xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 1abade56384498d661ff8cd41e57775a543e9c10)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.cache.{CMOReq, CMOResp}
31import xiangshan.backend._
32import xiangshan.backend.rob.{RobLsqIO, RobPtr}
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
35import xiangshan.backend.fu.FuConfig._
36import xiangshan.backend.fu.FuType
37import xiangshan.ExceptionNO._
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70  val sqNeedDeq = Bool()
71}
72
73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
74  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
75  // The 2nd StorePipelineWidth ports: sta af generated at s2
76  // The following VecStorePipelineWidth ports: vector st exception
77  // The last port: non-data error generated in SoC
78  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
79
80  val io = IO(new Bundle() {
81    val redirect = Flipped(ValidIO(new Redirect))
82    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155}
156
157// Store Queue
158class StoreQueue(implicit p: Parameters) extends XSModule
159  with HasDCacheParameters
160  with HasCircularQueuePtrHelper
161  with HasPerfEvents
162  with HasVLSUParameters {
163  val io = IO(new Bundle() {
164    val hartId = Input(UInt(hartIdLen.W))
165    val enq = new SqEnqIO
166    val brqRedirect = Flipped(ValidIO(new Redirect))
167    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
168    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
169    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
170    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
171    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
172    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
173    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
174    val uncacheOutstanding = Input(Bool())
175    val cmoOpReq  = DecoupledIO(new CMOReq)
176    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
177    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
178    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
179    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
180    // TODO: scommit is only for scalar store
181    val rob = Flipped(new RobLsqIO)
182    val uncache = new UncacheWordIO
183    // val refill = Flipped(Valid(new DCacheLineReq ))
184    val exceptionAddr = new ExceptionAddrIO
185    val flushSbuffer = new SbufferFlushBundle
186    val sqEmpty = Output(Bool())
187    val stAddrReadySqPtr = Output(new SqPtr)
188    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
189    val stDataReadySqPtr = Output(new SqPtr)
190    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
191    val stIssuePtr = Output(new SqPtr)
192    val sqDeqPtr = Output(new SqPtr)
193    val sqFull = Output(Bool())
194    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
195    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
196    val force_write = Output(Bool())
197    val maControl   = Flipped(new StoreMaBufToSqControlIO)
198  })
199
200  println("StoreQueue: size:" + StoreQueueSize)
201
202  // data modules
203  val uop = Reg(Vec(StoreQueueSize, new DynInst))
204  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
205  val dataModule = Module(new SQDataModule(
206    numEntries = StoreQueueSize,
207    numRead = EnsbufferWidth,
208    numWrite = StorePipelineWidth,
209    numForward = LoadPipelineWidth
210  ))
211  dataModule.io := DontCare
212  val paddrModule = Module(new SQAddrModule(
213    dataWidth = PAddrBits,
214    numEntries = StoreQueueSize,
215    numRead = EnsbufferWidth,
216    numWrite = StorePipelineWidth,
217    numForward = LoadPipelineWidth
218  ))
219  paddrModule.io := DontCare
220  val vaddrModule = Module(new SQAddrModule(
221    dataWidth = VAddrBits,
222    numEntries = StoreQueueSize,
223    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
224    numWrite = StorePipelineWidth,
225    numForward = LoadPipelineWidth
226  ))
227  vaddrModule.io := DontCare
228  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
229  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
230  val exceptionBuffer = Module(new StoreExceptionBuffer)
231  exceptionBuffer.io.redirect := io.brqRedirect
232  exceptionBuffer.io.exceptionAddr.isStore := DontCare
233  // vlsu exception!
234  for (i <- 0 until VecStorePipelineWidth) {
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
246  }
247
248
249  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
250  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
251  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
252
253  // state & misc
254  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
255  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
256  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
257  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i)))
258  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
259  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
260  val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary
261  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
262  val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst
263  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
264  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
265  val memBackTypeMM = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
266  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
267  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
268  val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction
269  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
270  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
271  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
272  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
273  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
274  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
275
276  // ptr
277  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
278  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
279  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
280  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
281  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
282  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
283
284  val enqPtr = enqPtrExt(0).value
285  val deqPtr = deqPtrExt(0).value
286  val cmtPtr = cmtPtrExt(0).value
287
288  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
289  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
290
291  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
292  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
293
294  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
295  val scommit = GatedRegNext(io.rob.scommit)
296  val mmioReq = Wire(chiselTypeOf(io.uncache.req))
297  val ncReq = Wire(chiselTypeOf(io.uncache.req))
298  val ncResp = Wire(chiselTypeOf(io.uncache.resp))
299  val ncDoReq = Wire(Bool())
300  val ncDoResp = Wire(Bool())
301  val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp)
302  // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles.
