache.req.valid := uncacheState === s_req 816 817 io.uncache.req.bits := DontCare 818 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 819 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 820 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 821 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 822 823 // CBO op type check can be delayed for 1 cycle, 824 // as uncache op will not start in s_idle 825 val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0)) 826 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 827 when (deqCanDoCbo) { 828 // disable uncache channel 829 io.uncache.req.valid := false.B 830 831 when (io.cmoOpReq.fire) { 832 uncacheState := s_resp 833 } 834 835 when (uncacheState === s_resp) { 836 when (io.cmoOpResp.fire) { 837 uncacheState := s_wb 838 } 839 } 840 } 841 842 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req) 843 io.cmoOpReq.bits.opcode := uop(deqPtr).fuOpType(1, 0) 844 io.cmoOpReq.bits.address := cboMmioAddr 845 846 io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp) 847 848 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty 849 850 when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) { 851 cboFlushedSb := true.B 852 } 853 854 io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 855 856 when(io.uncache.req.fire){ 857 // mmio store should not be committed until uncache req is sent 858 pending(deqPtr) := false.B 859 860 XSDebug( 861 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 862 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 863 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 864 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 865 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 866 ) 867 } 868 869 // (3) response from uncache channel: mark as datavalid 870 io.uncache.resp.ready := true.B 871 872 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 873 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 874 io.mmioStout.bits.uop := uncacheUop 875 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 876 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 877 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 878 io.mmioStout.bits.debug.isMMIO := true.B 879 io.mmioStout.bits.debug.paddr := DontCare 880 io.mmioStout.bits.debug.isPerfCnt := false.B 881 io.mmioStout.bits.debug.vaddr := DontCare 882 // Remove MMIO inst from store queue after MMIO request is being sent 883 // That inst will be traced by uncache state machine 884 when (io.mmioStout.fire) { 885 allocated(deqPtr) := false.B 886 } 887 888 // (4) or vector store: 889 // TODO: implement it! 890 io.vecmmioStout := DontCare 891 io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr) 892 io.vecmmioStout.bits.uop := uop(deqPtr) 893 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 894 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 895 io.vecmmioStout.bits.debug.isMMIO := true.B 896 io.vecmmioStout.bits.debug.paddr := DontCare 897 io.vecmmioStout.bits.debug.isPerfCnt := false.B 898 io.vecmmioStout.bits.debug.vaddr := DontCare 899 // Remove MMIO inst from store queue after MMIO request is being sent 900 // That inst will be traced by uncache state machine 901 when (io.vecmmioStout.fire) { 902 allocated(deqPtr) := false.B 903 } 904 905 /** 906 * ROB commits store instructions (mark them as committed) 907 * 908 * (1) When store commits, mark it as committed. 909 * (2) They will not be cancelled and can be sent to lower level. 910 */ 911 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 912 "should not commit instruction when MMIO has not been finished\n") 913 914 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 915 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 916 dontTouch(commitVec) 917 // TODO: Deal with vector store mmio 918 for (i <- 0 until CommitWidth) { 919 when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 920 // don't commit while doing misalign 921 if (i == 0){ 922 // TODO: fixme for vector mmio 923 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 924 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 925 committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B) 926 commitVec(0) := Mux(misalignBlock, false.B, true.B) 927 } 928 } 929 } else { 930 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 931 committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value)) 932 commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1)) 933 } 934 } 935 } 936 } 937 938 commitCount := PopCount(commitVec) 939 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 940 941 // committed stores will not be cancelled and can be sent to lower level. 942 // remove retired insts from sq, add retired store to sbuffer 943 944 // Read data from data module 945 // As store queue grows larger and larger, time needed to read data from data 946 // module keeps growing higher. Now we give data read a whole cycle. 