1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.backend._ 31import xiangshan.backend.rob.{RobLsqIO, RobPtr} 32import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 34import xiangshan.backend.fu.FuConfig._ 35import xiangshan.backend.fu.FuType 36import xiangshan.ExceptionNO._ 37import coupledL2.{CMOReq, CMOResp} 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70} 71 72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 73 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 74 // The 2nd StorePipelineWidth ports: sta af generated at s2 75 // The following VecStorePipelineWidth ports: vector st exception 76 // The last port: non-data error generated in SoC 77 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 78 79 val io = IO(new Bundle() { 80 val redirect = Flipped(ValidIO(new Redirect)) 81 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 82 val flushFrmMaBuf = Input(Bool()) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := req_valid || true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155 when(req_valid && io.flushFrmMaBuf) { 156 req_valid := false.B 157 } 158} 159 160// Store Queue 161class StoreQueue(implicit p: Parameters) extends XSModule 162 with HasDCacheParameters 163 with HasCircularQueuePtrHelper 164 with HasPerfEvents 165 with HasVLSUParameters { 166 val io = IO(new Bundle() { 167 val hartId = Input(UInt(hartIdLen.W)) 168 val enq = new SqEnqIO 169 val brqRedirect = Flipped(ValidIO(new Redirect)) 170 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 171 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 172 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 173 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 174 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 175 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 176 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 177 val uncacheOutstanding = Input(Bool()) 178 val cmoOpReq = DecoupledIO(new CMOReq) 179 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 180 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 181 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 182 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 183 // TODO: scommit is only for scalar store 184 val rob = Flipped(new RobLsqIO) 185 val uncache = new UncacheWordIO 186 // val refill = Flipped(Valid(new DCacheLineReq )) 187 val exceptionAddr = new ExceptionAddrIO 188 val flushSbuffer = new SbufferFlushBundle 189 val sqEmpty = Output(Bool()) 190 val stAddrReadySqPtr = Output(new SqPtr) 191 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 192 val stDataReadySqPtr = Output(new SqPtr) 193 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 194 val stIssuePtr = Output(new SqPtr) 195 val sqDeqPtr = Output(new SqPtr) 196 val sqFull = Output(Bool()) 197 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 198 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 199 val force_write = Output(Bool()) 200 val maControl = Flipped(new StoreMaBufToSqControlIO) 201 }) 202 203 println("StoreQueue: size:" + StoreQueueSize) 204 205 // data modules 206 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 207 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 208 val dataModule = Module(new SQDataModule( 209 numEntries = StoreQueueSize, 210 numRead = EnsbufferWidth, 211 numWrite = StorePipelineWidth, 212 numForward = LoadPipelineWidth 213 )) 214 dataModule.io := DontCare 215 val paddrModule = Module(new SQAddrModule( 216 dataWidth = PAddrBits, 217 numEntries = StoreQueueSize, 218 numRead = EnsbufferWidth, 219 numWrite = StorePipelineWidth, 220 numForward = LoadPipelineWidth 221 )) 222 paddrModule.io := DontCare 223 val vaddrModule = Module(new SQAddrModule( 224 dataWidth = VAddrBits, 225 numEntries = StoreQueueSize, 226 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 227 numWrite = StorePipelineWidth, 228 numForward = LoadPipelineWidth 229 )) 230 vaddrModule.io := DontCare 231 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 232 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 233 val exceptionBuffer = Module(new StoreExceptionBuffer) 234 exceptionBuffer.io.redirect := io.brqRedirect 235 exceptionBuffer.io.exceptionAddr.isStore := DontCare 236 // vlsu exception! 237 for (i <- 0 until VecStorePipelineWidth) { 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 246 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 247 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 248 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 249 } 250 251 252 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 253 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 254 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 255 256 // state & misc 257 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 258 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 259 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 260 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 261 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 262 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 263 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 264 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 265 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 266 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 267 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 268 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 269 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 270 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 271 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 272 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 