xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 1b7adedcea009da8b044339900598e3ad2e73203)
1package xiangshan.mem
2
3import chipsalliance.rocketchip.config.Parameters
4import chisel3._
5import chisel3.util._
6import utils._
7import xiangshan._
8import xiangshan.cache._
9import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
10import xiangshan.backend.roq.{RoqLsqIO, RoqPtr}
11import difftest._
12
13class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
14  p => p(XSCoreParamsKey).StoreQueueSize
15){
16  override def cloneType = (new SqPtr).asInstanceOf[this.type]
17}
18
19object SqPtr {
20  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
21    val ptr = Wire(new SqPtr)
22    ptr.flag := f
23    ptr.value := v
24    ptr
25  }
26}
27
28class SqEnqIO(implicit p: Parameters) extends XSBundle {
29  val canAccept = Output(Bool())
30  val lqCanAccept = Input(Bool())
31  val needAlloc = Vec(RenameWidth, Input(Bool()))
32  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
33  val resp = Vec(RenameWidth, Output(new SqPtr))
34}
35
36// Store Queue
37class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
38  val io = IO(new Bundle() {
39    val enq = new SqEnqIO
40    val brqRedirect = Flipped(ValidIO(new Redirect))
41    val flush = Input(Bool())
42    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
43    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs
44    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) // write commited store to sbuffer
45    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
46    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
47    val roq = Flipped(new RoqLsqIO)
48    val uncache = new DCacheWordIO
49    // val refill = Flipped(Valid(new DCacheLineReq ))
50    val exceptionAddr = new ExceptionAddrIO
51    val sqempty = Output(Bool())
52    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
53    val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) // used to update issuePtrExt
54    val sqFull = Output(Bool())
55  })
56
57  // data modules
58  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
59  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
60  val dataModule = Module(new SQDataModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
61  dataModule.io := DontCare
62  val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
63  paddrModule.io := DontCare
64  val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
65  vaddrModule.io := DontCare
66
67  // state & misc
68  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
69  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
70  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
71  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
72  val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs
73  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
74  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
75  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
76
77  // ptr
78  require(StoreQueueSize > RenameWidth)
79  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
80  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
81  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
82  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
83  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
84  val allowEnqueue = RegInit(true.B)
85
86  val enqPtr = enqPtrExt(0).value
87  val deqPtr = deqPtrExt(0).value
88  val cmtPtr = cmtPtrExt(0).value
89
90  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
91  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
92
93  val commitCount = RegNext(io.roq.scommit)
94
95  // Read dataModule
96  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
97  // if !sbuffer.fire(), read the same ptr
98  // if sbuffer.fire(), read next
99  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
100    VecInit(deqPtrExt.map(_ + 2.U)),
101    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
102      VecInit(deqPtrExt.map(_ + 1.U)),
103      deqPtrExt
104    )
105  ))
106  for (i <- 0 until StorePipelineWidth) {
107    dataModule.io.raddr(i) := deqPtrExtNext(i).value
108    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
109  }
110
111  // no inst will be commited 1 cycle before tval update
112  vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value
113
114  /**
115    * Enqueue at dispatch
116    *
117    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
118    */
119  io.enq.canAccept := allowEnqueue
120  for (i <- 0 until RenameWidth) {
121    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
122    val sqIdx = enqPtrExt(offset)
123    val index = sqIdx.value
124    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) {
125      uop(index) := io.enq.req(i).bits
126      allocated(index) := true.B
127      datavalid(index) := false.B
128      addrvalid(index) := false.B
129      issued(index) := false.B
130      commited(index) := false.B
131      pending(index) := false.B
132    }
133    io.enq.resp(i) := sqIdx
134  }
135  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
136
137  /**
138    * Update issuePtr when issue from rs
139    */
140
141  // update state bit issued
142  for (i <- 0 until StorePipelineWidth) {
143    when (io.storeIssue(i).valid) {
144      issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B
145    }
146  }
147
148  // update issuePtr
149  val IssuePtrMoveStride = 4
150  require(IssuePtrMoveStride >= 2)
151
152  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
153  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0))
154  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
155  issuePtrExt := nextIssuePtr
156
157  when (io.brqRedirect.valid || io.flush) {
158    issuePtrExt := Mux(
159      isAfter(cmtPtrExt(0), deqPtrExt(0)),
160      cmtPtrExt(0),
161      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
162    )
163  }
164  // send issuePtrExt to rs
165  // io.issuePtrExt := cmtPtrExt(0)
166  io.issuePtrExt := issuePtrExt
167
168  /**
169    * Writeback store from store units
170    *
171    * Most store instructions writeback to regfile in the previous cycle.
172    * However,
173    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
174    * (in this way it will trigger an exception when it reaches ROB's head)
175    * instead of pending to avoid sending them to lower level.
176    *   (2) For an mmio instruction without exceptions, we mark it as pending.
177    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
178    * Upon receiving the response, StoreQueue writes back the instruction
179    * through arbiter with store units. It will later commit as normal.