303  // TODO lyq: to eliminate coupling by passing signals through ubuffer
304  val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp)
305  val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id)
306
307  // store can be committed by ROB
308  io.rob.mmio := DontCare
309  io.rob.uop := DontCare
310
311  // Read dataModule
312  assert(EnsbufferWidth <= 2)
313  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
314  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
315  rdataPtrExtNext := rdataPtrExt.map(i => i +
316    PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) +
317    PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
318  )
319
320  // deqPtrExtNext traces which inst is about to leave store queue
321  //
322  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
323  // Before data write finish, sbuffer is unable to provide store to load
324  // forward data. As an workaround, deqPtrExt and allocated flag update
325  // is delayed so that load can get the right data from store queue.
326  //
327  // Modify deqPtrExtNext and io.sqDeq with care!
328  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
329  // Only sqNeedDeq can move the ptr
330  deqPtrExtNext := deqPtrExt.map(i =>  i +
331    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
332    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
333  )
334
335  io.sqDeq := RegNext(
336    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
337    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
338  )
339
340  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
341
342  for (i <- 0 until EnsbufferWidth) {
343    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
344    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
345    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
346  }
347
348  /**
349    * Enqueue at dispatch
350    *
351    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
352    * Dynamic enq based on numLsElem number
353    */
354  io.enq.canAccept := allowEnqueue
355  val canEnqueue = io.enq.req.map(_.valid)
356  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
357  val vStoreFlow = io.enq.req.map(_.bits.numLsElem.asTypeOf(UInt(elemIdxBits.W)))
358  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vStoreFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vStoreFlowNumItem, 0.U)}
359  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
360  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
361
362  val enqLowBound = io.enq.req.map(_.bits.sqIdx)
363  val enqUpBound  = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem)
364  val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag}
365
366  for(i <- 0 until StoreQueueSize) {
367    val entryCanEnqSeq = (0 until io.enq.req.length).map { j =>
368      val entryHitBound = Mux(
369        enqCrossLoop(j),
370        enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value,
371        enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value
372      )
373      canEnqueue(j) && !enqCancel(j) && entryHitBound
374    }
375
376    val entryCanEnq = entryCanEnqSeq.reduce(_ || _)
377    val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits))
378    val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound)
379    when (entryCanEnq) {
380      uop(i) := selectBits
381      if (i + 1 == StoreQueueSize)
382        vecLastFlow(i) := Mux(0.U === selectUpBound.value, selectBits.lastUop, false.B) else
383        vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B)
384      allocated(i) := true.B
385      datavalid(i) := false.B
386      addrvalid(i) := false.B
387      unaligned(i) := false.B
388      cross16Byte(i) := false.B
389      committed(i) := false.B
390      pending(i) := false.B
391      prefetch(i) := false.B
392      nc(i) := false.B
393      mmio(i) := false.B
394      isVec(i) :=  FuType.isVStore(selectBits.fuType)
395      vecMbCommit(i) := false.B
396      hasException(i) := false.B
397      waitStoreS2(i) := true.B
398    }
399  }
400
401  for (i <- 0 until io.enq.req.length) {
402    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
403    val index = io.enq.req(i).bits.sqIdx
404    XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n")
405    XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n")
406    io.enq.resp(i) := sqIdx
407  }
408  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
409
410  /**
411    * Update addr/dataReadyPtr when issue from rs
412    */
413  // update issuePtr
414  val IssuePtrMoveStride = 4
415  require(IssuePtrMoveStride >= 2)
416
417  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
418  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
419   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
420    && ptr =/= enqPtrExt(0))
421  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
422  addrReadyPtrExt := nextAddrReadyPtr
423
424  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
425  (0 until StoreQueueSize).map(i => {
426    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
427  })
428  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
429
430  when (io.brqRedirect.valid) {
431    addrReadyPtrExt := Mux(
432      isAfter(cmtPtrExt(0), deqPtrExt(0)),
433      cmtPtrExt(0),
434      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
435    )
436  }
437
438  io.stAddrReadySqPtr := addrReadyPtrExt
439
440  // update
441  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
442  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
443   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
444    && ptr =/= enqPtrExt(0))
445  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
446  dataReadyPtrExt := nextDataReadyPtr
447
448  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
449  (0 until StoreQueueSize).map(i => {
450    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
451  })
452  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
453
454  when (io.brqRedirect.valid) {
455    dataReadyPtrExt := Mux(
456      isAfter(cmtPtrExt(0), deqPtrExt(0)),
457      cmtPtrExt(0),
458      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
459    )
460  }
461
462  io.stDataReadySqPtr := dataReadyPtrExt
463  io.stIssuePtr := enqPtrExt(0)
464  io.sqDeqPtr := deqPtrExt(0)
465
466  /**
467    * Writeback store from store units
468    *
469    * Most store instructions writeback to regfile in the previous cycle.
470    * However,
471    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
472    * (in this way it will trigger an exception when it reaches ROB's head)
473    * instead of pending to avoid sending them to lower level.
474    *   (2) For an mmio instruction without exceptions, we mark it as pending.
