1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Flipped(ValidIO(new Redirect)) 37 val flush = Input(Bool()) 38 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 39 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 40 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 41 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 42 val commits = Flipped(new RoqCommitIO) 43 val uncache = new DCacheWordIO 44 val roqDeqPtr = Input(new RoqPtr) 45 // val refill = Flipped(Valid(new DCacheLineReq )) 46 val exceptionAddr = new ExceptionAddrIO 47 val sqempty = Output(Bool()) 48 }) 49 50 // data modules 51 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 52 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 53 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 54 dataModule.io := DontCare 55 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 56 vaddrModule.io := DontCare 57 58 // state & misc 59 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 60 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 61 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 62 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 63 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 64 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 65 66 // ptr 67 require(StoreQueueSize > RenameWidth) 68 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 69 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 70 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 71 val allowEnqueue = RegInit(true.B) 72 73 val enqPtr = enqPtrExt(0).value 74 val deqPtr = deqPtrExt(0).value 75 76 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 77 val headMask = UIntToMask(enqPtr, StoreQueueSize) 78 79 // Read dataModule 80 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 81 // if !sbuffer.fire(), read the same ptr 82 // if sbuffer.fire(), read next 83 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 84 VecInit(deqPtrExt.map(_ + 2.U)), 85 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 86 VecInit(deqPtrExt.map(_ + 1.U)), 87 deqPtrExt 88 ) 89 )) 90 val dataModuleRead = dataModule.io.rdata 91 for (i <- 0 until StorePipelineWidth) { 92 dataModule.io.raddr(i) := deqPtrExtNext(i).value 93 } 94 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 95 96 /** 97 * Enqueue at dispatch 98 * 99 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 100 */ 101 io.enq.canAccept := allowEnqueue 102 for (i <- 0 until RenameWidth) { 103 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 104 val sqIdx = enqPtrExt(offset) 105 val index = sqIdx.value 106 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 107 uop(index) := io.enq.req(i).bits 108 allocated(index) := true.B 109 datavalid(index) := false.B 110 writebacked(index) := false.B 111 commited(index) := false.B 112 pending(index) := false.B 113 } 114 io.enq.resp(i) := sqIdx 115 } 116 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 117 118 /** 119 * Writeback store from store units 120 * 121 * Most store instructions writeback to regfile in the previous cycle. 122 * However, 123 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 124 * (in this way it will trigger an exception when it reaches ROB's head) 125 * instead of pending to avoid sending them to lower level. 126 * (2) For an mmio instruction without exceptions, we mark it as pending. 127 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 128 * Upon receiving the response, StoreQueue writes back the instruction 129 * through arbiter with store units. It will later commit as normal. 130 */ 131 for (i <- 0 until StorePipelineWidth) { 132 dataModule.io.wen(i) := false.B 133 vaddrModule.io.wen(i) := false.B 134 when (io.storeIn(i).fire()) { 135 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 136 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 137 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 138 pending(stWbIndex) := io.storeIn(i).bits.mmio 139 140 val storeWbData = Wire(new SQDataEntry) 141 storeWbData := DontCare 142 storeWbData.paddr := io.storeIn(i).bits.paddr 143 storeWbData.mask := io.storeIn(i).bits.mask 144 storeWbData.data := io.storeIn(i).bits.data 145 dataModule.io.waddr(i) := stWbIndex 146 dataModule.io.wdata(i) := storeWbData 147 dataModule.io.wen(i) := true.B 148 149 vaddrModule.io.waddr(i) := stWbIndex 150 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 151 vaddrModule.io.wen(i) := true.B 152 153 mmio(stWbIndex) := io.storeIn(i).bits.mmio 154 155 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 156 io.storeIn(i).bits.uop.sqIdx.value, 157 io.storeIn(i).bits.uop.cf.pc, 158 io.storeIn(i).bits.vaddr, 159 io.storeIn(i).bits.paddr, 160 io.storeIn(i).bits.data, 161 io.storeIn(i).bits.mmio 162 ) 163 } 164 } 165 166 /** 167 * load forward query 168 * 169 * Check store queue for instructions that is older than the load. 170 * The response will be valid at the next cycle after req. 171 */ 172 // check over all lq entries and forward data from the first matched store 173 for (i <- 0 until LoadPipelineWidth) { 174 io.forward(i).forwardMask := 0.U(8.W).asBools 175 io.forward(i).forwardData := DontCare 176 177 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 178 // (1) if they have the same flag, we need to check range(tail, sqIdx) 179 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 180 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 181 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 182 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 183 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 184 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 185 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 186 for (j <- 0 until StoreQueueSize) { 187 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 188 } 189 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 190 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 191 192 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 193 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 194 ) 195 196 // do real fwd query 197 dataModule.io.forwardQuery( 198 numForward = i, 199 paddr = io.forward(i).paddr, 200 needForward1 = needForward1, 201 needForward2 = needForward2 202 ) 203 204 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 205 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 206 } 207 208 /** 209 * Memory mapped IO / other uncached operations 210 * 211 * States: 212 * (1) writeback from store units: mark as pending 213 * (2) when they reach ROB's head, they can be sent to uncache channel 214 * (3) response from uncache channel: mark as datavalid 215 * (4) writeback to ROB (and other units): mark as writebacked 216 * (5) ROB commits the instruction: same as normal instructions 217 */ 218 //(2) when