xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 1eae6a3f990c4840bbce3f033cc38efd032a7af6)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.backend._
31import xiangshan.backend.rob.{RobLsqIO, RobPtr}
32import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
34import xiangshan.backend.fu.FuConfig._
35import xiangshan.backend.fu.FuType
36import xiangshan.ExceptionNO._
37import coupledL2.{CMOReq, CMOResp}
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70}
71
72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
73  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
74  // The 2nd StorePipelineWidth ports: sta af generated at s2
75  // The following VecStorePipelineWidth ports: vector st exception
76  // The last port: non-data error generated in SoC
77  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
78
79  val io = IO(new Bundle() {
80    val redirect = Flipped(ValidIO(new Redirect))
81    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
82    val flushFrmMaBuf = Input(Bool())
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := req_valid || true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155  when(req_valid && io.flushFrmMaBuf) {
156    req_valid := false.B
157  }
158}
159
160// Store Queue
161class StoreQueue(implicit p: Parameters) extends XSModule
162  with HasDCacheParameters
163  with HasCircularQueuePtrHelper
164  with HasPerfEvents
165  with HasVLSUParameters {
166  val io = IO(new Bundle() {
167    val hartId = Input(UInt(hartIdLen.W))
168    val enq = new SqEnqIO
169    val brqRedirect = Flipped(ValidIO(new Redirect))
170    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
171    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
172    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
173    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
174    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
175    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
176    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
177    val uncacheOutstanding = Input(Bool())
178    val cmoOpReq  = DecoupledIO(new CMOReq)
179    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
180    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
181    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
182    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
183    // TODO: scommit is only for scalar store
184    val rob = Flipped(new RobLsqIO)
185    val uncache = new UncacheWordIO
186    // val refill = Flipped(Valid(new DCacheLineReq ))
187    val exceptionAddr = new ExceptionAddrIO
188    val flushSbuffer = new SbufferFlushBundle
189    val sqEmpty = Output(Bool())
190    val stAddrReadySqPtr = Output(new SqPtr)
191    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
192    val stDataReadySqPtr = Output(new SqPtr)
193    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
194    val stIssuePtr = Output(new SqPtr)
195    val sqDeqPtr = Output(new SqPtr)
196    val sqFull = Output(Bool())
197    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
198    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
199    val force_write = Output(Bool())
200    val maControl   = Flipped(new StoreMaBufToSqControlIO)
201  })
202
203  println("StoreQueue: size:" + StoreQueueSize)
204
205  // data modules
206  val uop = Reg(Vec(StoreQueueSize, new DynInst))
207  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
208  val dataModule = Module(new SQDataModule(
209    numEntries = StoreQueueSize,
210    numRead = EnsbufferWidth,
211    numWrite = StorePipelineWidth,
212    numForward = LoadPipelineWidth
213  ))
214  dataModule.io := DontCare
215  val paddrModule = Module(new SQAddrModule(
216    dataWidth = PAddrBits,
217    numEntries = StoreQueueSize,
218    numRead = EnsbufferWidth,
219    numWrite = StorePipelineWidth,
220    numForward = LoadPipelineWidth
221  ))
222  paddrModule.io := DontCare
223  val vaddrModule = Module(new SQAddrModule(
224    dataWidth = VAddrBits,
225    numEntries = StoreQueueSize,
226    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
227    numWrite = StorePipelineWidth,
228    numForward = LoadPipelineWidth
229  ))
230  vaddrModule.io := DontCare
231  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
232  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
233  val exceptionBuffer = Module(new StoreExceptionBuffer)
234  exceptionBuffer.io.redirect := io.brqRedirect
235  exceptionBuffer.io.exceptionAddr.isStore := DontCare
236  // vlsu exception!
