1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.backend._ 31import xiangshan.backend.rob.{RobLsqIO, RobPtr} 32import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 34import xiangshan.backend.fu.FuConfig._ 35import xiangshan.backend.fu.FuType 36import xiangshan.ExceptionNO._ 37import coupledL2.{CMOReq, CMOResp} 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70} 71 72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 73 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 74 // The 2nd StorePipelineWidth ports: sta af generated at s2 75 // The following VecStorePipelineWidth ports: vector st exception 76 // The last port: non-data error generated in SoC 77 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 78 79 val io = IO(new Bundle() { 80 val redirect = Flipped(ValidIO(new Redirect)) 81 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 82 val flushFrmMaBuf = Input(Bool()) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := req_valid || true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.vaddr 148 io.exceptionAddr.gpaddr := req.gpaddr 149 io.exceptionAddr.vstart := req.uop.vpu.vstart 150 io.exceptionAddr.vl := req.uop.vpu.vl 151 152 when(req_valid && io.flushFrmMaBuf) { 153 req_valid := false.B 154 } 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 244 } 245 246 247 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 248 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 249 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 250 251 // state & misc 252 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 253 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 254 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 255 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 256 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 257 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 258 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 259 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 260 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 261 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 262 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 263 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 264 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 265 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 266 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 267 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 268 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 269 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 270 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 271 272 // ptr 273 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 274 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 275 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 276 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 277 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 278 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 279 280 val enqPtr = enqPtrExt(0).value 281 val deqPtr = deqPtrExt(0).value 282 val cmtPtr = cmtPtrExt(0).value 283 284 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 285 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 286 287 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 288 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 289 290 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 291 val scommit = GatedRegNext(io.rob.scommit) 292 293 // RegNext misalign control for better timing 294 val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr)) 295 val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException) 296 val misalignBlock = doMisalignSt && !finishMisalignSt 297 298 // store miss align info 299 io.maControl.storeInfo.data := dataModule.io.rdata(0).data 300 io.maControl.storeInfo.dataReady := doMisalignSt 301 io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire 302 303 // store can be committed by ROB 304 io.rob.mmio := DontCare 305 io.rob.uop := DontCare 306 307 // Read dataModule 308 assert(EnsbufferWidth <= 2) 309 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 310 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 311 rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire, 312 VecInit(rdataPtrExt.map(_ + 2.U)), 313 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 314 VecInit(rdataPtrExt.map(_ + 1.U)), 315 rdataPtrExt 316 ) 317 )) 318 319 // deqPtrExtNext traces which inst is about to leave store queue 320 // 321 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 322 // Before data write finish, sbuffer is unable to provide store to load 323 // forward data. As an workaround, deqPtrExt and allocated flag update 324 // is delayed so that load can get the right data from store queue. 325 // 326 // Modify deqPtrExtNext and io.sqDeq with care! 327 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 328 deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire), 329 VecInit(deqPtrExt.map(_ + 2.U)), 330 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 331 VecInit(deqPtrExt.map(_ + 1.U)), 332 deqPtrExt 333 ) 334 ) 335 336 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U, 337 Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U) 338 )) 339 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 340 341 for (i <- 0 until EnsbufferWidth) { 342 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 343 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 344 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 345 } 346 347 /** 348 * Enqueue at dispatch 349 * 350 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 351 */ 352 io.enq.canAccept := allowEnqueue 353 val canEnqueue = io.enq.req.map(_.valid) 354 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 355 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 356 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 357 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 358 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 359 360 for (i <- 0 until io.enq.req.length) { 361 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 362 val index = io.enq.req(i).bits.sqIdx 363 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 364 when (canEnqueue(i) && !enqCancel(i)) { 365 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 366 // 16 2 2 2 2 2. 