475    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
476    * Upon receiving the response, StoreQueue writes back the instruction
477    * through arbiter with store units. It will later commit as normal.
478    */
479
480  // Write addr to sq
481  for (i <- 0 until StorePipelineWidth) {
482    paddrModule.io.wen(i) := false.B
483    vaddrModule.io.wen(i) := false.B
484    dataModule.io.mask.wen(i) := false.B
485    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
486    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
487    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
488    // will re-enter exceptionbuffer at store_s2
489    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
490    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
491
492    when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) {
493      val addr_valid = !io.storeAddrIn(i).bits.miss
494      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
495      nc(stWbIndex) := io.storeAddrIn(i).bits.nc
496
497    }
498    when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) {
499      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
500      unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign
501      cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte
502
503      paddrModule.io.waddr(i) := stWbIndex
504      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
505      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
506      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
507      paddrModule.io.wen(i) := true.B
508
509      vaddrModule.io.waddr(i) := stWbIndex
510      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
511      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
512      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
513      vaddrModule.io.wen(i) := true.B
514
515      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
516
517      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
518    }
519    when (io.storeAddrIn(i).fire) {
520      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
521      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
522    }
523    XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf,
524      "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
525      io.storeAddrIn(i).bits.uop.sqIdx.value,
526      io.storeAddrIn(i).bits.uop.pc,
527      io.storeAddrIn(i).bits.miss,
528      io.storeAddrIn(i).bits.vaddr,
529      io.storeAddrIn(i).bits.paddr,
530      io.storeAddrIn(i).bits.mmio,
531      io.storeAddrIn(i).bits.isvec
532    )
533
534    // re-replinish mmio, for pma/pmp will get mmio one cycle later
535    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid
536    //val stWbIndexReg = RegNext(stWbIndex)
537    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
538    when (storeAddrInFireReg) {
539      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
540      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
541      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
542      memBackTypeMM(stWbIndexReg) := io.storeAddrInRe(i).memBackTypeMM
543      hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException
544      waitStoreS2(stWbIndexReg) := false.B
545    }
546    // dcache miss info (one cycle later than storeIn)
547    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
548    when (storeAddrInFireReg) {
549      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
550    }
551    // enter exceptionbuffer again
552    when (storeAddrInFireReg) {
553      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec
554      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i)
555      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
556    }
557
558    when(vaddrModule.io.wen(i)){
559      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
560    }
561  }
562
563  // Write data to sq
564  // Now store data pipeline is actually 2 stages
565  for (i <- 0 until StorePipelineWidth) {
566    dataModule.io.data.wen(i) := false.B
567    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
568    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
569    // sq data write takes 2 cycles:
570    // sq data write s0
571    when (io.storeDataIn(i).fire) {
572      // send data write req to data module
573      dataModule.io.data.waddr(i) := stWbIndex
574      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
575        0.U,
576        Mux(isVec,
577          io.storeDataIn(i).bits.data,
578          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
579      )
580      dataModule.io.data.wen(i) := true.B
581
582      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
583    }
584    XSInfo(io.storeDataIn(i).fire,
585      "store data write to sq idx %d pc 0x%x data %x -> %x\n",
586      io.storeDataIn(i).bits.uop.sqIdx.value,
587      io.storeDataIn(i).bits.uop.pc,
588      io.storeDataIn(i).bits.data,
589      dataModule.io.data.wdata(i)
590    )
591    // sq data write s1
592    val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire)
593    when (
594      RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex)
595      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
596    ) {
597      datavalid(lastStWbIndex) := true.B
598    }
599  }
600
601  // Write mask to sq
602  for (i <- 0 until StorePipelineWidth) {
603    // sq mask write s0
604    when (io.storeMaskIn(i).fire) {
605      // send data write req to data module
606      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
607      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
608      dataModule.io.mask.wen(i) := true.B
609    }
610  }
611
612  /**
613    * load forward query
614    *
615    * Check store queue for instructions that is older than the load.
616    * The response will be valid at the next cycle after req.
617    */
618  // check over all lq entries and forward data from the first matched store
619  for (i <- 0 until LoadPipelineWidth) {
620    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
621    // (1) if they have the same flag, we need to check range(tail, sqIdx)
622    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
623    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
624    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
625    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
626    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
627    val forwardMask = io.forward(i).sqIdxMask
628    // all addrvalid terms need to be checked
629    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
630    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
631    // vector store will consider all inactive || secondInvalid flows as valid
632    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
633    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
634    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
635
636    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
637    val storeSetHitVec = Mux(lfstEnable,
638      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
639      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
640    )
641
642    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
643    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
644    val canForward1 = forwardMask1 & allValidVec.asUInt
645    val canForward2 = forwardMask2 & allValidVec.asUInt
646    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
647
648    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
649      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
650    )
651
652    // do real fwd query (cam lookup in load_s1)
653    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
654    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
655
656    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
657    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
658    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
659    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
660
661    // vaddr cam result does not equal to paddr cam result
662    // replay needed
663    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
664    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
665    val vpmaskNotEqual = (
666      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
667      RegNext(needForward) &
668      GatedRegNext(addrRealValidVec.asUInt)
669    ) =/= 0.U
670    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
671    XSInfo(vaddrMatchFailed,
672      "vaddrMatchFailed: pc %x pmask %x vmask %x\n",
673      RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
674      RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
675      RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
676    );
677    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
678    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
679
680    // Fast forward mask will be generated immediately (load_s1)
681    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
682
683    // Forward result will be generated 1 cycle later (load_s2)
684    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
685    io.forward(i).forwardData := dataModule.io.forwardData(i)
686
687    //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it.