237  for (i <- 0 until VecStorePipelineWidth) {
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
246    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
247    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
248    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
249  }
250
251
252  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
253  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
254  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
255
256  // state & misc
257  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
258  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
259  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
260  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
261  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
262  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
263  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
264  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
265  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
266  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
267  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
268  //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction
269  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
270  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
271  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
272  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
273  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
274  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
275  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
276
277  // ptr
278  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
279  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
280  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
281  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
282  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
283  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
284
285  val enqPtr = enqPtrExt(0).value
286  val deqPtr = deqPtrExt(0).value
287  val cmtPtr = cmtPtrExt(0).value
288
289  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
290  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
291
292  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
293  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
294
295  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
296  val scommit = GatedRegNext(io.rob.scommit)
297
298  // RegNext misalign control for better timing
299  val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr))
300  val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException)
301  val misalignBlock = doMisalignSt && !finishMisalignSt
302
303  // store miss align info
304  io.maControl.storeInfo.data := dataModule.io.rdata(0).data
305  io.maControl.storeInfo.dataReady := doMisalignSt
306  io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire
307
308  // store can be committed by ROB
309  io.rob.mmio := DontCare
310  io.rob.uop := DontCare
311
312  // Read dataModule
313  assert(EnsbufferWidth <= 2)
314  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
315  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
316  rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire,
317    VecInit(rdataPtrExt.map(_ + 2.U)),
318    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire,
319      VecInit(rdataPtrExt.map(_ + 1.U)),
320      rdataPtrExt
321    )
322  ))
323
324  // deqPtrExtNext traces which inst is about to leave store queue
325  //
326  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
327  // Before data write finish, sbuffer is unable to provide store to load
328  // forward data. As an workaround, deqPtrExt and allocated flag update
329  // is delayed so that load can get the right data from store queue.
330  //
331  // Modify deqPtrExtNext and io.sqDeq with care!
332  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
333  deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire),
334    VecInit(deqPtrExt.map(_ + 2.U)),
335    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire,
336      VecInit(deqPtrExt.map(_ + 1.U)),
337      deqPtrExt
338    )
339  )
340
341  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U,
342    Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U)
343  ))
344  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
345
346  for (i <- 0 until EnsbufferWidth) {
347    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
348    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
349    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
350  }
351
352  /**
353    * Enqueue at dispatch
354    *
355    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
356    */
357  io.enq.canAccept := allowEnqueue
358  val canEnqueue = io.enq.req.map(_.valid)
359  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
360  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
361  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)}
362  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
363  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
364
365  for (i <- 0 until io.enq.req.length) {
366    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
367    val index = io.enq.req(i).bits.sqIdx
368    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
369    when (canEnqueue(i) && !enqCancel(i)) {
370      // The maximum 'numLsElem' number that can be emitted per dispatch port is:
371      //    16 2 2 2 2 2.
372      // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2)
373      for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) {
374        when (j.U < validVStoreOffset(i)) {
375          uop((index + j.U).value) := io.enq.req(i).bits
376          // NOTE: the index will be used when replay
377          uop((index + j.U).value).sqIdx := sqIdx + j.U
378          allocated((index + j.U).value) := true.B
379          datavalid((index + j.U).value) := false.B
380          addrvalid((index + j.U).value) := false.B
381          unaligned((index + j.U).value) := false.B
382          committed((index + j.U).value) := false.B
383          pending((index + j.U).value) := false.B
384          prefetch((index + j.U).value) := false.B
385          mmio((index + j.U).value) := false.B
386          isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst
387          vecMbCommit((index + j.U).value) := false.B
388          vecDataValid((index + j.U).value) := false.B
389          hasException((index + j.U).value) := false.B
390          waitStoreS2((index + j.U).value) := true.B
391          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
392          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
393        }
394      }
395    }
396    io.enq.resp(i) := sqIdx
397  }
398  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
399
400  /**
401    * Update addr/dataReadyPtr when issue from rs
402    */
403  // update issuePtr
404  val IssuePtrMoveStride = 4
405  require(IssuePtrMoveStride >= 2)
406
407  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
408  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
409   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