947 for (i <- 0 until EnsbufferWidth) { 948 val ptr = rdataPtrExt(i).value 949 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 950 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 951 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 952 } 953 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 954 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 955 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 956 if (i == 0) { 957 // use dataBuffer write port 0 to writeback missaligned store out 958 dataBuffer.io.enq(i).valid := Mux( 959 doMisalignSt, 960 io.maControl.control.writeSb, 961 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 962 ) 963 } else { 964 dataBuffer.io.enq(i).valid := Mux( 965 doMisalignSt, 966 false.B, 967 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 968 ) 969 } 970 // Note that store data/addr should both be valid after store's commit 971 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr))) 972 dataBuffer.io.enq(i).bits.addr := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i)) 973 dataBuffer.io.enq(i).bits.vaddr := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i)) 974 dataBuffer.io.enq(i).bits.data := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data) 975 dataBuffer.io.enq(i).bits.mask := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask) 976 dataBuffer.io.enq(i).bits.wline := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i)) 977 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 978 dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr)) 979 // when scalar has exception, will also not write into sbuffer 980 dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid) 981// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 982 } 983 984 // Send data stored in sbufferReqBitsReg to sbuffer 985 for (i <- 0 until EnsbufferWidth) { 986 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 987 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 988 io.sbuffer(i).bits := DontCare 989 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 990 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 991 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 992 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 993 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 994 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 995 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 996 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 997 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 998 // Before data write finish, sbuffer is unable to provide store to load 999 // forward data. As an workaround, deqPtrExt and allocated flag update 1000 // is delayed so that load can get the right data from store queue. 1001 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1002 when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) { 1003 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1004 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1005 } 1006 } 1007 1008 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1009 // Flags are used to record whether there are any exceptions when the queue is displayed. 1010 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1011 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1012 val ptr = rdataPtrExt(i).value 1013 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1014 val exceptionVliad = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr) 1015 (exceptionVliad, uop(ptr)) 1016 } 1017 1018 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1019 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1020 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1021 // Just select the last Uop tah has an exception. 1022 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1023 // If the last Uop with an exception is the LastUop of this instruction, the flag is not set. 1024 val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop 1025 1026 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1027 val ptr = rdataPtrExt(i).value 1028 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1029 val vecLastUopCommit = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && 1030 allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) 1031 vecLastUopCommit 1032 }.reduce(_ || _) 1033 1034 // When a LastUop with an exception instruction is commited, clear the flag. 1035 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) { 1036 vecExceptionFlag.valid := true.B 1037 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1038 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1039 vecExceptionFlag.valid := false.B 1040 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1041 } 1042 1043 // A dumb defensive code. The flag should not be placed for a long period of time. 1044 // A relatively large timeout period, not have any special meaning. 1045 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1046 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1047 1048 // Initialize when unenabled difftest. 1049 for (i <- 0 until EnsbufferWidth) { 1050 io.sbufferVecDifftestInfo(i) := DontCare 1051 } 1052 // Consistent with the logic above. 1053 // Only the vector store difftest required signal is separated from the rtl code. 1054 if (env.EnableDifftest) { 1055 for (i <- 0 until EnsbufferWidth) { 1056 val ptr = rdataPtrExt(i).value 1057 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1058 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 1059 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1060 } 1061 for (i <- 0 until EnsbufferWidth) { 1062 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1063 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1064 1065 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1066 } 1067 } 1068 1069 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1070 if (coreParams.dcacheParametersOpt.isEmpty) { 1071 for (i <- 0 until EnsbufferWidth) { 1072 val ptr = deqPtrExt(i).value 1073 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1074 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1075 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1076 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1077 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1078 when (wen) { 1079 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1080 } 1081 } 1082 } 1083 1084 // Read vaddr for