xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 272ec6b14a832d392220dc0e9441d1e03bb1dcb1)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chisel3._
20import chisel3.util._
21import difftest._
22import difftest.common.DifftestMem
23import org.chipsalliance.cde.config.Parameters
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.cache._
28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
29import xiangshan.backend._
30import xiangshan.backend.rob.{RobLsqIO, RobPtr}
31import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
33
34class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
35  p => p(XSCoreParamsKey).StoreQueueSize
36){
37}
38
39object SqPtr {
40  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
41    val ptr = Wire(new SqPtr)
42    ptr.flag := f
43    ptr.value := v
44    ptr
45  }
46}
47
48class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
49  val canAccept = Output(Bool())
50  val lqCanAccept = Input(Bool())
51  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
52  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
53  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
54}
55
56class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
57  val addr   = UInt(PAddrBits.W)
58  val vaddr  = UInt(VAddrBits.W)
59  val data   = UInt(VLEN.W)
60  val mask   = UInt((VLEN/8).W)
61  val wline = Bool()
62  val sqPtr  = new SqPtr
63  val prefetch = Bool()
64}
65
66// Store Queue
67class StoreQueue(implicit p: Parameters) extends XSModule
68  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
69  val io = IO(new Bundle() {
70    val hartId = Input(UInt(8.W))
71    val enq = new SqEnqIO
72    val brqRedirect = Flipped(ValidIO(new Redirect))
73    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
74    val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include
75    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
76    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
77    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
78    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
79    val uncacheOutstanding = Input(Bool())
80    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
81    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
82    val rob = Flipped(new RobLsqIO)
83    val uncache = new UncacheWordIO
84    // val refill = Flipped(Valid(new DCacheLineReq ))
85    val exceptionAddr = new ExceptionAddrIO
86    val sqEmpty = Output(Bool())
87    val stAddrReadySqPtr = Output(new SqPtr)
88    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
89    val stDataReadySqPtr = Output(new SqPtr)
90    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
91    val stIssuePtr = Output(new SqPtr)
92    val sqDeqPtr = Output(new SqPtr)
93    val sqFull = Output(Bool())
94    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
95    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
96    val force_write = Output(Bool())
97    val vecStoreRetire = Flipped(ValidIO(new SqPtr))
98  })
99
100  println("StoreQueue: size:" + StoreQueueSize)
101
102  // data modules
103  val uop = Reg(Vec(StoreQueueSize, new DynInst))
104  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
105  val dataModule = Module(new SQDataModule(
106    numEntries = StoreQueueSize,
107    numRead = EnsbufferWidth,
108    numWrite = StorePipelineWidth,
109    numForward = LoadPipelineWidth
110  ))
111  dataModule.io := DontCare
112  val paddrModule = Module(new SQAddrModule(
113    dataWidth = PAddrBits,
114    numEntries = StoreQueueSize,
115    numRead = EnsbufferWidth,
116    numWrite = StorePipelineWidth,
117    numForward = LoadPipelineWidth
118  ))
119  paddrModule.io := DontCare
120  val vaddrModule = Module(new SQAddrModule(
121    dataWidth = VAddrBits,
122    numEntries = StoreQueueSize,
123    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
124    numWrite = StorePipelineWidth,
125    numForward = LoadPipelineWidth
126  ))
127  vaddrModule.io := DontCare
128  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
129  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
130  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
131  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
132
133  // state & misc
134  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
135  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
136  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
137  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
138  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
139  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
140  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
141  val atomic = Reg(Vec(StoreQueueSize, Bool()))
142  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
143  val vec = Reg(Vec(StoreQueueSize, Bool()))
144  val vecAddrvalid = Reg(Vec(StoreQueueSize, Bool())) // TODO
145
146  // ptr
147  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
148  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
149  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
150  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
151  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
152  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
153  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
154
155  val enqPtr = enqPtrExt(0).value
156  val deqPtr = deqPtrExt(0).value
157  val cmtPtr = cmtPtrExt(0).value
158
159  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
160  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
161
162  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
163  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
164
165  val commitCount = RegNext(io.rob.scommit)
166
167  // store can be committed by ROB
168  io.rob.mmio := DontCare
169  io.rob.uop := DontCare
170
171  // Read dataModule
172  assert(EnsbufferWidth <= 2)
173  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
174  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
175    VecInit(rdataPtrExt.map(_ + 2.U)),
176    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid,
177      VecInit(rdataPtrExt.map(_ + 1.U)),
178      rdataPtrExt
179    )
180  ))
181
182  // deqPtrExtNext traces which inst is about to leave store queue
183  //
184  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
185  // Before data write finish, sbuffer is unable to provide store to load
186  // forward data. As an workaround, deqPtrExt and allocated flag update
187  // is delayed so that load can get the right data from store queue.