688    //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward.
689    // If addr match, data not ready, mark it as dataInvalid
690    // load_s1: generate dataInvalid in load_s1 to set fastUop
691    val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt
692    val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt
693    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
694    io.forward(i).dataInvalidFast := dataInvalidMask.orR
695
696    // make chisel happy
697    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
698    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
699    // make chisel happy
700    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
701    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
702    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
703
704    // If SSID match, address not ready, mark it as addrInvalid
705    // load_s2: generate addrInvalid
706    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
707    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
708    // make chisel happy
709    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
710    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
711    // make chisel happy
712    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
713    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
714    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
715
716    // load_s2
717    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
718    // check if vaddr forward mismatched
719    io.forward(i).matchInvalid := vaddrMatchFailed
720
721    // data invalid sq index
722    // check whether false fail
723    // check flag
724    val s2_differentFlag = RegNext(differentFlag)
725    val s2_enqPtrExt = RegNext(enqPtrExt(0))
726    val s2_deqPtrExt = RegNext(deqPtrExt(0))
727
728    // addr invalid sq index
729    // make chisel happy
730    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
731    addrInvalidMaskRegWire := addrInvalidMaskReg
732    val addrInvalidFlag = addrInvalidMaskRegWire.orR
733    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
734
735    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
736    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
737    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
738
739    // store-set content management
740    //                +-----------------------+
741    //                | Search a SSID for the |
742    //                |    load operation     |
743    //                +-----------------------+
744    //                           |
745    //                           V
746    //                 +-------------------+
747    //                 | load wait strict? |
748    //                 +-------------------+
749    //                           |
750    //                           V
751    //               +----------------------+
752    //            Set|                      |Clean
753    //               V                      V
754    //  +------------------------+   +------------------------------+
755    //  | Waiting for all older  |   | Wait until the corresponding |
756    //  |   stores operations    |   | older store operations       |
757    //  +------------------------+   +------------------------------+
758
759
760
761    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
762      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
763    } .elsewhen (addrInvalidFlag) {
764      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
765      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
766    } .otherwise {
767      // may be store inst has been written to sbuffer already.
768      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
769    }
770    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
771
772    // data invalid sq index
773    // make chisel happy
774    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
775    dataInvalidMaskRegWire := dataInvalidMaskReg
776    val dataInvalidFlag = dataInvalidMaskRegWire.orR
777
778    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
779    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
780    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
781
782    when (dataInvalidFlag) {
783      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
784      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
785    } .otherwise {
786      // may be store inst has been written to sbuffer already.
787      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
788    }
789  }
790
791  /**
792    * Memory mapped IO / other uncached operations / CMO
793    *
794    * States:
795    * (1) writeback from store units: mark as pending
796    * (2) when they reach ROB's head, they can be sent to uncache channel
797    * (3) response from uncache channel: mark as datavalidmask.wen
798    * (4) writeback to ROB (and other units): mark as writebacked
799    * (5) ROB commits the instruction: same as normal instructions
800    */
801  //(2) when they reach ROB's head, they can be sent to uncache channel
802  // TODO: CAN NOT deal with vector mmio now!
