1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.cache.{CMOReq, CMOResp} 31import xiangshan.backend._ 32import xiangshan.backend.rob.{RobLsqIO, RobPtr} 33import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 35import xiangshan.backend.fu.FuConfig._ 36import xiangshan.backend.fu.FuType 37import xiangshan.ExceptionNO._ 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70 val sqNeedDeq = Bool() 71} 72 73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 74 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 75 // The 2nd StorePipelineWidth ports: sta af generated at s2 76 // The following VecStorePipelineWidth ports: vector st exception 77 // The last port: non-data error generated in SoC 78 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 79 80 val io = IO(new Bundle() { 81 val redirect = Flipped(ValidIO(new Redirect)) 82 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary 261 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 262 val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst 263 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 264 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 265 val memBackTypeMM = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 266 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 267 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 268 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 269 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 270 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 271 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 272 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 273 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 274 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 275 276 // ptr 277 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 278 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 281 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 282 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 283 284 val enqPtr = enqPtrExt(0).value 285 val deqPtr = deqPtrExt(0).value 286 val cmtPtr = cmtPtrExt(0).value 287 288 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 289 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 290 291 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 292 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 293 294 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 295 val scommit = GatedRegNext(io.rob.scommit) 296 val mmioReq = Wire(chiselTypeOf(io.uncache.req)) 297 val ncReq = Wire(chiselTypeOf(io.uncache.req)) 298 val ncResp = Wire(chiselTypeOf(io.uncache.resp)) 299 val ncDoReq = Wire(Bool()) 300 val ncDoResp = Wire(Bool()) 301 val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp) 302 // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles. 303 // TODO lyq: to eliminate coupling by passing signals through ubuffer 304 val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp) 305 val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id) 306 307 // store can be committed by ROB 308 io.rob.mmio := DontCare 309 io.rob.uop := DontCare 310 311 // Read dataModule 312 assert(EnsbufferWidth <= 2) 313 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 314 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 315 rdataPtrExtNext := rdataPtrExt.map(i => i + 316 PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) + 317 PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 318 ) 319 320 // deqPtrExtNext traces which inst is about to leave store queue 321 // 322 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 323 // Before data write finish, sbuffer is unable to provide store to load 324 // forward data. As an workaround, deqPtrExt and allocated flag update 325 // is delayed so that load can get the right data from store queue. 326 // 327 // Modify deqPtrExtNext and io.sqDeq with care! 328 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 329 // Only sqNeedDeq can move the ptr 330 deqPtrExtNext := deqPtrExt.map(i => i + 331 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 332 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 333 ) 334 335 io.sqDeq := RegNext( 336 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 337 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 338 ) 339 340 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 341 342 for (i <- 0 until EnsbufferWidth) { 343 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 344 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 345 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 346 } 347 348 /** 349 * Enqueue at dispatch 350 * 351 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 352 * Dynamic enq based on numLsElem number 353 */ 354 io.enq.canAccept := allowEnqueue 355 val canEnqueue = io.enq.req.map(_.valid) 356 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 357 val vStoreFlow = io.enq.req.map(_.bits.numLsElem.asTypeOf(UInt(elemIdxBits.W))) 358 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vStoreFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vStoreFlowNumItem, 0.U)} 359 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 360 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 361 362 val enqLowBound = io.enq.req.map(_.bits.sqIdx) 