273 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 274 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 275 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 276 277 // ptr 278 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 279 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 281 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 282 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 283 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 284 285 val enqPtr = enqPtrExt(0).value 286 val deqPtr = deqPtrExt(0).value 287 val cmtPtr = cmtPtrExt(0).value 288 289 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 290 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 291 292 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 293 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 294 295 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 296 val scommit = GatedRegNext(io.rob.scommit) 297 298 // RegNext misalign control for better timing 299 val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr)) 300 val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException) 301 val misalignBlock = doMisalignSt && !finishMisalignSt 302 303 // store miss align info 304 io.maControl.storeInfo.data := dataModule.io.rdata(0).data 305 io.maControl.storeInfo.dataReady := doMisalignSt 306 io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire 307 308 // store can be committed by ROB 309 io.rob.mmio := DontCare 310 io.rob.uop := DontCare 311 312 // Read dataModule 313 assert(EnsbufferWidth <= 2) 314 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 315 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 316 rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire, 317 VecInit(rdataPtrExt.map(_ + 2.U)), 318 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 319 VecInit(rdataPtrExt.map(_ + 1.U)), 320 rdataPtrExt 321 ) 322 )) 323 324 // deqPtrExtNext traces which inst is about to leave store queue 325 // 326 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 327 // Before data write finish, sbuffer is unable to provide store to load 328 // forward data. As an workaround, deqPtrExt and allocated flag update 329 // is delayed so that load can get the right data from store queue. 330 // 331 // Modify deqPtrExtNext and io.sqDeq with care! 332 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 333 deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire), 334 VecInit(deqPtrExt.map(_ + 2.U)), 335 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 336 VecInit(deqPtrExt.map(_ + 1.U)), 337 deqPtrExt 338 ) 339 ) 340 341 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U, 342 Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U) 343 )) 344 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 345 346 for (i <- 0 until EnsbufferWidth) { 347 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 348 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 349 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 350 } 351 352 /** 353 * Enqueue at dispatch 354 * 355 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 356 */ 357 io.enq.canAccept := allowEnqueue 358 val canEnqueue = io.enq.req.map(_.valid) 359 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 360 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 361 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 362 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 363 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 364 365 for (i <- 0 until io.enq.req.length) { 366 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 367 val index = io.enq.req(i).bits.sqIdx 368 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 369 when (canEnqueue(i) && !enqCancel(i)) { 370 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 371 // 16 2 2 2 2 2. 372 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 373 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 374 when (j.U < validVStoreOffset(i)) { 375 uop((index + j.U).value) := io.enq.req(i).bits 376 // NOTE: the index will be used when replay 377 uop((index + j.U).value).sqIdx := sqIdx + j.U 378 vecLastFlow((index + j.U).value) := Mux((j + 1).U === validVStoreOffset(i), io.enq.req(i).bits.lastUop, false.B) 379 allocated((index + j.U).value) := true.B 380 datavalid((index + j.U).value) := false.B 381 addrvalid((index + j.U).value) := false.B 382 unaligned((index + j.U).value) := false.B 383 committed((index + j.U).value) := false.B 384 pending((index + j.U).value) := false.B 385 prefetch((index + j.U).value) := false.B 386 mmio((index + j.U).value) := false.B 387 isVec((index + j.U).value) := FuType.isVStore(io.enq.req(i).bits.fuType) 388 vecMbCommit((index + j.U).value) := false.B 389 vecDataValid((index + j.U).value) := false.B 390 hasException((index + j.U).value) := false.B 391 waitStoreS2((index + j.U).value) := true.B 392 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 393 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 394 } 395 } 396 } 397 io.enq.resp(i) := sqIdx 398 } 399 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 400 401 /** 402 * Update addr/dataReadyPtr when issue from rs 403 */ 404 // update issuePtr 405 val IssuePtrMoveStride = 4 406 require(IssuePtrMoveStride >= 2) 407 408 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 409 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 410 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 411 && ptr =/= enqPtrExt(0)) 412 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 413 addrReadyPtrExt := nextAddrReadyPtr 414 415 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 416 (0 until StoreQueueSize).map(i => { 417 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 418 }) 419 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 420 421 when (io.brqRedirect.valid) { 422 addrReadyPtrExt := Mux( 423 isAfter(cmtPtrExt(0), deqPtrExt(0)), 424 cmtPtrExt(0), 425 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 426 ) 427 } 428 429 io.stAddrReadySqPtr := addrReadyPtrExt 430 431 // update 432 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 433 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 434 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 435 && ptr =/= enqPtrExt(0)) 436 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 437 dataReadyPtrExt := nextDataReadyPtr 438 439 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 440 (0 until StoreQueueSize).map(i => { 441 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 442 }) 443 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 444 445 when (io.brqRedirect.valid) { 446 dataReadyPtrExt := Mux( 447 isAfter(cmtPtrExt(0), deqPtrExt(0)), 448 cmtPtrExt(0), 449 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 450 ) 451 } 452 453 io.stDataReadySqPtr := dataReadyPtrExt 454 io.stIssuePtr := enqPtrExt(0) 455 io.sqDeqPtr := deqPtrExt(0) 456 457 /** 458 * Writeback store from store units 459 * 460 * Most store instructions writeback to regfile in the previous cycle. 461 * However, 462 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 463 * (in this way it will trigger an exception when it reaches ROB's head) 464 * instead of pending to avoid sending them to lower level. 465 * (2) For an mmio instruction without exceptions, we mark it as pending. 466 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 467 * Upon receiving the response, StoreQueue writes back the instruction 468 * through arbiter with store units. It will later commit as normal. 469 */ 470 471 // Write addr to sq 472 for (i <- 0 until StorePipelineWidth) { 473 paddrModule.io.wen(i) := false.B 474 vaddrModule.io.wen(i) := false.B 475 dataModule.io.mask.wen(i) := false.B 476 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 477 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 478 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 479 // will re-enter exceptionbuffer at store_s2 480 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 481 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 482 483 when (io.storeAddrIn(i).fire) { 484 val addr_valid = !io.storeAddrIn(i).bits.miss 485 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 486 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 487 unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned) && !io.storeAddrIn(i).bits.isvec 488 489 paddrModule.io.waddr(i) := stWbIndex 490 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 491 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 492 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 493 paddrModule.io.wen(i) := true.B 494 495 vaddrModule.io.waddr(i) := stWbIndex 496 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 497 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 498 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 499 vaddrModule.io.wen(i) := true.B 500 501 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 502 503 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 504 505 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 506 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 507 508 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 509 510 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 511 io.storeAddrIn(i).bits.uop.sqIdx.value, 512 io.storeAddrIn(i).bits.uop.pc, 513 io.storeAddrIn(i).bits.miss, 514 io.storeAddrIn(i).bits.vaddr, 515 io.storeAddrIn(i).bits.paddr, 516 io.storeAddrIn(i).bits.mmio, 517 io.storeAddrIn(i).bits.isvec 518 ) 519 } 520 521 // re-replinish mmio, for pma/pmp will get mmio one cycle later 522 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 523 //val stWbIndexReg = RegNext(stWbIndex) 524 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 525 when (storeAddrInFireReg) { 526 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 527 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 528 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 529 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || 530 TriggerAction.isDmode(uop(stWbIndexReg).trigger) || io.storeAddrInRe(i).af 531 waitStoreS2(stWbIndexReg) := false.B 532 } 533 // dcache miss info (one cycle later than storeIn) 534 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 535 when (storeAddrInFireReg) { 536 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 537 } 538 // enter exceptionbuffer again 539 when (storeAddrInFireReg) { 540 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af && !io.storeAddrInRe(i).isvec 541 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 542 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 543 } 544 545 when(vaddrModule.io.wen(i)){ 546 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 547 } 548 } 549 550 // Write data to sq 551 // Now store data pipeline is actually 2 stages 552 for (i <- 0 until StorePipelineWidth) { 553 dataModule.io.data.wen(i) := false.B 554 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 555 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 556 // sq data write takes 2 cycles: 557 // sq data write s0 558 when (io.storeDataIn(i).fire) { 559 // send data write req to data module 560 dataModule.io.data.waddr(i) := stWbIndex 561 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 562 0.U, 563 Mux(isVec, 564 io.storeDataIn(i).bits.data, 565 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 