410    && ptr =/= enqPtrExt(0))
411  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
412  addrReadyPtrExt := nextAddrReadyPtr
413
414  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
415  (0 until StoreQueueSize).map(i => {
416    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
417  })
418  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
419
420  when (io.brqRedirect.valid) {
421    addrReadyPtrExt := Mux(
422      isAfter(cmtPtrExt(0), deqPtrExt(0)),
423      cmtPtrExt(0),
424      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
425    )
426  }
427
428  io.stAddrReadySqPtr := addrReadyPtrExt
429
430  // update
431  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
432  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
433   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
434    && ptr =/= enqPtrExt(0))
435  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
436  dataReadyPtrExt := nextDataReadyPtr
437
438  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
439  (0 until StoreQueueSize).map(i => {
440    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
441  })
442  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
443
444  when (io.brqRedirect.valid) {
445    dataReadyPtrExt := Mux(
446      isAfter(cmtPtrExt(0), deqPtrExt(0)),
447      cmtPtrExt(0),
448      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
449    )
450  }
451
452  io.stDataReadySqPtr := dataReadyPtrExt
453  io.stIssuePtr := enqPtrExt(0)
454  io.sqDeqPtr := deqPtrExt(0)
455
456  /**
457    * Writeback store from store units
458    *
459    * Most store instructions writeback to regfile in the previous cycle.
460    * However,
461    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
462    * (in this way it will trigger an exception when it reaches ROB's head)
463    * instead of pending to avoid sending them to lower level.
464    *   (2) For an mmio instruction without exceptions, we mark it as pending.
465    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
466    * Upon receiving the response, StoreQueue writes back the instruction
467    * through arbiter with store units. It will later commit as normal.
468    */
469
470  // Write addr to sq
471  for (i <- 0 until StorePipelineWidth) {
472    paddrModule.io.wen(i) := false.B
473    vaddrModule.io.wen(i) := false.B
474    dataModule.io.mask.wen(i) := false.B
475    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
476    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
477    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
478    // will re-enter exceptionbuffer at store_s2
479    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
480    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
481
482    when (io.storeAddrIn(i).fire) {
483      val addr_valid = !io.storeAddrIn(i).bits.miss
484      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
485      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
486      unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned)
487
488      paddrModule.io.waddr(i) := stWbIndex
489      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
490      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
491      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
492      paddrModule.io.wen(i) := true.B
493
494      vaddrModule.io.waddr(i) := stWbIndex
495      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
496      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
497      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
498      vaddrModule.io.wen(i) := true.B
499
500      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
501
502      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
503
504      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
505      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
506
507      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
508
509      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
510        io.storeAddrIn(i).bits.uop.sqIdx.value,
511        io.storeAddrIn(i).bits.uop.pc,
512        io.storeAddrIn(i).bits.miss,
513        io.storeAddrIn(i).bits.vaddr,
514        io.storeAddrIn(i).bits.paddr,
515        io.storeAddrIn(i).bits.mmio,
516        io.storeAddrIn(i).bits.isvec
517      )
518    }
519
520    // re-replinish mmio, for pma/pmp will get mmio one cycle later
521    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
522    //val stWbIndexReg = RegNext(stWbIndex)
523    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
524    when (storeAddrInFireReg) {
525      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
526      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
527      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
528      hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af
529      waitStoreS2(stWbIndexReg) := false.B
530    }
531    // dcache miss info (one cycle later than storeIn)
532    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
533    when (storeAddrInFireReg) {
534      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
535    }
536    // enter exceptionbuffer again
537    when (storeAddrInFireReg) {
538      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af
539      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
540      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
541    }
542
543    when(vaddrModule.io.wen(i)){
544      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
545    }
546  }
547
548  // Write data to sq
549  // Now store data pipeline is actually 2 stages
550  for (i <- 0 until StorePipelineWidth) {
551    dataModule.io.data.wen(i) := false.B
552    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
553    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
554    // sq data write takes 2 cycles:
555    // sq data write s0
556    when (io.storeDataIn(i).fire) {
557      // send data write req to data module
558      dataModule.io.data.waddr(i) := stWbIndex
559      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
560        0.U,
561        Mux(isVec,
562          io.storeDataIn(i).bits.data,
563          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
564      )
565      dataModule.io.data.wen(i) := true.B
566
567      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
568
569      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
570        io.storeDataIn(i).bits.uop.sqIdx.value,
571        io.storeDataIn(i).bits.uop.pc,
572        io.storeDataIn(i).bits.data,
573        dataModule.io.data.wdata(i)
574      )
575    }
576    // sq data write s1
577    when (
578      RegNext(io.storeDataIn(i).fire)
579      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
580    ) {
581      datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B
582    }
583  }
584
585  // Write mask to sq
586  for (i <- 0 until StorePipelineWidth) {
587    // sq mask write s0
588    when (io.storeMaskIn(i).fire) {
589      // send data write req to data module
590      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
591      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
592      dataModule.io.mask.wen(i) := true.B