363 val enqUpBound = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem) 364 val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag} 365 366 for(i <- 0 until StoreQueueSize) { 367 val entryCanEnqSeq = (0 until io.enq.req.length).map { j => 368 val entryHitBound = Mux( 369 enqCrossLoop(j), 370 enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value, 371 enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value 372 ) 373 canEnqueue(j) && !enqCancel(j) && entryHitBound 374 } 375 376 val entryCanEnq = entryCanEnqSeq.reduce(_ || _) 377 val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits)) 378 val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound) 379 when (entryCanEnq) { 380 uop(i) := selectBits 381 if (i + 1 == StoreQueueSize) 382 vecLastFlow(i) := Mux(0.U === selectUpBound.value, selectBits.lastUop, false.B) else 383 vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B) 384 allocated(i) := true.B 385 datavalid(i) := false.B 386 addrvalid(i) := false.B 387 unaligned(i) := false.B 388 cross16Byte(i) := false.B 389 committed(i) := false.B 390 pending(i) := false.B 391 prefetch(i) := false.B 392 nc(i) := false.B 393 mmio(i) := false.B 394 isVec(i) := FuType.isVStore(selectBits.fuType) 395 vecMbCommit(i) := false.B 396 hasException(i) := false.B 397 waitStoreS2(i) := true.B 398 } 399 } 400 401 for (i <- 0 until io.enq.req.length) { 402 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 403 val index = io.enq.req(i).bits.sqIdx 404 XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n") 405 XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n") 406 io.enq.resp(i) := sqIdx 407 } 408 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 409 410 /** 411 * Update addr/dataReadyPtr when issue from rs 412 */ 413 // update issuePtr 414 val IssuePtrMoveStride = 4 415 require(IssuePtrMoveStride >= 2) 416 417 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 418 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 419 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 420 && ptr =/= enqPtrExt(0)) 421 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 422 addrReadyPtrExt := nextAddrReadyPtr 423 424 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 425 (0 until StoreQueueSize).map(i => { 426 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 427 }) 428 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 429 430 when (io.brqRedirect.valid) { 431 addrReadyPtrExt := Mux( 432 isAfter(cmtPtrExt(0), deqPtrExt(0)), 433 cmtPtrExt(0), 434 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 435 ) 436 } 437 438 io.stAddrReadySqPtr := addrReadyPtrExt 439 440 // update 441 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 442 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 443 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 444 && ptr =/= enqPtrExt(0)) 445 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 446 dataReadyPtrExt := nextDataReadyPtr 447 448 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 449 (0 until StoreQueueSize).map(i => { 450 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 451 }) 452 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 453 454 when (io.brqRedirect.valid) { 455 dataReadyPtrExt := Mux( 456 isAfter(cmtPtrExt(0), deqPtrExt(0)), 457 cmtPtrExt(0), 458 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 459 ) 460 } 461 462 io.stDataReadySqPtr := dataReadyPtrExt 463 io.stIssuePtr := enqPtrExt(0) 464 io.sqDeqPtr := deqPtrExt(0) 465 466 /** 467 * Writeback store from store units 468 * 469 * Most store instructions writeback to regfile in the previous cycle. 470 * However, 471 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 472 * (in this way it will trigger an exception when it reaches ROB's head) 473 * instead of pending to avoid sending them to lower level. 474 * (2) For an mmio instruction without exceptions, we mark it as pending. 475 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 476 * Upon receiving the response, StoreQueue writes back the instruction 477 * through arbiter with store units. It will later commit as normal. 478 */ 479 480 // Write addr to sq 481 for (i <- 0 until StorePipelineWidth) { 482 paddrModule.io.wen(i) := false.B 483 vaddrModule.io.wen(i) := false.B 484 dataModule.io.mask.wen(i) := false.B 485 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 486 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 487 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 488 // will re-enter exceptionbuffer at store_s2 489 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 490 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 491 492 when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) { 493 val addr_valid = !io.storeAddrIn(i).bits.miss 494 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 495 nc(stWbIndex) := io.storeAddrIn(i).bits.nc 496 497 } 498 when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) { 499 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 500 unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign 501 cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte 502 503 paddrModule.io.waddr(i) := stWbIndex 504 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 505 