188  //
189  // Modify deqPtrExtNext and io.sqDeq with care!
190  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
191    VecInit(deqPtrExt.map(_ + 2.U)),
192    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid,
193      VecInit(deqPtrExt.map(_ + 1.U)),
194      deqPtrExt
195    )
196  )
197  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
198    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U)
199  ))
200  assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire))
201
202  for (i <- 0 until EnsbufferWidth) {
203    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
204    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
205    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
206  }
207
208  // no inst will be committed 1 cycle before tval update
209  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
210
211  /**
212    * Enqueue at dispatch
213    *
214    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
215    */
216  io.enq.canAccept := allowEnqueue
217  val canEnqueue = io.enq.req.map(_.valid)
218  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
219  for (i <- 0 until io.enq.req.length) {
220    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
221    val sqIdx = enqPtrExt(offset)
222    val index = io.enq.req(i).bits.sqIdx.value
223    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
224    when (canEnqueue(i) && !enqCancel(i)) {
225      uop(index) := io.enq.req(i).bits
226      // NOTE: the index will be used when replay
227      uop(index).sqIdx := sqIdx
228      allocated(index) := true.B
229      datavalid(index) := false.B
230      addrvalid(index) := false.B
231      committed(index) := false.B
232      pending(index) := false.B
233      prefetch(index) := false.B
234      mmio(index) := false.B
235      vec(index) := enqInstr.isVecStore // check vector store by the encoding of inst
236      vecAddrvalid(index) := false.B//TODO
237
238      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
239      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
240    }
241    io.enq.resp(i) := sqIdx
242  }
243  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
244
245  /**
246    * Update addr/dataReadyPtr when issue from rs
247    */
248  // update issuePtr
249  val IssuePtrMoveStride = 4
250  require(IssuePtrMoveStride >= 2)
251
252  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
253  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || (vec(ptr.value) && vecAddrvalid(ptr.value))) && ptr =/= enqPtrExt(0))
254  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
255  addrReadyPtrExt := nextAddrReadyPtr
256
257  (0 until StoreQueueSize).map(i => {
258    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
259  })
260
261  when (io.brqRedirect.valid) {
262    addrReadyPtrExt := Mux(
263      isAfter(cmtPtrExt(0), deqPtrExt(0)),
264      cmtPtrExt(0),
265      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
266    )
267  }
268
269  io.stAddrReadySqPtr := addrReadyPtrExt
270
271  // update
272  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
273  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0)) // TODO : flag of vector store data valid not add yet
274  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
275  dataReadyPtrExt := nextDataReadyPtr
276
277  (0 until StoreQueueSize).map(i => {
278    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
279  })
280
281  when (io.brqRedirect.valid) {
282    dataReadyPtrExt := Mux(
283      isAfter(cmtPtrExt(0), deqPtrExt(0)),
284      cmtPtrExt(0),
285      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
286    )
287  }
288
289  io.stDataReadySqPtr := dataReadyPtrExt
290  io.stIssuePtr := enqPtrExt(0)
291  io.sqDeqPtr := deqPtrExt(0)
292
293  /**
294    * Writeback store from store units
295    *
296    * Most store instructions writeback to regfile in the previous cycle.
297    * However,
298    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
299    * (in this way it will trigger an exception when it reaches ROB's head)
300    * instead of pending to avoid sending them to lower level.
301    *   (2) For an mmio instruction without exceptions, we mark it as pending.