593    }
594  }
595
596  /**
597    * load forward query
598    *
599    * Check store queue for instructions that is older than the load.
600    * The response will be valid at the next cycle after req.
601    */
602  // check over all lq entries and forward data from the first matched store
603  for (i <- 0 until LoadPipelineWidth) {
604    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
605    // (1) if they have the same flag, we need to check range(tail, sqIdx)
606    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
607    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
608    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
609    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
610    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
611    val forwardMask = io.forward(i).sqIdxMask
612    // all addrvalid terms need to be checked
613    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
614    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
615    // vector store will consider all inactive || secondInvalid flows as valid
616    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
617    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
618    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
619
620    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
621    val storeSetHitVec = Mux(lfstEnable,
622      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
623      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
624    )
625
626    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
627    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
628    val canForward1 = forwardMask1 & allValidVec.asUInt
629    val canForward2 = forwardMask2 & allValidVec.asUInt
630    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
631
632    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
633      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
634    )
635
636    // do real fwd query (cam lookup in load_s1)
637    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
638    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
639
640    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
641    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
642    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
643    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
644
645    // vaddr cam result does not equal to paddr cam result
646    // replay needed
647    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
648    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
649    val vpmaskNotEqual = (
650      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
651      RegNext(needForward) &
652      GatedRegNext(addrRealValidVec.asUInt)
653    ) =/= 0.U
654    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
655    when (vaddrMatchFailed) {
656      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
657        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
658        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
659        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
660      );
661    }
662    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
663    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
664
665    // Fast forward mask will be generated immediately (load_s1)
666    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
667
668    // Forward result will be generated 1 cycle later (load_s2)
669    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
670    io.forward(i).forwardData := dataModule.io.forwardData(i)
671    // If addr match, data not ready, mark it as dataInvalid
672    // load_s1: generate dataInvalid in load_s1 to set fastUop
673    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
674    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
675    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
676    io.forward(i).dataInvalidFast := dataInvalidMask.orR
677
678    // make chisel happy
679    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
680    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
681    // make chisel happy
682    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
683    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
684    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
685
686    // If SSID match, address not ready, mark it as addrInvalid
687    // load_s2: generate addrInvalid
688    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
689    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
690    // make chisel happy
691    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
692    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
693    // make chisel happy
694    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
695    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
696    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
697
698    // load_s2
699    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
700    // check if vaddr forward mismatched
701    io.forward(i).matchInvalid := vaddrMatchFailed
702
703    // data invalid sq index
704    // check whether false fail
705    // check flag
706    val s2_differentFlag = RegNext(differentFlag)
707    val s2_enqPtrExt = RegNext(enqPtrExt(0))
708    val s2_deqPtrExt = RegNext(deqPtrExt(0))
709
710    // addr invalid sq index
711    // make chisel happy
712    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
713    addrInvalidMaskRegWire := addrInvalidMaskReg
714    val addrInvalidFlag = addrInvalidMaskRegWire.orR
715    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
716
717    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
718    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
719    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
720
721    // store-set content management
722    //                +-----------------------+
723    //                | Search a SSID for the |
724    //                |    load operation     |
725    //                +-----------------------+
726    //                           |
727    //                           V
728    //                 +-------------------+
729    //                 | load wait strict? |
730    //                 +-------------------+
731    //                           |
732    //                           V
733    //               +----------------------+
734    //            Set|                      |Clean
735    //               V                      V
736    //  +------------------------+   +------------------------------+
737    //  | Waiting for all older  |   | Wait until the corresponding |
738    //  |   stores operations    |   | older store operations       |
739    //  +------------------------+   +------------------------------+
740
741
742
743    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
744      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
745    } .elsewhen (addrInvalidFlag) {
746      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
747      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
748    } .otherwise {
749      // may be store inst has been written to sbuffer already.