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 506 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 507 paddrModule.io.wen(i) := true.B 508 509 vaddrModule.io.waddr(i) := stWbIndex 510 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 511 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 512 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 513 vaddrModule.io.wen(i) := true.B 514 515 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 516 517 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 518 } 519 when (io.storeAddrIn(i).fire) { 520 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 521 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 522 } 523 XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf, 524 "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 525 io.storeAddrIn(i).bits.uop.sqIdx.value, 526 io.storeAddrIn(i).bits.uop.pc, 527 io.storeAddrIn(i).bits.miss, 528 io.storeAddrIn(i).bits.vaddr, 529 io.storeAddrIn(i).bits.paddr, 530 io.storeAddrIn(i).bits.mmio, 531 io.storeAddrIn(i).bits.isvec 532 ) 533 534 // re-replinish mmio, for pma/pmp will get mmio one cycle later 535 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid 536 //val stWbIndexReg = RegNext(stWbIndex) 537 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 538 when (storeAddrInFireReg) { 539 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 540 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 541 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 542 memBackTypeMM(stWbIndexReg) := io.storeAddrInRe(i).memBackTypeMM 543 hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException 544 waitStoreS2(stWbIndexReg) := false.B 545 } 546 // dcache miss info (one cycle later than storeIn) 547 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 548 when (storeAddrInFireReg) { 549 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 550 } 551 // enter exceptionbuffer again 552 when (storeAddrInFireReg) { 553 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec 554 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i) 555 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 556 } 557 558 when(vaddrModule.io.wen(i)){ 559 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 560 } 561 } 562 563 // Write data to sq 564 // Now store data pipeline is actually 2 stages 565 for (i <- 0 until StorePipelineWidth) { 566 dataModule.io.data.wen(i) := false.B 567 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 568 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 569 // sq data write takes 2 cycles: 570 // sq data write s0 571 when (io.storeDataIn(i).fire) { 572 // send data write req to data module 573 dataModule.io.data.waddr(i) := stWbIndex 574 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 575 0.U, 576 Mux(isVec, 577 io.storeDataIn(i).bits.data, 578 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 579 ) 580 dataModule.io.data.wen(i) := true.B 581 582 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 583 } 584 XSInfo(io.storeDataIn(i).fire, 585 "store data write to sq idx %d pc 0x%x data %x -> %x\n", 586 io.storeDataIn(i).bits.uop.sqIdx.value, 587 io.storeDataIn(i).bits.uop.pc, 588 io.storeDataIn(i).bits.data, 589 dataModule.io.data.wdata(i) 590 ) 591 // sq data write s1 592 val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire) 593 when ( 594 RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex) 595 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 596 ) { 597 datavalid(lastStWbIndex) := true.B 598 } 599 } 600 601 // Write mask to sq 602 for (i <- 0 until StorePipelineWidth) { 603 // sq mask write s0 604 when (io.storeMaskIn(i).fire) { 605 // send data write req to data module 606 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 607 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 608 dataModule.io.mask.wen(i) := true.B 609 } 610 } 611 612 /** 613 * load forward query 614 * 615 * Check store queue for instructions that is older than the load. 616 * The response will be valid at the next cycle after req. 617 */ 618 // check over all lq entries and forward data from the first matched store 619 for (i <- 0 until LoadPipelineWidth) { 620 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 621 // (1) if they have the same flag, we need to check range(tail, sqIdx) 622 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 623 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 624 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 625 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 626 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 627 val forwardMask = io.forward(i).sqIdxMask 628 // all addrvalid terms need to be checked 629 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 630 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 631 // vector store will consider all inactive || secondInvalid flows as valid 632 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 633 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 634 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 635 636 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 637 val storeSetHitVec = Mux(lfstEnable, 638 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 639 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 