367 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 368 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 369 when (j.U < validVStoreOffset(i)) { 370 uop((index + j.U).value) := io.enq.req(i).bits 371 // NOTE: the index will be used when replay 372 uop((index + j.U).value).sqIdx := sqIdx + j.U 373 allocated((index + j.U).value) := true.B 374 datavalid((index + j.U).value) := false.B 375 addrvalid((index + j.U).value) := false.B 376 unaligned((index + j.U).value) := false.B 377 committed((index + j.U).value) := false.B 378 pending((index + j.U).value) := false.B 379 prefetch((index + j.U).value) := false.B 380 mmio((index + j.U).value) := false.B 381 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 382 vecMbCommit((index + j.U).value) := false.B 383 vecDataValid((index + j.U).value) := false.B 384 hasException((index + j.U).value) := false.B 385 waitStoreS2((index + j.U).value) := true.B 386 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 387 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 388 } 389 } 390 } 391 io.enq.resp(i) := sqIdx 392 } 393 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 394 395 /** 396 * Update addr/dataReadyPtr when issue from rs 397 */ 398 // update issuePtr 399 val IssuePtrMoveStride = 4 400 require(IssuePtrMoveStride >= 2) 401 402 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 403 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 404 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 405 && ptr =/= enqPtrExt(0)) 406 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 407 addrReadyPtrExt := nextAddrReadyPtr 408 409 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 410 (0 until StoreQueueSize).map(i => { 411 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 412 }) 413 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 414 415 when (io.brqRedirect.valid) { 416 addrReadyPtrExt := Mux( 417 isAfter(cmtPtrExt(0), deqPtrExt(0)), 418 cmtPtrExt(0), 419 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 420 ) 421 } 422 423 io.stAddrReadySqPtr := addrReadyPtrExt 424 425 // update 426 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 427 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 428 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 429 && ptr =/= enqPtrExt(0)) 430 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 431 dataReadyPtrExt := nextDataReadyPtr 432 433 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 434 (0 until StoreQueueSize).map(i => { 435 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 436 }) 437 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 438 439 when (io.brqRedirect.valid) { 440 dataReadyPtrExt := Mux( 441 isAfter(cmtPtrExt(0), deqPtrExt(0)), 442 cmtPtrExt(0), 443 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 444 ) 445 } 446 447 io.stDataReadySqPtr := dataReadyPtrExt 448 io.stIssuePtr := enqPtrExt(0) 449 io.sqDeqPtr := deqPtrExt(0) 450 451 /** 452 * Writeback store from store units 453 * 454 * Most store instructions writeback to regfile in the previous cycle. 455 * However, 456 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 457 * (in this way it will trigger an exception when it reaches ROB's head) 458 * instead of pending to avoid sending them to lower level. 459 * (2) For an mmio instruction without exceptions, we mark it as pending. 460 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 461 * Upon receiving the response, StoreQueue writes back the instruction 462 * through arbiter with store units. It will later commit as normal. 463 */ 464 465 // Write addr to sq 466 for (i <- 0 until StorePipelineWidth) { 467 paddrModule.io.wen(i) := false.B 468 vaddrModule.io.wen(i) := false.B 469 dataModule.io.mask.wen(i) := false.B 470 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 471 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 472 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 473 // will re-enter exceptionbuffer at store_s2 474 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 475 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 476 477 when (io.storeAddrIn(i).fire) { 478 val addr_valid = !io.storeAddrIn(i).bits.miss 479 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 480 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 481 unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned) 482 483 paddrModule.io.waddr(i) := stWbIndex 484 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 485 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 486 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 487 paddrModule.io.wen(i) := true.B 488 489 vaddrModule.io.waddr(i) := stWbIndex 490 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 491 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 492 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 493 vaddrModule.io.wen(i) := true.B 494 495 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 496 497 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 498 499 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 500 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 501 502 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 503 504 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 505 io.storeAddrIn(i).bits.uop.sqIdx.value, 