750      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
751    }
752    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
753
754    // data invalid sq index
755    // make chisel happy
756    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
757    dataInvalidMaskRegWire := dataInvalidMaskReg
758    val dataInvalidFlag = dataInvalidMaskRegWire.orR
759
760    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
761    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
762    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
763
764    when (dataInvalidFlag) {
765      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
766      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
767    } .otherwise {
768      // may be store inst has been written to sbuffer already.
769      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
770    }
771  }
772
773  /**
774    * Memory mapped IO / other uncached operations / CMO
775    *
776    * States:
777    * (1) writeback from store units: mark as pending
778    * (2) when they reach ROB's head, they can be sent to uncache channel
779    * (3) response from uncache channel: mark as datavalidmask.wen
780    * (4) writeback to ROB (and other units): mark as writebacked
781    * (5) ROB commits the instruction: same as normal instructions
782    */
783  //(2) when they reach ROB's head, they can be sent to uncache channel
784  // TODO: CAN NOT deal with vector mmio now!
785  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
786  val uncacheState = RegInit(s_idle)
787  val uncacheUop = Reg(new DynInst)
788  val uncacheVAddr = Reg(UInt(VAddrBits.W))
789  val cboFlushedSb = RegInit(false.B)
790  switch(uncacheState) {
791    is(s_idle) {
792      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
793        uncacheState := s_req
794        uncacheUop := uop(deqPtr)
795        cboFlushedSb := false.B
796      }
797    }
798    is(s_req) {
799      when (io.uncache.req.fire) {
800        when (io.uncacheOutstanding) {
801          uncacheState := s_wb
802        } .otherwise {
803          uncacheState := s_resp
804        }
805      }
806    }
807    is(s_resp) {
808      when(io.uncache.resp.fire) {
809        uncacheState := s_wb
810
811        when (io.uncache.resp.bits.nderr) {
812          uncacheUop.exceptionVec(storeAccessFault) := true.B
813        }
814      }
815    }
816    is(s_wb) {
817      when (io.mmioStout.fire || io.vecmmioStout.fire) {
818        uncacheState := s_wait
819      }
820    }
821    is(s_wait) {
822      // A MMIO store can always move cmtPtrExt as it must be ROB head
823      when(scommit > 0.U) {
824        uncacheState := s_idle // ready for next mmio
825      }
826    }
827  }
828  io.uncache.req.valid := uncacheState === s_req
829
830  io.uncache.req.bits := DontCare
831  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
832  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
833  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
834  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
835
836  // CBO op type check can be delayed for 1 cycle,
837  // as uncache op will not start in s_idle
838  val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0))
839  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
840  when (deqCanDoCbo) {
841    // disable uncache channel
842    io.uncache.req.valid := false.B
843
844    when (io.cmoOpReq.fire) {
845      uncacheState := s_resp
846    }
847
848    when (uncacheState === s_resp) {
849      when (io.cmoOpResp.fire) {
850        uncacheState := s_wb
851      }
852    }
853  }
854
855  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req)
856  io.cmoOpReq.bits.opcode  := uop(deqPtr).fuOpType(1, 0)
857  io.cmoOpReq.bits.address := cboMmioAddr
858
859  io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp)
860
861  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty
862
863  when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) {
864    cboFlushedSb := true.B
865  }
866
867  io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
868
869  when(io.uncache.req.fire){