566 ) 567 dataModule.io.data.wen(i) := true.B 568 569 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 570 571 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 572 io.storeDataIn(i).bits.uop.sqIdx.value, 573 io.storeDataIn(i).bits.uop.pc, 574 io.storeDataIn(i).bits.data, 575 dataModule.io.data.wdata(i) 576 ) 577 } 578 // sq data write s1 579 when ( 580 RegNext(io.storeDataIn(i).fire) && allocated(RegEnable(stWbIndex, io.storeDataIn(i).fire)) 581 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 582 ) { 583 datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B 584 } 585 } 586 587 // Write mask to sq 588 for (i <- 0 until StorePipelineWidth) { 589 // sq mask write s0 590 when (io.storeMaskIn(i).fire) { 591 // send data write req to data module 592 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 593 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 594 dataModule.io.mask.wen(i) := true.B 595 } 596 } 597 598 /** 599 * load forward query 600 * 601 * Check store queue for instructions that is older than the load. 602 * The response will be valid at the next cycle after req. 603 */ 604 // check over all lq entries and forward data from the first matched store 605 for (i <- 0 until LoadPipelineWidth) { 606 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 607 // (1) if they have the same flag, we need to check range(tail, sqIdx) 608 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 609 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 610 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 611 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 612 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 613 val forwardMask = io.forward(i).sqIdxMask 614 // all addrvalid terms need to be checked 615 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 616 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 617 // vector store will consider all inactive || secondInvalid flows as valid 618 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 619 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 620 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 621 622 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 623 val storeSetHitVec = Mux(lfstEnable, 624 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 625 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 626 ) 627 628 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 629 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 630 val canForward1 = forwardMask1 & allValidVec.asUInt 631 val canForward2 = forwardMask2 & allValidVec.asUInt 632 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 633 634 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 635 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 636 ) 637 638 // do real fwd query (cam lookup in load_s1) 639 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 640 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 641 642 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 643 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 644 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 645 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 646 647 // vaddr cam result does not equal to paddr cam result 648 // replay needed 649 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 650 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 651 val vpmaskNotEqual = ( 652 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 653 RegNext(needForward) & 654 GatedRegNext(addrRealValidVec.asUInt) 655 ) =/= 0.U 656 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 657 when (vaddrMatchFailed) { 658 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 659 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 660 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 661 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 662 ); 663 } 664 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 665 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 666 667 // Fast forward mask will be generated immediately (load_s1) 668 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 669 670 // Forward result will be generated 1 cycle later (load_s2) 671 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 672 io.forward(i).forwardData := dataModule.io.forwardData(i) 673 // If addr match, data not ready, mark it as dataInvalid 674 // load_s1: generate dataInvalid in load_s1 to set fastUop 675 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 676 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 677 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 678 io.forward(i).dataInvalidFast := dataInvalidMask.orR 679 680 // make chisel happy 681 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 682 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 683 // make chisel happy 684 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 685 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 686 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 687 688 // If SSID match, address not ready, mark it as addrInvalid 689 // load_s2: generate addrInvalid 690 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 691 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 692 // make chisel happy 693 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 694 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 695 // make chisel happy 696 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 697 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 698 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 699 700 // load_s2 701 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 702 // check