640 ) 641 642 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 643 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 644 val canForward1 = forwardMask1 & allValidVec.asUInt 645 val canForward2 = forwardMask2 & allValidVec.asUInt 646 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 647 648 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 649 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 650 ) 651 652 // do real fwd query (cam lookup in load_s1) 653 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 654 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 655 656 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 657 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 658 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 659 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 660 661 // vaddr cam result does not equal to paddr cam result 662 // replay needed 663 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 664 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 665 val vpmaskNotEqual = ( 666 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 667 RegNext(needForward) & 668 GatedRegNext(addrRealValidVec.asUInt) 669 ) =/= 0.U 670 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 671 XSInfo(vaddrMatchFailed, 672 "vaddrMatchFailed: pc %x pmask %x vmask %x\n", 673 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 674 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 675 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 676 ); 677 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 678 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 679 680 // Fast forward mask will be generated immediately (load_s1) 681 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 682 683 // Forward result will be generated 1 cycle later (load_s2) 684 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 685 io.forward(i).forwardData := dataModule.io.forwardData(i) 686 687 //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it. 688 //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward. 689 // If addr match, data not ready, mark it as dataInvalid 690 // load_s1: generate dataInvalid in load_s1 to set fastUop 691 val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt 692 val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt 693 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 694 io.forward(i).dataInvalidFast := dataInvalidMask.orR 695 696 // make chisel happy 697 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 698 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 699 // make chisel happy 700 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 701 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 702 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 703 704 // If SSID match, address not ready, mark it as addrInvalid 705 // load_s2: generate addrInvalid 706 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 707 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 708 // make chisel happy 709 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 710 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 711 // make chisel happy 712 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 713 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 714 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 715 716 // load_s2 717 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 718 // check if vaddr forward mismatched 719 io.forward(i).matchInvalid := vaddrMatchFailed 720 721 // data invalid sq index 722 // check whether false fail 723 // check flag 724 val s2_differentFlag = RegNext(differentFlag) 725 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 726 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 727 728 // addr invalid sq index 729 // make chisel happy 730 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 731 addrInvalidMaskRegWire := addrInvalidMaskReg 732 val addrInvalidFlag = addrInvalidMaskRegWire.orR 733 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 734 735 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 736 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 737 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 738 739 // store-set content management 740 // +-----------------------+ 741 // | Search a SSID for the | 742 // | load operation | 743 // +-----------------------+ 744 // | 745 // V 746 // +-------------------+ 747 // | load wait strict? | 748 // +-------------------+ 749 // | 750 // V 751 // +----------------------+ 752 // Set| |Clean 753 // V V 754 // +------------------------+ +------------------------------+ 755 // | Waiting for all older | | Wait until the corresponding | 756 // | stores operations | | older store operations | 757 // +------------------------+ +------------------------------+ 758 759 760 761 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 762 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 763 } .elsewhen (addrInvalidFlag) { 764 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 765 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 766 } .otherwise { 767 // may be store inst has been written to sbuffer already. 