803  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
804  val mmioState = RegInit(s_idle)
805  val uncacheUop = Reg(new DynInst)
806  val cboFlushedSb = RegInit(false.B)
807  val cmoOpCode = uncacheUop.fuOpType(1, 0)
808  val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc
809  val cboMmioPAddr = Reg(UInt(PAddrBits.W))
810  switch(mmioState) {
811    is(s_idle) {
812      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) {
813        mmioState := s_req
814        uncacheUop := uop(deqPtr)
815        uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
816        uncacheUop.trigger := 0.U.asTypeOf(TriggerAction())
817        cboFlushedSb := false.B
818        cboMmioPAddr := paddrModule.io.rdata(0)
819      }
820    }
821    is(s_req) {
822      when (mmioDoReq) {
823        mmioState := s_resp
824      }
825    }
826    is(s_resp) {
827      when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) {
828        mmioState := s_wb
829
830        when (io.uncache.resp.bits.nderr || io.cmoOpResp.bits.nderr) {
831          uncacheUop.exceptionVec(storeAccessFault) := true.B
832        }
833      }
834    }
835    is(s_wb) {
836      when (io.mmioStout.fire || io.vecmmioStout.fire) {
837        when (uncacheUop.exceptionVec(storeAccessFault)) {
838          mmioState := s_idle
839        }.otherwise {
840          mmioState := s_wait
841        }
842      }
843    }
844    is(s_wait) {
845      // A MMIO store can always move cmtPtrExt as it must be ROB head
846      when(scommit > 0.U) {
847        mmioState := s_idle // ready for next mmio
848      }
849    }
850  }
851
852  mmioReq.valid := mmioState === s_req && !LSUOpType.isCbo(uop(deqPtr).fuOpType)
853  mmioReq.bits := DontCare
854  mmioReq.bits.cmd  := MemoryOpConstants.M_XWR
855  mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
856  mmioReq.bits.vaddr:= vaddrModule.io.rdata(0)
857  mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
858  mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
859  mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
860  mmioReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value)
861  mmioReq.bits.nc := false.B
862  mmioReq.bits.id := rdataPtrExt(0).value
863
864  /**
865    * NC Store
866    * (1) req: when it has been commited, it can be sent to lower level.
867    * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received
868    */
869  // TODO: CAN NOT deal with vector nc now!
870  val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3)
871  val ncState = RegInit(nc_idle)
872  val rptr0 = rdataPtrExt(0).value
873  switch(ncState){
874    is(nc_idle) {
875      when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) {
876        ncState := nc_req
877      }
878    }
879    is(nc_req) {
880      when(ncDoReq) {
881        when(io.uncacheOutstanding) {
882          ncState := nc_idle
883        }.otherwise{
884          ncState := nc_resp
885        }
886      }
887    }
888    is(nc_resp) {
889      when(ncResp.fire) {
890        ncState := nc_idle
891      }
892    }
893  }
894
895  ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc
896  ncDoResp := ncResp.fire
897
898  ncReq.valid := ncState === nc_req
899  ncReq.bits := DontCare
900  ncReq.bits.cmd  := MemoryOpConstants.M_XWR
901  ncReq.bits.addr := paddrModule.io.rdata(0)
902  ncReq.bits.vaddr:= vaddrModule.io.rdata(0)
903  ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
904  ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
905  ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
906  ncReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value)
907  ncReq.bits.nc := true.B
908  ncReq.bits.id := rptr0
909
910  ncResp.ready := io.uncache.resp.ready
911  ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc
912  ncResp.bits <> io.uncache.resp.bits
913  when (ncDeqTrigger) {
914    allocated(ncPtr) := false.B
915    XSDebug("nc fire: ptr %d\n", ncPtr)
916  }
917
918  mmioReq.ready := io.uncache.req.ready
919  ncReq.ready := io.uncache.req.ready && !mmioReq.valid
920  io.uncache.req.valid := mmioReq.valid || ncReq.valid
921  io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits)
922
923  // CBO op type check can be delayed for 1 cycle,
924  // as uncache op will not start in s_idle
925  val cboMmioAddr = get_block_addr(cboMmioPAddr)
926  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))
927  when (deqCanDoCbo) {
928    // disable uncache channel
929    io.uncache.req.valid := false.B
930
931    when (io.cmoOpReq.fire) {
932      mmioState := s_resp
933    }
934
935    when (mmioState === s_resp) {
936      when (io.cmoOpResp.fire) {
937        mmioState := s_wb
938      }
939    }
940  }
941
942  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req)
943  io.cmoOpReq.bits.opcode  := cmoOpCode
944  io.cmoOpReq.bits.address := cboMmioAddr
945
946  io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp)
947
948  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty
949
950  when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) {
951    cboFlushedSb := true.B
952  }
953
954  when(mmioDoReq){
955    // mmio store should not be committed until uncache req is sent
956    pending(deqPtr) := false.B
957  }
958  XSDebug(
959    mmioDoReq,
960    p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
961    p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
962    p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
963    p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
964    p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
965  )
966
967  // (3) response from uncache channel: mark as datavalid
968  io.uncache.resp.ready := true.B
969
970  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
971  io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr)
972  io.mmioStout.bits.uop := uncacheUop
973  io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg)
974  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
975  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
976  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
977  io.mmioStout.bits.isFromLoadUnit := DontCare
978  io.mmioStout.bits.debug.isMMIO := true.B
979  io.mmioStout.bits.debug.isNC := false.B
980  io.mmioStout.bits.debug.paddr := DontCare
981  io.mmioStout.bits.debug.isPerfCnt := false.B
982  io.mmioStout.bits.debug.vaddr := DontCare
983  // Remove MMIO inst from store queue after MMIO request is being sent
984  // That inst will be traced by uncache state machine
985  when (io.mmioStout.fire) {
986    allocated(deqPtr) := false.B
987  }
988
989  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
990  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
991  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
992  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
993  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
994
995  // (4) or vector store:
996  // TODO: implement it!