506 io.storeAddrIn(i).bits.uop.pc, 507 io.storeAddrIn(i).bits.miss, 508 io.storeAddrIn(i).bits.vaddr, 509 io.storeAddrIn(i).bits.paddr, 510 io.storeAddrIn(i).bits.mmio, 511 io.storeAddrIn(i).bits.isvec 512 ) 513 } 514 515 // re-replinish mmio, for pma/pmp will get mmio one cycle later 516 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 517 //val stWbIndexReg = RegNext(stWbIndex) 518 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 519 when (storeAddrInFireReg) { 520 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 521 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 522 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 523 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af 524 waitStoreS2(stWbIndexReg) := false.B 525 } 526 // dcache miss info (one cycle later than storeIn) 527 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 528 when (storeAddrInFireReg) { 529 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 530 } 531 // enter exceptionbuffer again 532 when (storeAddrInFireReg) { 533 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af 534 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 535 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 536 } 537 538 when(vaddrModule.io.wen(i)){ 539 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 540 } 541 } 542 543 // Write data to sq 544 // Now store data pipeline is actually 2 stages 545 for (i <- 0 until StorePipelineWidth) { 546 dataModule.io.data.wen(i) := false.B 547 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 548 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 549 // sq data write takes 2 cycles: 550 // sq data write s0 551 when (io.storeDataIn(i).fire) { 552 // send data write req to data module 553 dataModule.io.data.waddr(i) := stWbIndex 554 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 555 0.U, 556 Mux(isVec, 557 io.storeDataIn(i).bits.data, 558 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 559 ) 560 dataModule.io.data.wen(i) := true.B 561 562 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 563 564 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 565 io.storeDataIn(i).bits.uop.sqIdx.value, 566 io.storeDataIn(i).bits.uop.pc, 567 io.storeDataIn(i).bits.data, 568 dataModule.io.data.wdata(i) 569 ) 570 } 571 // sq data write s1 572 when ( 573 RegNext(io.storeDataIn(i).fire) 574 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 575 ) { 576 datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B 577 } 578 } 579 580 // Write mask to sq 581 for (i <- 0 until StorePipelineWidth) { 582 // sq mask write s0 583 when (io.storeMaskIn(i).fire) { 584 // send data write req to data module 585 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 586 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 587 dataModule.io.mask.wen(i) := true.B 588 } 589 } 590 591 /** 592 * load forward query 593 * 594 * Check store queue for instructions that is older than the load. 595 * The response will be valid at the next cycle after req. 596 */ 597 // check over all lq entries and forward data from the first matched store 598 for (i <- 0 until LoadPipelineWidth) { 599 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 600 // (1) if they have the same flag, we need to check range(tail, sqIdx) 601 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 602 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 603 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 604 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 605 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 606 val forwardMask = io.forward(i).sqIdxMask 607 // all addrvalid terms need to be checked 608 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 609 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 610 // vector store will consider all inactive || secondInvalid flows as valid 611 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 612 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 613 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 614 615 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 616 val storeSetHitVec = Mux(lfstEnable, 617 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 618 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 619 ) 620 621 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 622 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 623 val canForward1 = forwardMask1 & allValidVec.asUInt 624 val canForward2 = forwardMask2 & allValidVec.asUInt 625 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 626 627 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 628 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 629 ) 630 631 // do real fwd query (cam lookup in load_s1) 632 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 633 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 634 635 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 636 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 637 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 638 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 639 640 // vaddr cam result does not equal to paddr cam result 641 // replay needed 642 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 643 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 644 val vpmaskNotEqual = ( 645 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 646 RegNext(needForward) & 647 GatedRegNext(addrRealValidVec.asUInt) 648 ) =/= 0.U 649 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 650 when (vaddrMatchFailed) { 651 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 652 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 653 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 654 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 655 ); 656 } 657 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 658 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 659 660 // Fast forward mask will be generated immediately (load_s1) 661 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 662 663 // Forward result will be generated 1 cycle later (load_s2) 664 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 665 io.forward(i).forwardData := dataModule.io.forwardData(i) 666 // If addr match, data not ready, mark it as dataInvalid 667 // load_s1: generate dataInvalid in load_s1 to set fastUop 668 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 669 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 670 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 671 io.forward(i).dataInvalidFast := dataInvalidMask.orR 672 673 // make chisel happy 674 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 675 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 676 // make chisel happy 677 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 678 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 679 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 680 681 // If SSID match, address not ready, mark it as addrInvalid 682 // load_s2: generate addrInvalid 683 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 684 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 685 // make chisel happy 686 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 687 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 688 // make chisel happy 689 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 690 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 691 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 692 693 // load_s2 694 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 695 // check if vaddr forward mismatched 696 io.forward(i).matchInvalid := vaddrMatchFailed 697 698 // data invalid sq index 699 // check whether false fail 700 // check flag 701 val s2_differentFlag = RegNext(differentFlag) 702 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 703 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 704 705 // addr invalid sq index 706 // make chisel happy 707 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 708 addrInvalidMaskRegWire := addrInvalidMaskReg 709 val addrInvalidFlag = addrInvalidMaskRegWire.orR 710 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 711 712 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 713 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 714 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 715 716 // store-set content management 717 // +-----------------------+ 718 // | Search a SSID for the | 719 // | load operation | 720 // +-----------------------+ 721 // | 722 // V 723 // +-------------------+ 724 // | load wait strict? | 725 // +-------------------+ 726 // | 727 // V 728 // +----------------------+ 729 // Set| |Clean 730 // V V 731 // +------------------------+ +------------------------------+ 732 // | Waiting for all older | | Wait until the corresponding | 733 // | stores operations | | older store operations | 734 // +------------------------+ +------------------------------+ 735 736 737 738 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 739 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 740 } .elsewhen (addrInvalidFlag) { 741 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 742 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 743 } .otherwise { 744 // may be store inst has been written to sbuffer already. 745 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 746 } 747 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 748 749 // data invalid sq index 750 // make chisel happy 751 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 752 dataInvalidMaskRegWire := dataInvalidMaskReg 753 val dataInvalidFlag = dataInvalidMaskRegWire.orR 754 755 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 756 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 757 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 758 759 when (dataInvalidFlag) { 760 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 761 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 762 } .otherwise { 763 // may be store inst has been written to sbuffer already. 764 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 765 } 766 } 767 768 /** 769 * Memory mapped IO / other uncached operations / CMO 770 * 771 * States: 772 * (1) writeback from store units: mark as pending 773 * (2) when they reach ROB's head, they can be sent to uncache channel 774 * (3) response from uncache channel: mark as datavalidmask.wen 775 * (4) writeback to ROB (and other units): mark as writebacked 776 * (5) ROB commits the instruction: same as normal instructions 777 */ 778 //(2) when they reach ROB's head, they can be sent to uncache channel 779 // TODO: CAN NOT deal with vector mmio now! 780 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 781 val uncacheState = RegInit(s_idle) 782 val uncacheUop = Reg(new DynInst) 783 val uncacheVAddr = Reg(UInt(VAddrBits.W)) 784 val cboFlushedSb = RegInit(false.B) 785 switch(uncacheState) { 786 is(s_idle) { 787 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 788 uncacheState := s_req 789 uncacheUop := uop(deqPtr) 790 cboFlushedSb := false.B 791 } 792 } 793 is(s_req) { 794 when (io.uncache.req.fire) { 795 when (io.uncacheOutstanding) { 796 uncacheState := s_wb 797 } .otherwise { 798 uncacheState := s_resp 799 } 800 } 801 } 802 is(s_resp) { 803 when(io.uncache.resp.fire) { 804 uncacheState := s_wb 805 806 when (io.uncache.resp.bits.nderr) { 807 uncacheUop.exceptionVec(storeAccessFault) := true.B 808 } 809 } 810 } 811 is(s_wb) { 812 when (io.mmioStout.fire || io.vecmmioStout.fire) { 813 uncacheState := s_wait 814 } 815 } 