870    // mmio store should not be committed until uncache req is sent
871    pending(deqPtr) := false.B
872
873    XSDebug(
874      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
875      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
876      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
877      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
878      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
879    )
880  }
881
882  // (3) response from uncache channel: mark as datavalid
883  io.uncache.resp.ready := true.B
884
885  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
886  io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr)
887  io.mmioStout.bits.uop := uncacheUop
888  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
889  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
890  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
891  io.mmioStout.bits.debug.isMMIO := true.B
892  io.mmioStout.bits.debug.paddr := DontCare
893  io.mmioStout.bits.debug.isPerfCnt := false.B
894  io.mmioStout.bits.debug.vaddr := DontCare
895  // Remove MMIO inst from store queue after MMIO request is being sent
896  // That inst will be traced by uncache state machine
897  when (io.mmioStout.fire) {
898    allocated(deqPtr) := false.B
899  }
900
901  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
902  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
903  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
904  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
905  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
906
907  // (4) or vector store:
908  // TODO: implement it!
909  io.vecmmioStout := DontCare
910  io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr)
911  io.vecmmioStout.bits.uop := uop(deqPtr)
912  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
913  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
914  io.vecmmioStout.bits.debug.isMMIO := true.B
915  io.vecmmioStout.bits.debug.paddr := DontCare
916  io.vecmmioStout.bits.debug.isPerfCnt := false.B
917  io.vecmmioStout.bits.debug.vaddr := DontCare
918  // Remove MMIO inst from store queue after MMIO request is being sent
919  // That inst will be traced by uncache state machine
920  when (io.vecmmioStout.fire) {
921    allocated(deqPtr) := false.B
922  }
923
924  /**
925    * ROB commits store instructions (mark them as committed)
926    *
927    * (1) When store commits, mark it as committed.
928    * (2) They will not be cancelled and can be sent to lower level.
929    */
930  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
931   "should not commit instruction when MMIO has not been finished\n")
932
933  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
934  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
935  dontTouch(commitVec)
936  // TODO: Deal with vector store mmio
937  for (i <- 0 until CommitWidth) {
938    when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
939      // don't commit while doing misalign
940      if (i == 0){
941        // TODO: fixme for vector mmio
942        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
943          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
944            committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B)
945            commitVec(0) := Mux(misalignBlock, false.B, true.B)
946          }
947        }
948      } else {
949        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
950          committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value))
951          commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1))
952        }
953      }
954    }
955  }
956
957  commitCount := PopCount(commitVec)
958  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
959
960  // committed stores will not be cancelled and can be sent to lower level.
961  // remove retired insts from sq, add retired store to sbuffer
962
963  // Read data from data module
964  // As store queue grows larger and larger, time needed to read data from data
965  // module keeps growing higher. Now we give data read a whole cycle.