if vaddr forward mismatched 703 io.forward(i).matchInvalid := vaddrMatchFailed 704 705 // data invalid sq index 706 // check whether false fail 707 // check flag 708 val s2_differentFlag = RegNext(differentFlag) 709 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 710 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 711 712 // addr invalid sq index 713 // make chisel happy 714 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 715 addrInvalidMaskRegWire := addrInvalidMaskReg 716 val addrInvalidFlag = addrInvalidMaskRegWire.orR 717 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 718 719 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 720 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 721 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 722 723 // store-set content management 724 // +-----------------------+ 725 // | Search a SSID for the | 726 // | load operation | 727 // +-----------------------+ 728 // | 729 // V 730 // +-------------------+ 731 // | load wait strict? | 732 // +-------------------+ 733 // | 734 // V 735 // +----------------------+ 736 // Set| |Clean 737 // V V 738 // +------------------------+ +------------------------------+ 739 // | Waiting for all older | | Wait until the corresponding | 740 // | stores operations | | older store operations | 741 // +------------------------+ +------------------------------+ 742 743 744 745 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 746 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 747 } .elsewhen (addrInvalidFlag) { 748 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 749 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 750 } .otherwise { 751 // may be store inst has been written to sbuffer already. 752 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 753 } 754 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 755 756 // data invalid sq index 757 // make chisel happy 758 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 759 dataInvalidMaskRegWire := dataInvalidMaskReg 760 val dataInvalidFlag = dataInvalidMaskRegWire.orR 761 762 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 763 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 764 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 765 766 when (dataInvalidFlag) { 767 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 768 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 769 } .otherwise { 770 // may be store inst has been written to sbuffer already. 771 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 772 } 773 } 774 775 /** 776 * Memory mapped IO / other uncached operations / CMO 777 * 778 * States: 779 * (1) writeback from store units: mark as pending 780 * (2) when they reach ROB's head, they can be sent to uncache channel 781 * (3) response from uncache channel: mark as datavalidmask.wen 782 * (4) writeback to ROB (and other units): mark as writebacked 783 * (5) ROB commits the instruction: same as normal instructions 784 */ 785 //(2) when they reach ROB's head, they can be sent to uncache channel 786 // TODO: CAN NOT deal with vector mmio now! 787 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 788 val uncacheState = RegInit(s_idle) 789 val uncacheUop = Reg(new DynInst) 790 val uncacheVAddr = Reg(UInt(VAddrBits.W)) 791 val cboFlushedSb = RegInit(false.B) 792 switch(uncacheState) { 793 is(s_idle) { 794 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 795 uncacheState := s_req 796 uncacheUop := uop(deqPtr) 797 cboFlushedSb := false.B 798 } 799 } 800 is(s_req) { 801 when (io.uncache.req.fire) { 802 when (io.uncacheOutstanding) { 803 uncacheState := s_wb 804 } .otherwise { 805 uncacheState := s_resp 806 } 807 } 808 } 809 is(s_resp) { 810 when(io.uncache.resp.fire) { 811 uncacheState := s_wb 812 813 when (io.uncache.resp.bits.nderr) { 814 uncacheUop.exceptionVec(storeAccessFault) := true.B 815 } 816 } 817 } 818 is(s_wb) { 819 when (io.mmioStout.fire || io.vecmmioStout.fire) { 820 when (uncacheUop.exceptionVec(storeAccessFault)) { 821 uncacheState := s_idle 822 }.otherwise { 823 uncacheState := s_wait 824 } 825 } 826 } 827 is(s_wait) { 828 // A MMIO store can always move cmtPtrExt as it must be ROB head 829 when(scommit > 0.U) { 830 uncacheState := s_idle // ready for next mmio 831 } 832 } 833 } 834 io.uncache.req.valid := uncacheState === s_req 835 836 io.uncache.req.bits := DontCare 837 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 838 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 839 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 840 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 841 842 // CBO op type check can be delayed for 1 cycle, 843 // as uncache op will not start in s_idle 844 val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0)) 845 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 846 when (deqCanDoCbo) { 847 // disable uncache channel 848 io.uncache.req.valid := false.B 849 850 when (io.cmoOpReq.fire) { 851 uncacheState := s_resp 852 } 853 854 when (uncacheState === s_resp) { 855 when (io.cmoOpResp.fire) { 856 uncacheState := s_wb 857 } 858 } 859 } 860 861 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req) 862 io.cmoOpReq.bits.opcode := uop(deqPtr).fuOpType(1, 0) 863 io.cmoOpReq.bits.address := cboMmioAddr 864 865 io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp) 866 867 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty 868 869 when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) { 870 cboFlushedSb := true.B 871 } 872 873 io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 874 875 when(io.uncache.req.fire){ 876 // mmio store should not be committed until