997  io.vecmmioStout := DontCare
998  io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr)
999  io.vecmmioStout.bits.uop := uop(deqPtr)
1000  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
1001  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
1002  io.vecmmioStout.bits.debug.isMMIO := true.B
1003  io.vecmmioStout.bits.debug.isNC   := false.B
1004  io.vecmmioStout.bits.debug.paddr := DontCare
1005  io.vecmmioStout.bits.debug.isPerfCnt := false.B
1006  io.vecmmioStout.bits.debug.vaddr := DontCare
1007  // Remove MMIO inst from store queue after MMIO request is being sent
1008  // That inst will be traced by uncache state machine
1009  when (io.vecmmioStout.fire) {
1010    allocated(deqPtr) := false.B
1011  }
1012
1013  /**
1014    * ROB commits store instructions (mark them as committed)
1015    *
1016    * (1) When store commits, mark it as committed.
1017    * (2) They will not be cancelled and can be sent to lower level.
1018    */
1019  XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U,
1020   "should not commit instruction when MMIO has not been finished\n")
1021
1022  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
1023  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
1024
1025  if (backendParams.debugEn){ dontTouch(commitVec) }
1026
1027  // TODO: Deal with vector store mmio
1028  for (i <- 0 until CommitWidth) {
1029    // don't mark misalign store as committed
1030    when (
1031      allocated(cmtPtrExt(i).value) &&
1032      isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) &&
1033      !needCancel(cmtPtrExt(i).value) &&
1034      (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
1035      if (i == 0){
1036        // TODO: fixme for vector mmio
1037        when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){
1038          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1039            committed(cmtPtrExt(0).value) := true.B
1040            commitVec(0) := true.B
1041          }
1042        }
1043      } else {
1044        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1045          committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value)
1046          commitVec(i) := commitVec(i - 1)
1047        }
1048      }
1049    }
1050  }
1051
1052  commitCount := PopCount(commitVec)
1053  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
1054
1055  /**
1056   * committed stores will not be cancelled and can be sent to lower level.
1057   *
1058   * 1. Store NC: Read data to uncache
1059   *    implement as above
1060   *
1061   * 2. Store Cache: Read data from data module
1062   *    remove retired insts from sq, add retired store to sbuffer.
1063   *    as store queue grows larger and larger, time needed to read data from data
1064   *    module keeps growing higher. Now we give data read a whole cycle.
1065   */
1066
1067  //TODO An unaligned command can only be sent out if the databuffer can enter more than two.
1068  //TODO For now, hardcode the number of ENQs for the databuffer.
1069  val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready
1070  val firstWithMisalign = unaligned(rdataPtrExt(0).value)
1071  val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value)
1072
1073  val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit
1074  val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq
1075  // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr.
1076  io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0)
1077  io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire
1078  io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value)
1079  for (i <- 0 until EnsbufferWidth) {
1080    val ptr = rdataPtrExt(i).value
1081    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1082    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1083    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
1084      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
1085    }
1086    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
1087    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
1088    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
1089
1090    // Only the first interface can write unaligned directives.
1091    // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue.
1092    val assert_flag = WireInit(false.B)
1093    when(firstWithMisalign && firstWithCross16Byte) {
1094      dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1095        ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1096        (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall
1097
1098      dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1099        (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1100        (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall
1101      assert_flag := dataBuffer.io.enq(1).valid
1102    }.otherwise {
1103      if (i == 0) {
1104        dataBuffer.io.enq(i).valid := (
1105          allocated(ptr) && committed(ptr)
1106            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1107            && !mmioStall && !ncStall
1108            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1109          )
1110      }
1111      else {
1112        dataBuffer.io.enq(i).valid := (
1113          allocated(ptr) && committed(ptr)
1114            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1115            && !mmioStall && !ncStall
1116            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1117          )
1118      }
1119    }
1120
1121    val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0)
1122    val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0)
1123    val addrLow4bit = vaddrModule.io.rdata(i)(3, 0)
1124
1125    // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue.