816 is(s_wait) { 817 // A MMIO store can always move cmtPtrExt as it must be ROB head 818 when(scommit > 0.U) { 819 uncacheState := s_idle // ready for next mmio 820 } 821 } 822 } 823 io.uncache.req.valid := uncacheState === s_req 824 825 io.uncache.req.bits := DontCare 826 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 827 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 828 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 829 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 830 831 // CBO op type check can be delayed for 1 cycle, 832 // as uncache op will not start in s_idle 833 val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0)) 834 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 835 when (deqCanDoCbo) { 836 // disable uncache channel 837 io.uncache.req.valid := false.B 838 839 when (io.cmoOpReq.fire) { 840 uncacheState := s_resp 841 } 842 843 when (uncacheState === s_resp) { 844 when (io.cmoOpResp.fire) { 845 uncacheState := s_wb 846 } 847 } 848 } 849 850 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req) 851 io.cmoOpReq.bits.opcode := uop(deqPtr).fuOpType(1, 0) 852 io.cmoOpReq.bits.address := cboMmioAddr 853 854 io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp) 855 856 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty 857 858 when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) { 859 cboFlushedSb := true.B 860 } 861 862 io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 863 864 when(io.uncache.req.fire){ 865 // mmio store should not be committed until uncache req is sent 866 pending(deqPtr) := false.B 867 868 XSDebug( 869 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 870 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 871 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 872 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 873 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 874 ) 875 } 876 877 // (3) response from uncache channel: mark as datavalid 878 io.uncache.resp.ready := true.B 879 880 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 881 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 882 io.mmioStout.bits.uop := uncacheUop 883 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 884 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 885 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 886 io.mmioStout.bits.debug.isMMIO := true.B 887 io.mmioStout.bits.debug.paddr := DontCare 888 io.mmioStout.bits.debug.isPerfCnt := false.B 889 io.mmioStout.bits.debug.vaddr := DontCare 890 // Remove MMIO inst from store queue after MMIO request is being sent 891 // That inst will be traced by uncache state machine 892 when (io.mmioStout.fire) { 893 allocated(deqPtr) := false.B 894 } 895 896 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 897 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 898 exceptionBuffer.io.storeAddrIn.last.bits.vaddr := vaddrModule.io.rdata.head 899 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 900 901 // (4) or vector store: 902 // TODO: implement it! 903 io.vecmmioStout := DontCare 904 io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr) 905 io.vecmmioStout.bits.uop := uop(deqPtr) 906 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 907 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 908 io.vecmmioStout.bits.debug.isMMIO := true.B 909 io.vecmmioStout.bits.debug.paddr := DontCare 910 io.vecmmioStout.bits.debug.isPerfCnt := false.B 911 io.vecmmioStout.bits.debug.vaddr := DontCare 912 // Remove MMIO inst from store queue after MMIO request is being sent 913 // That inst will be traced by uncache state machine 914 when (io.vecmmioStout.fire) { 915 allocated(deqPtr) := false.B 916 } 917 918 /** 919 * ROB commits store instructions (mark them as committed) 920 * 921 * (1) When store commits, mark it as committed. 922 * (2) They will not be cancelled and can be sent to lower level. 923 */ 924 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 925 "should not commit instruction when MMIO has not been finished\n") 926 927 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 928 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 929 dontTouch(commitVec) 930 // TODO: Deal with vector store mmio 931 for (i <- 0 until CommitWidth) { 932 when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 933 // don't commit while doing misalign 934 if (i == 0){ 935 // TODO: fixme for vector mmio 936 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 937 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 938 committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B) 939 commitVec(0) := Mux(misalignBlock, false.B, true.B) 940 } 941 } 942 } else { 943 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 944 committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value)) 945 commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1)) 946 } 947 } 948 } 949 } 950 951 commitCount := PopCount(commitVec) 952 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 953 954 // committed stores will not be cancelled and can be sent to lower level. 955 // remove retired insts from sq, add retired store to sbuffer 956 957 // Read data from data module 958 // As store queue grows larger and larger, time needed to read data from data 959 // module keeps growing higher. Now we give data read a whole cycle. 