uncache req is sent 877 pending(deqPtr) := false.B 878 879 XSDebug( 880 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 881 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 882 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 883 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 884 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 885 ) 886 } 887 888 // (3) response from uncache channel: mark as datavalid 889 io.uncache.resp.ready := true.B 890 891 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 892 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 893 io.mmioStout.bits.uop := uncacheUop 894 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 895 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 896 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 897 io.mmioStout.bits.isFromLoadUnit := DontCare 898 io.mmioStout.bits.debug.isMMIO := true.B 899 io.mmioStout.bits.debug.paddr := DontCare 900 io.mmioStout.bits.debug.isPerfCnt := false.B 901 io.mmioStout.bits.debug.vaddr := DontCare 902 // Remove MMIO inst from store queue after MMIO request is being sent 903 // That inst will be traced by uncache state machine 904 when (io.mmioStout.fire) { 905 allocated(deqPtr) := false.B 906 } 907 908 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 909 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 910 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 911 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 912 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 913 914 // (4) or vector store: 915 // TODO: implement it! 916 io.vecmmioStout := DontCare 917 io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr) 918 io.vecmmioStout.bits.uop := uop(deqPtr) 919 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 920 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 921 io.vecmmioStout.bits.debug.isMMIO := true.B 922 io.vecmmioStout.bits.debug.paddr := DontCare 923 io.vecmmioStout.bits.debug.isPerfCnt := false.B 924 io.vecmmioStout.bits.debug.vaddr := DontCare 925 // Remove MMIO inst from store queue after MMIO request is being sent 926 // That inst will be traced by uncache state machine 927 when (io.vecmmioStout.fire) { 928 allocated(deqPtr) := false.B 929 } 930 931 /** 932 * ROB commits store instructions (mark them as committed) 933 * 934 * (1) When store commits, mark it as committed. 935 * (2) They will not be cancelled and can be sent to lower level. 936 */ 937 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 938 "should not commit instruction when MMIO has not been finished\n") 939 940 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 941 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 942 943 if (backendParams.debugEn){ dontTouch(commitVec) } 944 945 // TODO: Deal with vector store mmio 946 for (i <- 0 until CommitWidth) { 947 // don't mark misalign store as committed 948 when (allocated(cmtPtrExt(i).value) && !unaligned(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 949 if (i == 0){ 950 // TODO: fixme for vector mmio 951 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 952 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 953 committed(cmtPtrExt(0).value) := true.B 954 commitVec(0) := true.B 955 } 956 } 957 } else { 958 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 959 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 960 commitVec(i) := commitVec(i - 1) 961 } 962 } 963 } 964 } 965 966 commitCount := PopCount(commitVec) 967 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 968 969 // committed stores will not be cancelled and can be sent to lower level. 970 // remove retired insts from sq, add retired store to sbuffer 971 972 // Read data from data module 973 // As store queue grows larger and larger, time needed to read data from data 974 // module keeps growing higher. Now we give data read a whole cycle. 975 for (i <- 0 until EnsbufferWidth) { 976 val ptr = rdataPtrExt(i).value 977 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 978 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 979 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 980 } 981 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 982 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 983 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 984 if (i == 0) { 985 // use dataBuffer write port 0 to writeback missaligned store out 986 dataBuffer.io.enq(i).valid := Mux( 987 doMisalignSt, 988 io.maControl.control.writeSb, 989 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 990 ) 991 } else { 992 dataBuffer.io.enq(i).valid := Mux( 993 doMisalignSt, 994 false.B, 995 allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 996 ) 997 } 998 // Note that store data/addr should both be valid after store's commit 999 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr))) 1000 dataBuffer.io.enq(i).bits.addr := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i)) 1001 dataBuffer.io.enq(i).bits.vaddr := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i)) 1002 dataBuffer.io.enq(i).bits.data := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data) 1003 dataBuffer.io.enq(i).bits.mask := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask) 1004 dataBuffer.io.enq(i).bits.wline := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i)) 1005 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1006 dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr)) 1007 // when scalar has exception, will also not write into sbuffer 1008 dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid) 1009// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 1010 } 1011 1012 // Send