1126    val Cross16ByteMask = Wire(UInt(32.W))
1127    val Cross16ByteData = Wire(UInt(256.W))
1128    Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit
1129    Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3)
1130
1131    val paddrLow  = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1132    val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1133
1134    val vaddrLow  = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1135    val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1136
1137    val maskLow   = Cross16ByteMask(15, 0)
1138    val maskHigh  = Cross16ByteMask(31, 16)
1139
1140    val dataLow   = Cross16ByteData(127, 0)
1141    val dataHigh  = Cross16ByteData(255, 128)
1142
1143    val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid
1144    when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) {
1145      when(isCross4KPage && isCross4KPageCanDeq) {
1146        if (i == 0) {
1147          dataBuffer.io.enq(i).bits.addr      := paddrLow
1148          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1149          dataBuffer.io.enq(i).bits.data      := dataLow
1150          dataBuffer.io.enq(i).bits.mask      := maskLow
1151          dataBuffer.io.enq(i).bits.wline     := false.B
1152          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1153          dataBuffer.io.enq(i).bits.prefetch  := false.B
1154          dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1155          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1156        }
1157        else {
1158          dataBuffer.io.enq(i).bits.addr      := io.maControl.toStoreQueue.paddr
1159          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1160          dataBuffer.io.enq(i).bits.data      := dataHigh
1161          dataBuffer.io.enq(i).bits.mask      := maskHigh
1162          dataBuffer.io.enq(i).bits.wline     := false.B
1163          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1164          dataBuffer.io.enq(i).bits.prefetch  := false.B
1165          dataBuffer.io.enq(i).bits.sqNeedDeq := false.B
1166          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1167        }
1168      } .otherwise {
1169        if (i == 0) {
1170          dataBuffer.io.enq(i).bits.addr      := paddrLow
1171          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1172          dataBuffer.io.enq(i).bits.data      := dataLow
1173          dataBuffer.io.enq(i).bits.mask      := maskLow
1174          dataBuffer.io.enq(i).bits.wline     := false.B
1175          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1176          dataBuffer.io.enq(i).bits.prefetch  := false.B
1177          dataBuffer.io.enq(i).bits.sqNeedDeq  := true.B
1178          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1179        }
1180        else {
1181          dataBuffer.io.enq(i).bits.addr      := paddrHigh
1182          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1183          dataBuffer.io.enq(i).bits.data      := dataHigh
1184          dataBuffer.io.enq(i).bits.mask      := maskHigh
1185          dataBuffer.io.enq(i).bits.wline     := false.B
1186          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1187          dataBuffer.io.enq(i).bits.prefetch  := false.B
1188          dataBuffer.io.enq(i).bits.sqNeedDeq  := false.B
1189          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1190        }
1191      }
1192
1193
1194    }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) {
1195      dataBuffer.io.enq(i).bits.addr     := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W))
1196      dataBuffer.io.enq(i).bits.vaddr    := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W))
1197      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data << (addrLow4bit << 3)
1198      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1199      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1200      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1201      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1202      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1203      // when scalar has exception, will also not write into sbuffer
1204      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1205    }.otherwise {
1206      dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
1207      dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
1208      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
1209      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1210      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1211      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1212      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1213      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1214      // when scalar has exception, will also not write into sbuffer
1215      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1216
1217    }
1218
1219    // Note that store data/addr should both be valid after store's commit
1220    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag)
1221  }
1222
1223  // Send data stored in sbufferReqBitsReg to sbuffer
1224  for (i <- 0 until EnsbufferWidth) {
1225    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1226    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1227    io.sbuffer(i).bits := DontCare
1228    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1229    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1230    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1231    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1232    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1233    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1234    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1235    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1236    io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq
1237    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1238    // Before data write finish, sbuffer is unable to provide store to load
1239    // forward data. As an workaround, deqPtrExt and allocated flag update
1240    // is delayed so that load can get the right data from store queue.
1241    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1242    when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) {
1243      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1244    }
1245    XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr)
1246  }
1247
1248  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1249  // Flags are used to record whether there are any exceptions when the queue is displayed.
1250  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1251  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1252    val ptr = rdataPtrExt(i).value
1253    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1254    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1255    val exceptionVliad      = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire
1256    (exceptionVliad, uop(ptr), vecLastFlow(ptr))
1257  }
1258
1259  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1260  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1261  val vecCommitHasExceptionLastFlow   = vecCommitHasException.map(_._3)
1262  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1263  // Just select the last Uop tah has an exception.
1264  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1265  // If the last flow with an exception is the LastFlow of this instruction, the flag is not set.
1266  // compare robidx to select the last flow
1267  require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.")
1268  val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire &&
1269    uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx
1270  val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && (
1271    uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx
1272  )
1273  val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire
1274
1275  val vecCommitLastFlow =
1276    // robidx equal => check if 1 is last flow
1277    robidxEQ && vecCommitHasExceptionLastFlow(1) ||
1278    // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception
1279    robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) ||
1280    onlyCommit0 && vecCommitHasExceptionLastFlow(0)
1281
1282
1283  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1284    val ptr = rdataPtrExt(i).value
1285    val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire
1286    vecLastFlowCommit
1287  }.reduce(_ || _)
1288
1289  // When a LastFlow with an exception instruction is commited, clear the flag.
1290  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) {
1291    vecExceptionFlag.valid  := true.B
1292    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1293  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1294    vecExceptionFlag.valid  := false.B
1295    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1296  }
1297
1298  // A dumb defensive code. The flag should not be placed for a long period of time.
1299  // A relatively large timeout period, not have any special meaning.
1300  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1301  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1302
1303  // Initialize when unenabled difftest.
1304  for (i <- 0 until EnsbufferWidth) {
1305    io.sbufferVecDifftestInfo(i) := DontCare
1306  }
1307  // Consistent with the logic above.