960 for (i <- 0 until EnsbufferWidth) { 961 val ptr = rdataPtrExt(i).value 962 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 963 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 964 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 965 } 966 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 967 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 968 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 969 if (i == 0) { 970 // use dataBuffer write port 0 to writeback missaligned store out 971 dataBuffer.io.enq(i).valid := Mux( 972 doMisalignSt, 973 io.maControl.control.writeSb, 974 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 975 ) 976 } else { 977 dataBuffer.io.enq(i).valid := Mux( 978 doMisalignSt, 979 false.B, 980 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 981 ) 982 } 983 // Note that store data/addr should both be valid after store's commit 984 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr))) 985 dataBuffer.io.enq(i).bits.addr := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i)) 986 dataBuffer.io.enq(i).bits.vaddr := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i)) 987 dataBuffer.io.enq(i).bits.data := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data) 988 dataBuffer.io.enq(i).bits.mask := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask) 989 dataBuffer.io.enq(i).bits.wline := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i)) 990 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 991 dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr)) 992 // when scalar has exception, will also not write into sbuffer 993 dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid) 994// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 995 } 996 997 // Send data stored in sbufferReqBitsReg to sbuffer 998 for (i <- 0 until EnsbufferWidth) { 999 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1000 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1001 io.sbuffer(i).bits := DontCare 1002 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1003 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1004 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1005 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1006 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1007 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1008 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1009 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1010 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1011 // Before data write finish, sbuffer is unable to provide store to load 1012 // forward data. As an workaround, deqPtrExt and allocated flag update 1013 // is delayed so that load can get the right data from store queue. 1014 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1015 when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) { 1016 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1017 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1018 } 1019 } 1020 1021 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1022 // Flags are used to record whether there are any exceptions when the queue is displayed. 1023 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1024 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1025 val ptr = rdataPtrExt(i).value 1026 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1027 val exceptionVliad = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr) 1028 (exceptionVliad, uop(ptr)) 1029 } 1030 1031 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1032 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1033 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1034 // Just select the last Uop tah has an exception. 1035 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1036 // If the last Uop with an exception is the LastUop of this instruction, the flag is not set. 1037 val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop 1038 1039 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1040 val ptr = rdataPtrExt(i).value 1041 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1042 val vecLastUopCommit = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && 1043 allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) 1044 vecLastUopCommit 1045 }.reduce(_ || _) 1046 1047 // When a LastUop with an exception instruction is commited, clear the flag. 1048 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) { 1049 vecExceptionFlag.valid := true.B 1050 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1051 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1052 vecExceptionFlag.valid := false.B 1053 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1054 } 1055 1056 // A dumb defensive code. The flag should not be placed for a long period of time. 1057 // A relatively large timeout period, not have any special meaning. 1058 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1059 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1060 1061 // Initialize when unenabled difftest. 1062 for (i <- 0 until EnsbufferWidth) { 1063 io.sbufferVecDifftestInfo(i) := DontCare 1064 } 1065 // Consistent with the logic above. 1066 // Only the vector store difftest required signal is separated from the rtl code. 1067 if (env.EnableDifftest) { 1068 for (i <- 0 until EnsbufferWidth) { 1069 val ptr = rdataPtrExt(i).value 1070 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1071 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 1072 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1073 } 1074 for (i <- 0 until EnsbufferWidth) { 1075 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1076 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1077 1078 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1079 } 1080 } 1081 1082 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1083 if (coreParams.dcacheParametersOpt.isEmpty) { 1084 for (i <- 0 until EnsbufferWidth) { 1085 val ptr = deqPtrExt(i).value 1086 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1087 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1088 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1089 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1090 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1091 