302    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
303    * Upon receiving the response, StoreQueue writes back the instruction
304    * through arbiter with store units. It will later commit as normal.
305    */
306
307  // Write addr to sq
308  for (i <- 0 until StorePipelineWidth) {
309    paddrModule.io.wen(i) := false.B
310    vaddrModule.io.wen(i) := false.B
311    dataModule.io.mask.wen(i) := false.B
312    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
313    when (io.storeAddrIn(i).fire) {
314      val addr_valid = !io.storeAddrIn(i).bits.miss
315      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
316      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
317
318      paddrModule.io.waddr(i) := stWbIndex
319      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
320      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
321      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
322      paddrModule.io.wen(i) := true.B
323
324      vaddrModule.io.waddr(i) := stWbIndex
325      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
326      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
327      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
328      vaddrModule.io.wen(i) := true.B
329
330      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
331
332      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
333
334      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
335      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
336      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
337        io.storeAddrIn(i).bits.uop.sqIdx.value,
338        io.storeAddrIn(i).bits.uop.pc,
339        io.storeAddrIn(i).bits.miss,
340        io.storeAddrIn(i).bits.vaddr,
341        io.storeAddrIn(i).bits.paddr,
342        io.storeAddrIn(i).bits.mmio
343      )
344    }
345
346    // re-replinish mmio, for pma/pmp will get mmio one cycle later
347    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
348    val stWbIndexReg = RegNext(stWbIndex)
349    when (storeAddrInFireReg) {
350      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
351      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
352      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
353    }
354    // dcache miss info (one cycle later than storeIn)
355    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
356    when (storeAddrInFireReg) {
357      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
358    }
359
360    when(vaddrModule.io.wen(i)){
361      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
362    }
363    // TODO :  When lastElem issue to stu, set vector store addr ready
364    val vecStWbIndex = io.vecStoreAddrIn(i).bits.uop.sqIdx.value
365    when(io.vecStoreAddrIn(i).fire){
366      vecAddrvalid(vecStWbIndex) := !io.vecStoreAddrIn(i).bits.miss && io.vecStoreAddrIn(i).bits.isLastElem
367    }
368  }
369
370  // Write data to sq
371  // Now store data pipeline is actually 2 stages
372  for (i <- 0 until StorePipelineWidth) {
373    dataModule.io.data.wen(i) := false.B
374    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
375    // sq data write takes 2 cycles:
376    // sq data write s0
377    when (io.storeDataIn(i).fire) {
378      // send data write req to data module
379      dataModule.io.data.waddr(i) := stWbIndex
380      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
381        0.U,
382        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
383      )
384      dataModule.io.data.wen(i) := true.B
385
386      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
387
388      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
389        io.storeDataIn(i).bits.uop.sqIdx.value,
390        io.storeDataIn(i).bits.uop.pc,
391        io.storeDataIn(i).bits.data,
392        dataModule.io.data.wdata(i)
393      )
394    }
395    // sq data write s1
396    when (
397      RegNext(io.storeDataIn(i).fire)
398      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
399    ) {
400      datavalid(RegNext(stWbIndex)) := true.B
401    }
402  }
403
404  // Write mask to sq
405  for (i <- 0 until StorePipelineWidth) {
406    // sq mask write s0
407    when (io.storeMaskIn(i).fire) {
408      // send data write req to data module
409      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
410      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
411      dataModule.io.mask.wen(i) := true.B
412    }
413  }
414
415  /**
416    * load forward query
417    *
418    * Check store queue for instructions that is older than the load.
419    * The response will be valid at the next cycle after req.