mem exception 1085 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1086 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1087 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1088 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1089 1090 // vector commit or replay from 1091 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1092 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1093 for (i <- 0 until StoreQueueSize) { 1094 val fbk = io.vecFeedback 1095 for (j <- 0 until VecStorePipelineWidth) { 1096 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1097 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1098 } 1099 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1100 1101 when (vecCommit(i)) { 1102 vecMbCommit(i) := true.B 1103 } 1104 } 1105 1106 // misprediction recovery / exception redirect 1107 // invalidate sq term using robIdx 1108 for (i <- 0 until StoreQueueSize) { 1109 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1110 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1111 when (needCancel(i)) { 1112 allocated(i) := false.B 1113 } 1114 } 1115 1116 /** 1117* update pointers 1118**/ 1119 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1120 v && x.bits.robIdx.needFlush(io.brqRedirect) 1121 } 1122 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1123 Mux(v, req.bits.numLsElem, 0.U) 1124 } 1125 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1126 1127 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1128 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1129 val enqNumber = validVStoreFlow.reduce(_ + _) 1130 1131 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1132 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1133 1134 when (lastlastCycleRedirect) { 1135 // we recover the pointers in 2 cycle after redirect for better timing 1136 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1137 }.otherwise { 1138 // lastCycleRedirect.valid or nornal case 1139 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1140 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1141 } 1142 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1143 1144 exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt 1145 // special case (store miss align) in updating ptr 1146 when (doMisalignSt) { 1147 when (!finishMisalignSt) { 1148 // dont move deqPtr and rdataPtr until all split store has been written to sb 1149 deqPtrExtNext := deqPtrExt 1150 rdataPtrExtNext := rdataPtrExt 1151 } .otherwise { 1152 // remove this unaligned store from sq 1153 allocated(deqPtr) := false.B 1154 committed(deqPtr) := true.B 1155 cmtPtrExt := cmtPtrExt.map(_ + 1.U) 1156 deqPtrExtNext := deqPtrExt.map(_ + 1.U) 1157 rdataPtrExtNext := rdataPtrExt.map(_ + 1.U) 1158 } 1159 } 1160 1161 deqPtrExt := deqPtrExtNext 1162 rdataPtrExt := rdataPtrExtNext 1163 1164 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1165 1166 // If redirect at T0, sqCancelCnt is at T2 1167 io.sqCancelCnt := redirectCancelCount 1168 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1169 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1170 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1171 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1172 1173 val valid_cnt = PopCount(allocated) 1174 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1175 1176 // io.sqempty will be used by sbuffer 1177 // We delay it for 1 cycle for better timing 1178 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1179 // for 1 cycle will also promise that sq is empty in that cycle 1180 io.sqEmpty := RegNext( 1181 enqPtrExt(0).value === deqPtrExt(0).value && 1182 enqPtrExt(0).flag === deqPtrExt(0).flag 1183 ) 1184 // perf counter 1185 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1186 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1187 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1188 io.sqFull := !allowEnqueue 1189 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1190 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1191 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1192 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1193 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1194 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1195 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1196 1197 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1198 val perfEvents = Seq( 1199 ("mmioCycle ", uncacheState =/= s_idle), 1200 ("mmioCnt ", io.uncache.req.fire), 1201 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1202 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1203 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1204 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1205 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1206 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1207 ) 1208 generatePerfEvent() 1209 1210 // debug info 1211 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1212 1213 def PrintFlag(flag: Bool, name: String): Unit = { 1214 when(flag) { 1215 XSDebug(false, true.B, name) 1216 }.otherwise { 1217 XSDebug(false, true.B, " ") 1218 } 1219 } 1220 1221 for (i <- 0 until StoreQueueSize) { 1222 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1223 uop(i).pc, 1224 debug_vaddr(i), 1225 debug_paddr(i), 1226 debug_data(i) 1227 ) 1228 PrintFlag(allocated(i), "a") 1229 PrintFlag(allocated(i) && addrvalid(i), "a") 1230 PrintFlag(allocated(i) && datavalid(i), "d") 1231 PrintFlag(allocated(i) && committed(i), "c") 1232 PrintFlag(allocated(i) && pending(i), "p") 1233 PrintFlag(allocated(i) && mmio(i), "m") 1234 XSDebug(false, true.B, "\n") 1235 } 1236 1237} 1238