180    */
181
182  // Write addr to sq
183  for (i <- 0 until StorePipelineWidth) {
184    paddrModule.io.wen(i) := false.B
185    dataModule.io.mask.wen(i) := false.B
186    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
187    when (io.storeIn(i).fire()) {
188      addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio
189      pending(stWbIndex) := io.storeIn(i).bits.mmio
190
191      dataModule.io.mask.waddr(i) := stWbIndex
192      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
193      dataModule.io.mask.wen(i) := true.B
194
195      paddrModule.io.waddr(i) := stWbIndex
196      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
197      paddrModule.io.wen(i) := true.B
198
199      mmio(stWbIndex) := io.storeIn(i).bits.mmio
200
201      XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n",
202        io.storeIn(i).bits.uop.sqIdx.value,
203        io.storeIn(i).bits.uop.cf.pc,
204        io.storeIn(i).bits.vaddr,
205        io.storeIn(i).bits.paddr,
206        io.storeIn(i).bits.mmio
207      )
208    }
209    // vaddrModule write is delayed, as vaddrModule will not be read right after write
210    vaddrModule.io.waddr(i) := RegNext(stWbIndex)
211    vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr)
212    vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire())
213  }
214
215  // Write data to sq
216  for (i <- 0 until StorePipelineWidth) {
217    dataModule.io.data.wen(i) := false.B
218    io.roq.storeDataRoqWb(i).valid := false.B
219    io.roq.storeDataRoqWb(i).bits := DontCare
220    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
221    when (io.storeDataIn(i).fire()) {
222      datavalid(stWbIndex) := true.B
223
224      dataModule.io.data.waddr(i) := stWbIndex
225      dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
226      dataModule.io.data.wen(i) := true.B
227
228      io.roq.storeDataRoqWb(i).valid := true.B
229      io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx
230
231      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
232        io.storeDataIn(i).bits.uop.sqIdx.value,
233        io.storeDataIn(i).bits.uop.cf.pc,
234        io.storeDataIn(i).bits.data,
235        dataModule.io.data.wdata(i)
236      )
237    }
238  }
239
240  /**
241    * load forward query
242    *
243    * Check store queue for instructions that is older than the load.
244    * The response will be valid at the next cycle after req.
245    */
246  // check over all lq entries and forward data from the first matched store
247  for (i <- 0 until LoadPipelineWidth) {
248    io.forward(i).forwardMask := 0.U(8.W).asBools
249    io.forward(i).forwardData := DontCare
250
251    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
252    // (1) if they have the same flag, we need to check range(tail, sqIdx)
253    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
254    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
255    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
256    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
257    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
258    val forwardMask = io.forward(i).sqIdxMask
259    // all addrvalid terms need to be checked
260    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
261    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
262    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
263    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
264    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
265    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
266
267    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
268      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
269    )
270
271    // do real fwd query (cam lookup in load_s1)
272    dataModule.io.needForward(i)(0) := canForward1 & paddrModule.io.forwardMmask(i).asUInt
273    dataModule.io.needForward(i)(1) := canForward2 & paddrModule.io.forwardMmask(i).asUInt
274
275    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
276
277    // Forward result will be generated 1 cycle later (load_s2)
278    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
279    io.forward(i).forwardData := dataModule.io.forwardData(i)
280
281    // If addr match, data not ready, mark it as dataInvalid
282    // load_s1: generate dataInvalid in load_s1 to set fastUop to
283    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & paddrModule.io.forwardMmask(i).asUInt & needForward).orR
284    // load_s2
285    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
286  }
287
288  /**
289    * Memory mapped IO / other uncached operations
290    *
291    * States:
292    * (1) writeback from store units: mark as pending
293    * (2) when they reach ROB's head, they can be sent to uncache channel
294    * (3) response from uncache channel: mark as datavalidmask.wen
295    * (4) writeback to ROB (and other units): mark as writebacked
296    * (5) ROB commits the instruction: same as normal instructions
297    */
298  //(2) when they reach ROB's head, they can be sent to uncache channel
299  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
300  val uncacheState = RegInit(s_idle)
301  switch(uncacheState) {
302    is(s_idle) {
303      when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) {
304        uncacheState := s_req
305      }
306    }
307    is(s_req) {
308      when(io.uncache.req.fire()) {
309        uncacheState := s_resp
310      }
311    }
312    is(s_resp) {
313      when(io.uncache.resp.fire()) {
314        uncacheState := s_wb
315      }
316    }
317    is(s_wb) {
318      when (io.mmioStout.fire()) {
319        uncacheState := s_wait
320      }
321    }
322    is(s_wait) {
323      when(io.roq.commit) {
324        uncacheState := s_idle // ready for next mmio
325      }
326    }
327  }
328  io.uncache.req.valid := uncacheState === s_req
329
330  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
331  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
332  io.uncache.req.bits.data := dataModule.io.rdata(0).data
333  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
334
335  io.uncache.req.bits.id   := DontCare
336
337  when(io.uncache.req.fire()){
338    // mmio store should not be committed until uncache req is sent
339    pending(deqPtr) := false.B
340
341    XSDebug(
342      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
343      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
344      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
345      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
346      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
347    )
348  }
349
350  // (3) response from uncache channel: mark as datavalid
351  io.uncache.resp.ready := true.B
352
353  // (4) writeback to ROB (and other units): mark as writebacked
354  io.mmioStout.valid := uncacheState === s_wb
355  io.mmioStout.bits.uop := uop(deqPtr)
356  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
357  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
358  io.mmioStout.bits.redirectValid := false.B
359  io.mmioStout.bits.redirect := DontCare
360  io.mmioStout.bits.debug.isMMIO := true.B
361  io.mmioStout.bits.debug.paddr := DontCare
362  io.mmioStout.bits.debug.isPerfCnt := false.B
363  io.mmioStout.bits.fflags := DontCare
364  when (io.mmioStout.fire()) {
365    allocated(deqPtr) := false.B
366  }
367
368  /**
369    * ROB commits store instructions (mark them as commited)
370    *
371    * (1) When store commits, mark it as commited.