420    */
421  // check over all lq entries and forward data from the first matched store
422  for (i <- 0 until LoadPipelineWidth) {
423    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
424    // (1) if they have the same flag, we need to check range(tail, sqIdx)
425    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
426    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
427    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
428    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
429    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
430    val forwardMask = io.forward(i).sqIdxMask
431    // all addrvalid terms need to be checked
432    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
433    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
434    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
435
436    val storeSetHitVec =
437      if (LFSTEnable) {
438        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
439      } else {
440        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
441      }
442
443    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
444    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
445    val canForward1 = forwardMask1 & allValidVec.asUInt
446    val canForward2 = forwardMask2 & allValidVec.asUInt
447    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
448
449    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
450      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
451    )
452
453    // do real fwd query (cam lookup in load_s1)
454    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
455    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
456
457    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
458    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
459    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
460    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
461
462
463    // vaddr cam result does not equal to paddr cam result
464    // replay needed
465    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
466    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
467    val vpmaskNotEqual = (
468      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
469      RegNext(needForward) &
470      RegNext(addrValidVec.asUInt)
471    ) =/= 0.U
472    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
473    when (vaddrMatchFailed) {
474      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
475        RegNext(io.forward(i).uop.pc),
476        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
477        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
478      );
479    }
480    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
481    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
482
483    // Fast forward mask will be generated immediately (load_s1)
484    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
485
486    // Forward result will be generated 1 cycle later (load_s2)
487    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
488    io.forward(i).forwardData := dataModule.io.forwardData(i)
489    // If addr match, data not ready, mark it as dataInvalid
490    // load_s1: generate dataInvalid in load_s1 to set fastUop
491    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
492    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
493    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
494    io.forward(i).dataInvalidFast := dataInvalidMask.orR
495
496    // make chisel happy
497    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
498    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
499    // make chisel happy
500    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
501    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
502    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
503
504    // If SSID match, address not ready, mark it as addrInvalid
505    // load_s2: generate addrInvalid
506    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
507    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
508    // make chisel happy
509    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
510    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
511    // make chisel happy
512    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
513    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
514    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
515
516    // load_s2
517    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
518    // check if vaddr forward mismatched
519    io.forward(i).matchInvalid := vaddrMatchFailed
520
521    // data invalid sq index
522    // check whether false fail
523    // check flag
524    val s2_differentFlag = RegNext(differentFlag)
525    val s2_enqPtrExt = RegNext(enqPtrExt(0))
526    val s2_deqPtrExt = RegNext(deqPtrExt(0))
527
528    // addr invalid sq index
529    // make chisel happy
530    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
531    addrInvalidMaskRegWire := addrInvalidMaskReg
532    val addrInvalidFlag = addrInvalidMaskRegWire.orR
533    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
534
535    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
536    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
537    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
538
539    // store-set content management
540    //                +-----------------------+
541    //                | Search a SSID for the |
542    //                |    load operation     |
543    //                +-----------------------+
544    //                           |
545    //                           V
546    //                 +-------------------+
547    //                 | load wait strict? |
548    //                 +-------------------+
549    //                           |
550    //                           V
551    //               +----------------------+
552    //            Set|                      |Clean
553    //               V                      V
554    //  +------------------------+   +------------------------------+
555    //  | Waiting for all older  |   | Wait until the corresponding |
556    //  |   stores operations    |   | older store operations       |
557    //  +------------------------+   +------------------------------+
558
559
560
561    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
562      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
563    } .elsewhen (addrInvalidFlag) {
564      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
565      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
566    } .otherwise {
567      // may be store inst has been written to sbuffer already.
568      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
569    }
570    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
571
572    // data invalid sq index
573    // make chisel happy
574    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
575    dataInvalidMaskRegWire := dataInvalidMaskReg
576    val dataInvalidFlag = dataInvalidMaskRegWire.orR
577
578    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
579    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
580    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
581
582    when (dataInvalidFlag) {
583      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
584      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
585    } .otherwise {
586      // may be store inst has been written to sbuffer already.