768 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 769 } 770 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 771 772 // data invalid sq index 773 // make chisel happy 774 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 775 dataInvalidMaskRegWire := dataInvalidMaskReg 776 val dataInvalidFlag = dataInvalidMaskRegWire.orR 777 778 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 779 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 780 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 781 782 when (dataInvalidFlag) { 783 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 784 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 785 } .otherwise { 786 // may be store inst has been written to sbuffer already. 787 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 788 } 789 } 790 791 /** 792 * Memory mapped IO / other uncached operations / CMO 793 * 794 * States: 795 * (1) writeback from store units: mark as pending 796 * (2) when they reach ROB's head, they can be sent to uncache channel 797 * (3) response from uncache channel: mark as datavalidmask.wen 798 * (4) writeback to ROB (and other units): mark as writebacked 799 * (5) ROB commits the instruction: same as normal instructions 800 */ 801 //(2) when they reach ROB's head, they can be sent to uncache channel 802 // TODO: CAN NOT deal with vector mmio now! 803 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 804 val mmioState = RegInit(s_idle) 805 val uncacheUop = Reg(new DynInst) 806 val cboFlushedSb = RegInit(false.B) 807 val cmoOpCode = uncacheUop.fuOpType(1, 0) 808 val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc 809 val cboMmioPAddr = Reg(UInt(PAddrBits.W)) 810 switch(mmioState) { 811 is(s_idle) { 812 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) { 813 mmioState := s_req 814 uncacheUop := uop(deqPtr) 815 uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 816 uncacheUop.trigger := 0.U.asTypeOf(TriggerAction()) 817 cboFlushedSb := false.B 818 cboMmioPAddr := paddrModule.io.rdata(0) 819 } 820 } 821 is(s_req) { 822 when (mmioDoReq) { 823 mmioState := s_resp 824 } 825 } 826 is(s_resp) { 827 when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) { 828 mmioState := s_wb 829 830 when (io.uncache.resp.bits.nderr || io.cmoOpResp.bits.nderr) { 831 uncacheUop.exceptionVec(storeAccessFault) := true.B 832 } 833 } 834 } 835 is(s_wb) { 836 when (io.mmioStout.fire || io.vecmmioStout.fire) { 837 when (uncacheUop.exceptionVec(storeAccessFault)) { 838 mmioState := s_idle 839 }.otherwise { 840 mmioState := s_wait 841 } 842 } 843 } 844 is(s_wait) { 845 // A MMIO store can always move cmtPtrExt as it must be ROB head 846 when(scommit > 0.U) { 847 mmioState := s_idle // ready for next mmio 848 } 849 } 850 } 851 852 mmioReq.valid := mmioState === s_req && !LSUOpType.isCbo(uop(deqPtr).fuOpType) 853 mmioReq.bits := DontCare 854 mmioReq.bits.cmd := MemoryOpConstants.M_XWR 855 mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 856 mmioReq.bits.vaddr:= vaddrModule.io.rdata(0) 857 mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 858 mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 859 mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 860 mmioReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value) 861 mmioReq.bits.nc := false.B 862 mmioReq.bits.id := rdataPtrExt(0).value 863 864 /** 865 * NC Store 866 * (1) req: when it has been commited, it can be sent to lower level. 867 * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received 868 */ 869 // TODO: CAN NOT deal with vector nc now! 870 val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3) 871 val ncState = RegInit(nc_idle) 872 val rptr0 = rdataPtrExt(0).value 873 switch(ncState){ 874 is(nc_idle) { 875 when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) { 876 ncState := nc_req 877 } 878 } 879 is(nc_req) { 880 when(ncDoReq) { 881 when(io.uncacheOutstanding) { 882 ncState := nc_idle 883 }.otherwise{ 884 ncState := nc_resp 885 } 886 } 887 } 888 is(nc_resp) { 889 when(ncResp.fire) { 890 ncState := nc_idle 891 } 892 } 893 } 894 895 ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc 896 ncDoResp := ncResp.fire 897 898 ncReq.valid := ncState === nc_req 899 ncReq.bits := DontCare 900 ncReq.bits.cmd := MemoryOpConstants.M_XWR 901 ncReq.bits.addr := paddrModule.io.rdata(0) 902 ncReq.bits.vaddr:= vaddrModule.io.rdata(0) 903 ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 904 ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 905 ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 906 ncReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value) 907 ncReq.bits.nc := true.B 908 ncReq.bits.id := rptr0 909 910 ncResp.ready := io.uncache.resp.ready 911 ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc 912 ncResp.bits <> io.uncache.resp.bits 913 when (ncDeqTrigger) { 914 allocated(ncPtr) := false.B 915 XSDebug("nc fire: ptr %d\n", ncPtr) 916 } 917 918 mmioReq.ready := io.uncache.req.ready 919 ncReq.ready := io.uncache.req.ready && !mmioReq.valid 920 io.uncache.req.valid := mmioReq.valid || ncReq.valid 921 io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits) 922 923 // CBO op type check can be delayed for 1 cycle, 924 // as uncache op will not start in s_idle 925 val cboMmioAddr = get_block_addr(cboMmioPAddr) 926 