data stored in sbufferReqBitsReg to sbuffer 1013 for (i <- 0 until EnsbufferWidth) { 1014 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1015 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1016 io.sbuffer(i).bits := DontCare 1017 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1018 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1019 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1020 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1021 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1022 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1023 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1024 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1025 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1026 // Before data write finish, sbuffer is unable to provide store to load 1027 // forward data. As an workaround, deqPtrExt and allocated flag update 1028 // is delayed so that load can get the right data from store queue. 1029 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1030 when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) { 1031 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1032 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1033 } 1034 } 1035 1036 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1037 // Flags are used to record whether there are any exceptions when the queue is displayed. 1038 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1039 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1040 val ptr = rdataPtrExt(i).value 1041 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1042 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1043 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1044 } 1045 1046 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1047 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1048 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1049 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1050 // Just select the last Uop tah has an exception. 1051 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1052 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1053 // compare robidx to select the last flow 1054 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1055 val robidxEQ = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid && 1056 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1057 val robidxNE = dataBuffer.io.enq(0).valid && dataBuffer.io.enq(1).valid && ( 1058 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1059 ) 1060 val onlyCommit0 = dataBuffer.io.enq(0).valid && !dataBuffer.io.enq(1).valid 1061 1062 val vecCommitLastFlow = 1063 // robidx equal => check if 1 is last flow 1064 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1065 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1066 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1067 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1068 1069 1070 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1071 val ptr = rdataPtrExt(i).value 1072 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1073 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1074 vecLastFlowCommit 1075 }.reduce(_ || _) 1076 1077 // When a LastFlow with an exception instruction is commited, clear the flag. 1078 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1079 vecExceptionFlag.valid := true.B 1080 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1081 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1082 vecExceptionFlag.valid := false.B 1083 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1084 } 1085 1086 // A dumb defensive code. The flag should not be placed for a long period of time. 1087 // A relatively large timeout period, not have any special meaning. 1088 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1089 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1090 1091 // Initialize when unenabled difftest. 1092 for (i <- 0 until EnsbufferWidth) { 1093 io.sbufferVecDifftestInfo(i) := DontCare 1094 } 1095 // Consistent with the logic above. 1096 // Only the vector store difftest required signal is separated from the rtl code. 1097 if (env.EnableDifftest) { 1098 for (i <- 0 until EnsbufferWidth) { 1099 val ptr = rdataPtrExt(i).value 1100 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1101 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1102 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1103 } 1104 for (i <- 0 until EnsbufferWidth) { 1105 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1106 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1107 1108 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1109 } 1110 1111 // commit cbo.inval to difftest 1112 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1113 cmoInvalEvent.coreid := io.hartId 1114 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1115 cmoInvalEvent.addr := cboMmioAddr 1116 } 1117 1118 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1119 if (coreParams.dcacheParametersOpt.isEmpty) { 1120 for (i <- 0 until EnsbufferWidth) { 1121 val ptr = deqPtrExt(i).value 1122 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1123 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1124 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1125 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1126 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1127 when (wen) { 1128 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1129 } 1130 } 1131 } 1132 1133 // Read vaddr for mem exception 1134 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1135 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1136 