372    * (2) They will not be cancelled and can be sent to lower level.
373    */
374  for (i <- 0 until CommitWidth) {
375    when (commitCount > i.U) {
376      commited(cmtPtrExt(i).value) := true.B
377    }
378  }
379  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
380
381  // Commited stores will not be cancelled and can be sent to lower level.
382  // remove retired insts from sq, add retired store to sbuffer
383  for (i <- 0 until StorePipelineWidth) {
384    // We use RegNext to prepare data for sbuffer
385    val ptr = deqPtrExt(i).value
386    // if !sbuffer.fire(), read the same ptr
387    // if sbuffer.fire(), read next
388    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
389    // Note that store data/addr should both be valid after store's commit
390    assert(!io.sbuffer(i).valid || allvalid(ptr))
391    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
392    io.sbuffer(i).bits.addr := paddrModule.io.rdata(i)
393    io.sbuffer(i).bits.data := dataModule.io.rdata(i).data
394    io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask
395    io.sbuffer(i).bits.id   := DontCare
396
397    when (io.sbuffer(i).fire()) {
398      allocated(ptr) := false.B
399      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
400    }
401  }
402  when (io.sbuffer(1).fire()) {
403    assert(io.sbuffer(0).fire())
404  }
405
406  if (!env.FPGAPlatform) {
407    for (i <- 0 until StorePipelineWidth) {
408      val storeCommit = io.sbuffer(i).fire()
409      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
410      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
411      val wmask = io.sbuffer(i).bits.mask
412
413      val difftest = Module(new DifftestStoreEvent)
414      difftest.io.clock       := clock
415      difftest.io.coreid      := hardId.U
416      difftest.io.index       := i.U
417      difftest.io.valid       := storeCommit
418      difftest.io.storeAddr   := waddr
419      difftest.io.storeData   := wdata
420      difftest.io.storeMask   := wmask
421    }
422  }
423
424  // Read vaddr for mem exception
425  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
426
427  // misprediction recovery / exception redirect
428  // invalidate sq term using robIdx
429  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
430  for (i <- 0 until StoreQueueSize) {
431    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i)
432    when (needCancel(i)) {
433        allocated(i) := false.B
434    }
435  }
436
437  /**
438    * update pointers
439    */
440  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
441  val lastCycleFlush = RegNext(io.flush)
442  val lastCycleCancelCount = PopCount(RegNext(needCancel))
443  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
444  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U)
445  when (lastCycleRedirect || lastCycleFlush) {
446    // we recover the pointers in the next cycle after redirect
447    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
448  }.otherwise {
449    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
450  }
451
452  deqPtrExt := deqPtrExtNext
453
454  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
455  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
456
457  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
458
459  // io.sqempty will be used by sbuffer
460  // We delay it for 1 cycle for better timing
461  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
462  // for 1 cycle will also promise that sq is empty in that cycle
463  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
464
465  // perf counter
466  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
467  io.sqFull := !allowEnqueue
468  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
469  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
470  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
471  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
472  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
473  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
474  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
475
476  // debug info
477  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
478
479  def PrintFlag(flag: Bool, name: String): Unit = {
480    when(flag) {
481      XSDebug(false, true.B, name)
482    }.otherwise {
483      XSDebug(false, true.B, " ")
484    }
485  }
486
487  for (i <- 0 until StoreQueueSize) {
488    if (i % 4 == 0) XSDebug("")
489    XSDebug(false, true.B, "%x ", uop(i).cf.pc)
490    PrintFlag(allocated(i), "a")
491    PrintFlag(allocated(i) && addrvalid(i), "a")
492    PrintFlag(allocated(i) && datavalid(i), "d")
493    PrintFlag(allocated(i) && commited(i), "c")
494    PrintFlag(allocated(i) && pending(i), "p")
495    PrintFlag(allocated(i) && mmio(i), "m")
496    XSDebug(false, true.B, " ")
497    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
498  }
499
500}
501