when (wen) { 1092 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1093 } 1094 } 1095 } 1096 1097 // Read vaddr for mem exception 1098 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1099 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1100 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1101 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1102 1103 // vector commit or replay from 1104 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1105 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1106 for (i <- 0 until StoreQueueSize) { 1107 val fbk = io.vecFeedback 1108 for (j <- 0 until VecStorePipelineWidth) { 1109 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1110 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1111 } 1112 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1113 1114 when (vecCommit(i)) { 1115 vecMbCommit(i) := true.B 1116 } 1117 } 1118 1119 // misprediction recovery / exception redirect 1120 // invalidate sq term using robIdx 1121 for (i <- 0 until StoreQueueSize) { 1122 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1123 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1124 when (needCancel(i)) { 1125 allocated(i) := false.B 1126 } 1127 } 1128 1129 /** 1130* update pointers 1131**/ 1132 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1133 v && x.bits.robIdx.needFlush(io.brqRedirect) 1134 } 1135 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1136 Mux(v, req.bits.numLsElem, 0.U) 1137 } 1138 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1139 1140 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1141 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1142 val enqNumber = validVStoreFlow.reduce(_ + _) 1143 1144 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1145 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1146 1147 when (lastlastCycleRedirect) { 1148 // we recover the pointers in 2 cycle after redirect for better timing 1149 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1150 }.otherwise { 1151 // lastCycleRedirect.valid or nornal case 1152 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1153 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1154 } 1155 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1156 1157 exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt 1158 // special case (store miss align) in updating ptr 1159 when (doMisalignSt) { 1160 when (!finishMisalignSt) { 1161 // dont move deqPtr and rdataPtr until all split store has been written to sb 1162 deqPtrExtNext := deqPtrExt 1163 rdataPtrExtNext := rdataPtrExt 1164 } .otherwise { 1165 // remove this unaligned store from sq 1166 allocated(deqPtr) := false.B 1167 committed(deqPtr) := true.B 1168 cmtPtrExt := cmtPtrExt.map(_ + 1.U) 1169 deqPtrExtNext := deqPtrExt.map(_ + 1.U) 1170 rdataPtrExtNext := rdataPtrExt.map(_ + 1.U) 1171 } 1172 } 1173 1174 deqPtrExt := deqPtrExtNext 1175 rdataPtrExt := rdataPtrExtNext 1176 1177 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1178 1179 // If redirect at T0, sqCancelCnt is at T2 1180 io.sqCancelCnt := redirectCancelCount 1181 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1182 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1183 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1184 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1185 1186 val valid_cnt = PopCount(allocated) 1187 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1188 1189 // io.sqempty will be used by sbuffer 1190 // We delay it for 1 cycle for better timing 1191 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1192 // for 1 cycle will also promise that sq is empty in that cycle 1193 io.sqEmpty := RegNext( 1194 enqPtrExt(0).value === deqPtrExt(0).value && 1195 enqPtrExt(0).flag === deqPtrExt(0).flag 1196 ) 1197 // perf counter 1198 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1199 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1200 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1201 io.sqFull := !allowEnqueue 1202 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1203 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1204 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1205 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1206 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1207 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1208 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1209 1210 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1211 val perfEvents = Seq( 1212 ("mmioCycle ", uncacheState =/= s_idle), 1213 ("mmioCnt ", io.uncache.req.fire), 1214 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1215 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1216 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1217 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1218 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1219 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1220 ) 1221 generatePerfEvent() 1222 1223 // debug info 1224 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1225 1226 def PrintFlag(flag: Bool, name: String): Unit = { 1227 when(flag) { 1228 XSDebug(false, true.B, name) 1229 }.otherwise { 1230 XSDebug(false, true.B, " ") 1231 } 1232 } 1233 1234 for (i <- 0 until StoreQueueSize) { 1235 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1236 uop(i).pc, 1237 debug_vaddr(i), 1238 debug_paddr(i), 1239 debug_data(i) 1240 ) 1241 PrintFlag(allocated(i), "a") 1242 PrintFlag(allocated(i) && addrvalid(i), "a") 1243 PrintFlag(allocated(i) && datavalid(i), "d") 1244 PrintFlag(allocated(i) && committed(i), "c") 1245 PrintFlag(allocated(i) && pending(i), "p") 1246 PrintFlag(allocated(i) && mmio(i), "m") 1247 XSDebug(false, true.B, "\n") 1248 } 1249 1250} 1251