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1137 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1138 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1139 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1140 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1141 1142 // vector commit or replay from 1143 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1144 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1145 for (i <- 0 until StoreQueueSize) { 1146 val fbk = io.vecFeedback 1147 for (j <- 0 until VecStorePipelineWidth) { 1148 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1149 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1150 } 1151 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1152 1153 when (vecCommit(i)) { 1154 vecMbCommit(i) := true.B 1155 } 1156 } 1157 1158 // misprediction recovery / exception redirect 1159 // invalidate sq term using robIdx 1160 for (i <- 0 until StoreQueueSize) { 1161 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1162 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1163 when (needCancel(i)) { 1164 allocated(i) := false.B 1165 } 1166 } 1167 1168 /** 1169* update pointers 1170**/ 1171 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1172 v && x.bits.robIdx.needFlush(io.brqRedirect) 1173 } 1174 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1175 Mux(v, req.bits.numLsElem, 0.U) 1176 } 1177 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1178 1179 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1180 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1181 val enqNumber = validVStoreFlow.reduce(_ + _) 1182 1183 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1184 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1185 1186 when (lastlastCycleRedirect) { 1187 // we recover the pointers in 2 cycle after redirect for better timing 1188 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1189 }.otherwise { 1190 // lastCycleRedirect.valid or nornal case 1191 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1192 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1193 } 1194 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1195 1196 exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt 1197 // special case (store miss align) in updating ptr 1198 when (doMisalignSt) { 1199 when (!finishMisalignSt) { 1200 // dont move deqPtr and rdataPtr until all split store has been written to sb 1201 deqPtrExtNext := deqPtrExt 1202 rdataPtrExtNext := rdataPtrExt 1203 } .otherwise { 1204 // remove this unaligned store from sq 1205 allocated(deqPtr) := false.B 1206 committed(deqPtr) := true.B 1207 cmtPtrExt := cmtPtrExt.map(_ + 1.U) 1208 deqPtrExtNext := deqPtrExt.map(_ + 1.U) 1209 rdataPtrExtNext := rdataPtrExt.map(_ + 1.U) 1210 } 1211 } 1212 1213 deqPtrExt := deqPtrExtNext 1214 rdataPtrExt := rdataPtrExtNext 1215 1216 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1217 1218 // If redirect at T0, sqCancelCnt is at T2 1219 io.sqCancelCnt := redirectCancelCount 1220 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1221 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1222 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1223 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1224 1225 val valid_cnt = PopCount(allocated) 1226 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1227 1228 // io.sqempty will be used by sbuffer 1229 // We delay it for 1 cycle for better timing 1230 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1231 // for 1 cycle will also promise that sq is empty in that cycle 1232 io.sqEmpty := RegNext( 1233 enqPtrExt(0).value === deqPtrExt(0).value && 1234 enqPtrExt(0).flag === deqPtrExt(0).flag 1235 ) 1236 // perf counter 1237 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1238 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1239 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1240 io.sqFull := !allowEnqueue 1241 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1242 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1243 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1244 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1245 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1246 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1247 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1248 1249 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1250 val perfEvents = Seq( 1251 ("mmioCycle ", uncacheState =/= s_idle), 1252 ("mmioCnt ", io.uncache.req.fire), 1253 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1254 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1255 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1256 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1257 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1258 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1259 ) 1260 generatePerfEvent() 1261 1262 // debug info 1263 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1264 1265 def PrintFlag(flag: Bool, name: String): Unit = { 1266 when(flag) { 1267 XSDebug(false, true.B, name) 1268 }.otherwise { 1269 XSDebug(false, true.B, " ") 1270 } 1271 } 1272 1273 for (i <- 0 until StoreQueueSize) { 1274 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1275 uop(i).pc, 1276 debug_vaddr(i), 1277 debug_paddr(i), 1278 debug_data(i) 1279 ) 1280 PrintFlag(allocated(i), "a") 1281 PrintFlag(allocated(i) && addrvalid(i), "a") 1282 PrintFlag(allocated(i) && datavalid(i), "d") 1283 PrintFlag(allocated(i) && committed(i), "c") 1284 PrintFlag(allocated(i) && pending(i), "p") 1285 PrintFlag(allocated(i) && mmio(i), "m") 1286 XSDebug(false, true.B, "\n") 1287 } 1288 1289} 1290