587      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
588    }
589  }
590
591  /**
592    * Memory mapped IO / other uncached operations
593    *
594    * States:
595    * (1) writeback from store units: mark as pending
596    * (2) when they reach ROB's head, they can be sent to uncache channel
597    * (3) response from uncache channel: mark as datavalidmask.wen
598    * (4) writeback to ROB (and other units): mark as writebacked
599    * (5) ROB commits the instruction: same as normal instructions
600    */
601  //(2) when they reach ROB's head, they can be sent to uncache channel
602  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
603  val uncacheState = RegInit(s_idle)
604  switch(uncacheState) {
605    is(s_idle) {
606      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
607        uncacheState := s_req
608      }
609    }
610    is(s_req) {
611      when (io.uncache.req.fire) {
612        when (io.uncacheOutstanding) {
613          uncacheState := s_wb
614        } .otherwise {
615          uncacheState := s_resp
616        }
617      }
618    }
619    is(s_resp) {
620      when(io.uncache.resp.fire) {
621        uncacheState := s_wb
622      }
623    }
624    is(s_wb) {
625      when (io.mmioStout.fire) {
626        uncacheState := s_wait
627      }
628    }
629    is(s_wait) {
630      when(commitCount > 0.U) {
631        uncacheState := s_idle // ready for next mmio
632      }
633    }
634  }
635  io.uncache.req.valid := uncacheState === s_req
636
637  io.uncache.req.bits := DontCare
638  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
639  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
640  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
641  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
642
643  // CBO op type check can be delayed for 1 cycle,
644  // as uncache op will not start in s_idle
645  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
646  val cbo_mmio_op = 0.U //TODO
647  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
648  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
649    io.uncache.req.bits.addr := DontCare // TODO
650    io.uncache.req.bits.data := paddrModule.io.rdata(0)
651    io.uncache.req.bits.mask := DontCare // TODO
652  }
653
654  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
655
656  when(io.uncache.req.fire){
657    // mmio store should not be committed until uncache req is sent
658    pending(deqPtr) := false.B
659
660    XSDebug(
661      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
662      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
663      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
664      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
665      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
666    )
667  }
668
669  // (3) response from uncache channel: mark as datavalid
670  io.uncache.resp.ready := true.B
671
672  // (4) writeback to ROB (and other units): mark as writebacked
673  io.mmioStout.valid := uncacheState === s_wb
674  io.mmioStout.bits.uop := uop(deqPtr)
675  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
676  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
677  io.mmioStout.bits.debug.isMMIO := true.B
678  io.mmioStout.bits.debug.paddr := DontCare
679  io.mmioStout.bits.debug.isPerfCnt := false.B
680  io.mmioStout.bits.debug.vaddr := DontCare
681  // Remove MMIO inst from store queue after MMIO request is being sent
682  // That inst will be traced by uncache state machine
683  when (io.mmioStout.fire) {
684    allocated(deqPtr) := false.B
685  }
686
687  /**
688    * ROB commits store instructions (mark them as committed)
689    *
690    * (1) When store commits, mark it as committed.
691    * (2) They will not be cancelled and can be sent to lower level.
692    */
693  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
694   "should not commit instruction when MMIO has not been finished\n")
695  for (i <- 0 until CommitWidth) {
696    when (commitCount > i.U) { // MMIO inst is not in progress
697      if(i == 0){
698        // MMIO inst should not update committed flag
699        // Note that commit count has been delayed for 1 cycle
700        when(uncacheState === s_idle){
701          committed(cmtPtrExt(0).value) := true.B
702        }
703      } else {
704        committed(cmtPtrExt(i).value) := true.B
705      }
706    }
707  }
708  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
709
710  // committed stores will not be cancelled and can be sent to lower level.
711  // remove retired insts from sq, add retired store to sbuffer
712
713  // Read data from data module
714  // As store queue grows larger and larger, time needed to read data from data
715  // module keeps growing higher. Now we give data read a whole cycle.
716
717  // Vector stores are written to sbuffer by vector store flow queue rather than sq
718  XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store")
719  XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry")
720  XSError(io.vecStoreRetire.valid && vec(rdataPtrExt(0).value) && !vecAddrvalid(rdataPtrExt(0).value), "Vector store is trying to retire without write last element!")