1308  // Only the vector store difftest required signal is separated from the rtl code.
1309  if (env.EnableDifftest) {
1310    for (i <- 0 until EnsbufferWidth) {
1311      val ptr = dataBuffer.io.enq(i).bits.sqPtr.value
1312      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1313      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1314    }
1315    for (i <- 0 until EnsbufferWidth) {
1316      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1317      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1318
1319      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1320    }
1321
1322    // commit cbo.inval to difftest
1323    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1324    cmoInvalEvent.coreid := io.hartId
1325    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1326    cmoInvalEvent.addr   := cboMmioAddr
1327  }
1328
1329  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1330  if (coreParams.dcacheParametersOpt.isEmpty) {
1331    for (i <- 0 until EnsbufferWidth) {
1332      val ptr = deqPtrExt(i).value
1333      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1334      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1335      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1336      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1337      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1338      when (wen) {
1339        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1340      }
1341    }
1342  }
1343
1344  // Read vaddr for mem exception
1345  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1346  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1347  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1348  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1349  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1350  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1351  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1352
1353  // vector commit or replay from
1354  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1355  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1356  for (i <- 0 until StoreQueueSize) {
1357    val fbk = io.vecFeedback
1358    for (j <- 0 until VecStorePipelineWidth) {
1359      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1360        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1361    }
1362    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1363
1364    when (vecCommit(i)) {
1365      vecMbCommit(i) := true.B
1366    }
1367  }
1368
1369  // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed.
1370  // TODO FIXME Can vecMbCommit be removed?
1371  when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) {
1372    vecMbCommit(rdataPtrExt(0).value) := true.B
1373  }
1374
1375  // misprediction recovery / exception redirect
1376  // invalidate sq term using robIdx
1377  for (i <- 0 until StoreQueueSize) {
1378    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
1379    when (needCancel(i)) {
1380      allocated(i) := false.B
1381    }
1382  }
1383
1384 /**
1385* update pointers
1386**/
1387  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1388    v && x.bits.robIdx.needFlush(io.brqRedirect)
1389  }
1390  val enqCancelNum = enqCancelValid.zip(vStoreFlow).map{case (v, flow) =>
1391    Mux(v, flow, 0.U)
1392  }
1393  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1394
1395  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1396  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1397  val enqNumber = validVStoreFlow.reduce(_ + _)
1398
1399  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1400  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1401
1402  when (lastlastCycleRedirect) {
1403    // we recover the pointers in 2 cycle after redirect for better timing
1404    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1405  }.otherwise {
1406    // lastCycleRedirect.valid or nornal case
1407    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1408    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1409  }
1410  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1411
1412  deqPtrExt := deqPtrExtNext
1413  rdataPtrExt := rdataPtrExtNext
1414
1415  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1416
1417  // If redirect at T0, sqCancelCnt is at T2
1418  io.sqCancelCnt := redirectCancelCount
1419  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1420  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1421  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1422  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1423
1424  val valid_cnt = PopCount(allocated)
1425  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1426
1427  // io.sqempty will be used by sbuffer
1428  // We delay it for 1 cycle for better timing
1429  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1430  // for 1 cycle will also promise that sq is empty in that cycle
1431  io.sqEmpty := RegNext(
1432    enqPtrExt(0).value === deqPtrExt(0).value &&
1433    enqPtrExt(0).flag === deqPtrExt(0).flag
1434  )
1435  // perf counter
1436  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1437  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1438  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1439  io.sqFull := !allowEnqueue
1440  XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req
1441  XSPerfAccumulate("mmioCnt", mmioDoReq)
1442  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1443  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1444  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1445  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1446  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1447
1448  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1449  val perfEvents = Seq(
1450    ("mmioCycle      ", mmioState =/= s_idle),
1451    ("mmioCnt        ", mmioDoReq),
1452    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1453    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1454    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1455    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1456    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1457    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1458  )
1459  generatePerfEvent()
1460
1461  // debug info
1462  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1463
1464  def PrintFlag(flag: Bool, name: String): Unit = {
1465    XSDebug(false, flag, name) // when(flag)
1466    XSDebug(false, !flag, " ") // otherwirse
1467  }
1468
1469  for (i <- 0 until StoreQueueSize) {
1470    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1471      uop(i).pc,
1472      debug_vaddr(i),
1473      debug_paddr(i),
1474      debug_data(i)
1475    )
1476    PrintFlag(allocated(i), "a")
1477    PrintFlag(allocated(i) && addrvalid(i), "a")
1478    PrintFlag(allocated(i) && datavalid(i), "d")
1479    PrintFlag(allocated(i) && committed(i), "c")
1480    PrintFlag(allocated(i) && pending(i), "p")
1481    PrintFlag(allocated(i) && mmio(i), "m")
1482    XSDebug(false, true.B, "\n")
1483  }
1484
1485}
1486