966  for (i <- 0 until EnsbufferWidth) {
967    val ptr = rdataPtrExt(i).value
968    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
969    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
970      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
971    }
972    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
973    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
974    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
975    if (i == 0) {
976      // use dataBuffer write port 0 to writeback missaligned store out
977      dataBuffer.io.enq(i).valid := Mux(
978        doMisalignSt,
979        io.maControl.control.writeSb,
980        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
981      )
982    } else {
983      dataBuffer.io.enq(i).valid := Mux(
984        doMisalignSt,
985        false.B,
986        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
987      )
988    }
989    // Note that store data/addr should both be valid after store's commit
990    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr)))
991    dataBuffer.io.enq(i).bits.addr     := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i))
992    dataBuffer.io.enq(i).bits.vaddr    := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i))
993    dataBuffer.io.enq(i).bits.data     := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data)
994    dataBuffer.io.enq(i).bits.mask     := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask)
995    dataBuffer.io.enq(i).bits.wline    := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i))
996    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
997    dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr))
998    // when scalar has exception, will also not write into sbuffer
999    dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid)
1000//    dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr)
1001  }
1002
1003  // Send data stored in sbufferReqBitsReg to sbuffer
1004  for (i <- 0 until EnsbufferWidth) {
1005    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1006    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1007    io.sbuffer(i).bits := DontCare
1008    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1009    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1010    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1011    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1012    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1013    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1014    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1015    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1016    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1017    // Before data write finish, sbuffer is unable to provide store to load
1018    // forward data. As an workaround, deqPtrExt and allocated flag update
1019    // is delayed so that load can get the right data from store queue.
1020    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1021    when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) {
1022      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1023      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
1024    }
1025  }
1026
1027  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1028  // Flags are used to record whether there are any exceptions when the queue is displayed.
1029  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1030  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1031    val ptr                 = rdataPtrExt(i).value
1032    val mmioStall           = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1033    val exceptionVliad      = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr)
1034    (exceptionVliad, uop(ptr))
1035  }
1036
1037  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1038  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1039  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1040  // Just select the last Uop tah has an exception.
1041  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1042  // If the last Uop with an exception is the LastUop of this instruction, the flag is not set.
1043  val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop
1044
1045  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1046    val ptr                   = rdataPtrExt(i).value
1047    val mmioStall             = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1048    val vecLastUopCommit      = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) &&
1049                                allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr)
1050    vecLastUopCommit
1051  }.reduce(_ || _)
1052
1053  // When a LastUop with an exception instruction is commited, clear the flag.
1054  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) {
1055    vecExceptionFlag.valid  := true.B
1056    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1057  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1058    vecExceptionFlag.valid  := false.B
1059    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1060  }
1061
1062  // A dumb defensive code. The flag should not be placed for a long period of time.
1063  // A relatively large timeout period, not have any special meaning.
1064  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1065  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1066
1067  // Initialize when unenabled difftest.
1068  for (i <- 0 until EnsbufferWidth) {
1069    io.sbufferVecDifftestInfo(i) := DontCare
1070  }
1071  // Consistent with the logic above.
1072  // Only the vector store difftest required signal is separated from the rtl code.
1073  if (env.EnableDifftest) {
1074    for (i <- 0 until EnsbufferWidth) {
1075      val ptr = rdataPtrExt(i).value
1076      val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1077      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1078      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1079    }
1080    for (i <- 0 until EnsbufferWidth) {
1081      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1082      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1083
1084      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1085    }
1086
1087    // commit cbo.inval to difftest
1088    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1089    cmoInvalEvent.coreid := io.hartId
1090    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1091    cmoInvalEvent.addr   := cboMmioAddr
1092  }
1093
1094  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1095  if (coreParams.dcacheParametersOpt.isEmpty) {