721  when (io.vecStoreRetire.valid) {
722    assert(io.vecStoreRetire.bits === rdataPtrExt(0))
723    vec(rdataPtrExt(0).value) := false.B
724    vecAddrvalid(rdataPtrExt(0).value) := false.B
725    allocated(rdataPtrExt(0).value) := false.B
726  }
727
728  val mmioStall = mmio(rdataPtrExt(0).value)
729  val vecStall = vec(rdataPtrExt(0).value)
730  for (i <- 0 until EnsbufferWidth) {
731    val ptr = rdataPtrExt(i).value
732    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall
733    // Note that store data/addr should both be valid after store's commit
734    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
735    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
736    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
737    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
738    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
739    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
740    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
741    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
742  }
743
744  // Send data stored in sbufferReqBitsReg to sbuffer
745  for (i <- 0 until EnsbufferWidth) {
746    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
747    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
748    // Write line request should have all 1 mask
749    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
750    io.sbuffer(i).bits := DontCare
751    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
752    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
753    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
754    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
755    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
756    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
757    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
758
759    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
760    // Before data write finish, sbuffer is unable to provide store to load
761    // forward data. As an workaround, deqPtrExt and allocated flag update
762    // is delayed so that load can get the right data from store queue.
763    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
764    when (RegNext(io.sbuffer(i).fire)) {
765      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
766      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
767    }
768  }
769  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
770  if (coreParams.dcacheParametersOpt.isEmpty) {
771    for (i <- 0 until EnsbufferWidth) {
772      val ptr = deqPtrExt(i).value
773      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
774      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
775      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
776      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
777      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
778      when (wen) {
779        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
780      }
781    }
782  }
783
784  // Read vaddr for mem exception
785  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
786
787  // misprediction recovery / exception redirect
788  // invalidate sq term using robIdx
789  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
790  for (i <- 0 until StoreQueueSize) {
791    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
792    when (needCancel(i)) {
793      allocated(i) := false.B
794    }
795  }
796
797 /**
798* update pointers
799**/
800  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
801  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
802  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
803  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
804
805  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
806  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
807
808  when (lastlastCycleRedirect) {
809    // we recover the pointers in 2 cycle after redirect for better timing
810    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
811  }.otherwise {
812    // lastCycleRedirect.valid or nornal case
813    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
814    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
815  }
816  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
817
818  deqPtrExt := deqPtrExtNext
819  rdataPtrExt := rdataPtrExtNext
820
821  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
822
823  // If redirect at T0, sqCancelCnt is at T2
824  io.sqCancelCnt := redirectCancelCount
825  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
826  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
827  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
828  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
829
830  val valid_cnt = PopCount(allocated)
831  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
832
833  // io.sqempty will be used by sbuffer
834  // We delay it for 1 cycle for better timing
835  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
836  // for 1 cycle will also promise that sq is empty in that cycle
837  io.sqEmpty := RegNext(
838    enqPtrExt(0).value === deqPtrExt(0).value &&
839    enqPtrExt(0).flag === deqPtrExt(0).flag
840  )
841  // perf counter
842  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
843  io.sqFull := !allowEnqueue
844  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
845  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
846  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire)
847  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
848  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
849  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
850  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
851
852  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
853  val perfEvents = Seq(
854    ("mmioCycle      ", uncacheState =/= s_idle),
855    ("mmioCnt        ", io.uncache.req.fire),
856    ("mmio_wb_success", io.mmioStout.fire),
857    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
858    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
859    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
860    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
861    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
862  )
863  generatePerfEvent()
864
865  // debug info
866  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
867
868  def PrintFlag(flag: Bool, name: String): Unit = {
869    when(flag) {
870      XSDebug(false, true.B, name)
871    }.otherwise {
872      XSDebug(false, true.B, " ")
873    }
874  }
875
876  for (i <- 0 until StoreQueueSize) {
877    XSDebug(i + ": pc %x va %x pa %x data %x ",
878      uop(i).pc,
879      debug_vaddr(i),
880      debug_paddr(i),
881      debug_data(i)
882    )
883    PrintFlag(allocated(i), "a")
884    PrintFlag(allocated(i) && addrvalid(i), "a")
885    PrintFlag(allocated(i) && datavalid(i), "d")
886    PrintFlag(allocated(i) && committed(i), "c")
887    PrintFlag(allocated(i) && pending(i), "p")
888    PrintFlag(allocated(i) && mmio(i), "m")
889    XSDebug(false, true.B, "\n")
890  }
891
892}
893