they reach ROB's head, they can be sent to uncache channel 219 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 220 io.commits.info(0).commitType === CommitType.STORE && 221 io.roqDeqPtr === uop(deqPtr).roqIdx && 222 !io.commits.isWalk 223 224 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 225 io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0) 226 io.uncache.req.bits.data := dataModule.io.rdata(0).data 227 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 228 229 io.uncache.req.bits.meta.id := DontCare 230 io.uncache.req.bits.meta.vaddr := DontCare 231 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(0).paddr 232 io.uncache.req.bits.meta.uop := uop(deqPtr) 233 io.uncache.req.bits.meta.mmio := true.B 234 io.uncache.req.bits.meta.tlb_miss := false.B 235 io.uncache.req.bits.meta.mask := dataModule.io.rdata(0).mask 236 io.uncache.req.bits.meta.replay := false.B 237 238 when(io.uncache.req.fire()){ 239 pending(deqPtr) := false.B 240 241 XSDebug( 242 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 243 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 244 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 245 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 246 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 247 ) 248 } 249 250 // (3) response from uncache channel: mark as datavalid 251 io.uncache.resp.ready := true.B 252 when (io.uncache.resp.fire()) { 253 datavalid(deqPtr) := true.B 254 } 255 256 // (4) writeback to ROB (and other units): mark as writebacked 257 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 258 io.mmioStout.bits.uop := uop(deqPtr) 259 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 260 io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr) 261 io.mmioStout.bits.redirectValid := false.B 262 io.mmioStout.bits.redirect := DontCare 263 io.mmioStout.bits.brUpdate := DontCare 264 io.mmioStout.bits.debug.isMMIO := true.B 265 io.mmioStout.bits.debug.isPerfCnt := false.B 266 io.mmioStout.bits.fflags := DontCare 267 when (io.mmioStout.fire()) { 268 writebacked(deqPtr) := true.B 269 allocated(deqPtr) := false.B 270 } 271 272 /** 273 * ROB commits store instructions (mark them as commited) 274 * 275 * (1) When store commits, mark it as commited. 276 * (2) They will not be cancelled and can be sent to lower level. 277 */ 278 for (i <- 0 until CommitWidth) { 279 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 280 when (storeCommit) { 281 commited(io.commits.info(i).sqIdx.value) := true.B 282 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 283 } 284 } 285 286 // Commited stores will not be cancelled and can be sent to lower level. 287 // remove retired insts from sq, add retired store to sbuffer 288 for (i <- 0 until StorePipelineWidth) { 289 // We use RegNext to prepare data for sbuffer 290 val ptr = deqPtrExt(i).value 291 // if !sbuffer.fire(), read the same ptr 292 // if sbuffer.fire(), read next 293 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 294 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 295 io.sbuffer(i).bits.addr := dataModuleRead(i).paddr 296 io.sbuffer(i).bits.data := dataModuleRead(i).data 297 io.sbuffer(i).bits.mask := dataModuleRead(i).mask 298 io.sbuffer(i).bits.meta := DontCare 299 io.sbuffer(i).bits.meta.tlb_miss := false.B 300 io.sbuffer(i).bits.meta.uop := DontCare 301 io.sbuffer(i).bits.meta.mmio := false.B 302 io.sbuffer(i).bits.meta.mask := io.sbuffer(i).bits.mask 303 304 when (io.sbuffer(i).fire()) { 305 allocated(ptr) := false.B 306 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 307 } 308 } 309 when (io.sbuffer(1).fire()) { 310 assert(io.sbuffer(0).fire()) 311 } 312 313 if (!env.FPGAPlatform) { 314 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 315 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 316 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 317 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 318 319 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 320 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 321 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 322 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 323 } 324 325 // Read vaddr for mem exception 326 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 327 328 // misprediction recovery / exception redirect 329 // invalidate sq term using robIdx 330 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 331 for (i <- 0 until StoreQueueSize) { 332 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 333 when (needCancel(i)) { 334 allocated(i) := false.B 335 } 336 } 337 338 /** 339 * update pointers 340 */ 341 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 342 val lastCycleFlush = RegNext(io.flush) 343 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 344 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 345 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 346 when (lastCycleRedirect || lastCycleFlush) { 347 // we recover the pointers in the next cycle after redirect 348 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 349 }.otherwise { 350 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 351 } 352 353 deqPtrExt := deqPtrExtNext 354 355 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 356 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 357 val trueValidCounter = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 358 validCounter := Mux(lastLastCycleRedirect, 359 trueValidCounter - dequeueCount, 360 validCounter + enqNumber - dequeueCount 361 ) 362 363 allowEnqueue := Mux(io.brqRedirect.valid || io.flush, 364 false.B, 365 Mux(lastLastCycleRedirect, 366 trueValidCounter <= (StoreQueueSize - RenameWidth).U, 367 validCounter + enqNumber <= (StoreQueueSize - RenameWidth).U 368 ) 369 ) 370 371 // io.sqempty will be used by sbuffer 372 // We delay it for 1 cycle for better timing 373 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 374 // for 1 cycle will also promise that sq is empty in that cycle 375 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 376 377 // debug info 378 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 379 380 def PrintFlag(flag: Bool, name: String): Unit = { 381 when(flag) { 382 XSDebug(false, true.B, name) 383 }.otherwise { 384 XSDebug(false, true.B, " ") 385 } 386 } 387 388 for (i <- 0 until StoreQueueSize) { 389 if (i % 4 == 0) XSDebug("") 390 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 391 PrintFlag(allocated(i), "a") 392 PrintFlag(allocated(i) && datavalid(i), "v") 393 PrintFlag(allocated(i) && writebacked(i), "w") 394 PrintFlag(allocated(i) && commited(i), "c") 395 PrintFlag(allocated(i) && pending(i), "p") 396 XSDebug(false, true.B, " ") 397 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 398 } 399 400} 401