1096    for (i <- 0 until EnsbufferWidth) {
1097      val ptr = deqPtrExt(i).value
1098      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1099      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1100      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1101      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1102      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1103      when (wen) {
1104        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1105      }
1106    }
1107  }
1108
1109  // Read vaddr for mem exception
1110  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1111  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1112  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1113  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1114  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1115  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1116  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1117
1118  // vector commit or replay from
1119  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1120  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1121  for (i <- 0 until StoreQueueSize) {
1122    val fbk = io.vecFeedback
1123    for (j <- 0 until VecStorePipelineWidth) {
1124      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1125        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1126    }
1127    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1128
1129    when (vecCommit(i)) {
1130      vecMbCommit(i) := true.B
1131    }
1132  }
1133
1134  // misprediction recovery / exception redirect
1135  // invalidate sq term using robIdx
1136  for (i <- 0 until StoreQueueSize) {
1137    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1138      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1139    when (needCancel(i)) {
1140      allocated(i) := false.B
1141    }
1142  }
1143
1144 /**
1145* update pointers
1146**/
1147  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1148    v && x.bits.robIdx.needFlush(io.brqRedirect)
1149  }
1150  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1151    Mux(v, req.bits.numLsElem, 0.U)
1152  }
1153  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1154
1155  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1156  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1157  val enqNumber = validVStoreFlow.reduce(_ + _)
1158
1159  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1160  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1161
1162  when (lastlastCycleRedirect) {
1163    // we recover the pointers in 2 cycle after redirect for better timing
1164    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1165  }.otherwise {
1166    // lastCycleRedirect.valid or nornal case
1167    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1168    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1169  }
1170  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1171
1172  exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt
1173  // special case (store miss align) in updating ptr
1174  when (doMisalignSt) {
1175    when (!finishMisalignSt) {
1176      // dont move deqPtr and rdataPtr until all split store has been written to sb
1177      deqPtrExtNext := deqPtrExt
1178      rdataPtrExtNext := rdataPtrExt
1179    } .otherwise {
1180      // remove this unaligned store from sq
1181      allocated(deqPtr) := false.B
1182      committed(deqPtr) := true.B
1183      cmtPtrExt := cmtPtrExt.map(_ + 1.U)
1184      deqPtrExtNext := deqPtrExt.map(_ + 1.U)
1185      rdataPtrExtNext := rdataPtrExt.map(_ + 1.U)
1186    }
1187  }
1188
1189  deqPtrExt := deqPtrExtNext
1190  rdataPtrExt := rdataPtrExtNext
1191
1192  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1193
1194  // If redirect at T0, sqCancelCnt is at T2
1195  io.sqCancelCnt := redirectCancelCount
1196  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1197  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1198  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1199  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1200
1201  val valid_cnt = PopCount(allocated)
1202  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1203
1204  // io.sqempty will be used by sbuffer
1205  // We delay it for 1 cycle for better timing
1206  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1207  // for 1 cycle will also promise that sq is empty in that cycle
1208  io.sqEmpty := RegNext(
1209    enqPtrExt(0).value === deqPtrExt(0).value &&
1210    enqPtrExt(0).flag === deqPtrExt(0).flag
1211  )
1212  // perf counter
1213  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1214  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1215  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1216  io.sqFull := !allowEnqueue
1217  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1218  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
1219  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1220  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1221  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1222  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1223  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1224
1225  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1226  val perfEvents = Seq(
1227    ("mmioCycle      ", uncacheState =/= s_idle),
1228    ("mmioCnt        ", io.uncache.req.fire),
1229    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1230    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1231    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1232    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1233    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1234    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1235  )
1236  generatePerfEvent()
1237
1238  // debug info
1239  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1240
1241  def PrintFlag(flag: Bool, name: String): Unit = {
1242    when(flag) {
1243      XSDebug(false, true.B, name)
1244    }.otherwise {
1245      XSDebug(false, true.B, " ")
1246    }
1247  }
1248
1249  for (i <- 0 until StoreQueueSize) {
1250    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1251      uop(i).pc,
1252      debug_vaddr(i),
1253      debug_paddr(i),
1254      debug_data(i)
1255    )
1256    PrintFlag(allocated(i), "a")
1257    PrintFlag(allocated(i) && addrvalid(i), "a")
1258    PrintFlag(allocated(i) && datavalid(i), "d")
1259    PrintFlag(allocated(i) && committed(i), "c")
1260    PrintFlag(allocated(i) && pending(i), "p")
1261    PrintFlag(allocated(i) && mmio(i), "m")
1262    XSDebug(false, true.B, "\n")
1263  }
1264
1265}
1266