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr)) 927 when (deqCanDoCbo) { 928 // disable uncache channel 929 io.uncache.req.valid := false.B 930 931 when (io.cmoOpReq.fire) { 932 mmioState := s_resp 933 } 934 935 when (mmioState === s_resp) { 936 when (io.cmoOpResp.fire) { 937 mmioState := s_wb 938 } 939 } 940 } 941 942 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req) 943 io.cmoOpReq.bits.opcode := cmoOpCode 944 io.cmoOpReq.bits.address := cboMmioAddr 945 946 io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp) 947 948 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty 949 950 when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) { 951 cboFlushedSb := true.B 952 } 953 954 when(mmioDoReq){ 955 // mmio store should not be committed until uncache req is sent 956 pending(deqPtr) := false.B 957 } 958 XSDebug( 959 mmioDoReq, 960 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 961 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 962 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 963 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 964 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 965 ) 966 967 // (3) response from uncache channel: mark as datavalid 968 io.uncache.resp.ready := true.B 969 970 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 971 io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr) 972 io.mmioStout.bits.uop := uncacheUop 973 io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg) 974 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 975 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 976 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 977 io.mmioStout.bits.isFromLoadUnit := DontCare 978 io.mmioStout.bits.debug.isMMIO := true.B 979 io.mmioStout.bits.debug.isNC := false.B 980 io.mmioStout.bits.debug.paddr := DontCare 981 io.mmioStout.bits.debug.isPerfCnt := false.B 982 io.mmioStout.bits.debug.vaddr := DontCare 983 // Remove MMIO inst from store queue after MMIO request is being sent 984 // That inst will be traced by uncache state machine 985 when (io.mmioStout.fire) { 986 allocated(deqPtr) := false.B 987 } 988 989 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 990 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 991 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 992 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 993 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 994 995 // (4) or vector store: 996 // TODO: implement it! 997 io.vecmmioStout := DontCare 998 io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr) 999 io.vecmmioStout.bits.uop := uop(deqPtr) 1000 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 1001 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 1002 io.vecmmioStout.bits.debug.isMMIO := true.B 1003 io.vecmmioStout.bits.debug.isNC := false.B 1004 io.vecmmioStout.bits.debug.paddr := DontCare 1005 io.vecmmioStout.bits.debug.isPerfCnt := false.B 1006 io.vecmmioStout.bits.debug.vaddr := DontCare 1007 // Remove MMIO inst from store queue after MMIO request is being sent 1008 // That inst will be traced by uncache state machine 1009 when (io.vecmmioStout.fire) { 1010 allocated(deqPtr) := false.B 1011 } 1012 1013 /** 1014 * ROB commits store instructions (mark them as committed) 1015 * 1016 * (1) When store commits, mark it as committed. 1017 * (2) They will not be cancelled and can be sent to lower level. 1018 */ 1019 XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U, 1020 "should not commit instruction when MMIO has not been finished\n") 1021 1022 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 1023 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 1024 1025 if (backendParams.debugEn){ dontTouch(commitVec) } 1026 1027 // TODO: Deal with vector store mmio 1028 for (i <- 0 until CommitWidth) { 1029 // don't mark misalign store as committed 1030 when ( 1031 allocated(cmtPtrExt(i).value) && 1032 isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && 1033 !needCancel(cmtPtrExt(i).value) && 1034 (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 1035 if (i == 0){ 1036 // TODO: fixme for vector mmio 1037 when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){ 1038 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1039 committed(cmtPtrExt(0).value) := true.B 1040 commitVec(0) := true.B 1041 } 1042 } 1043 } else { 1044 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1045 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 1046 commitVec(i) := commitVec(i - 1) 1047 } 1048 } 1049 } 1050 } 1051 1052 commitCount := PopCount(commitVec) 1053 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 1054 1055 /** 1056 * committed stores will not be cancelled and can be sent to lower level. 1057 * 1058 * 1. Store NC: Read data to uncache 1059 * implement as above 1060 * 1061 * 2. Store Cache: Read data from data module 1062 * remove retired insts from sq, add retired store to sbuffer. 1063 * as store queue grows larger and larger, time needed to read data from data 1064 * module keeps growing higher. Now we give data read a whole cycle. 1065 */ 1066 1067 //TODO An unaligned command can only be sent out if the databuffer can enter more than two. 1068 //TODO For now, hardcode the number of ENQs for the databuffer. 1069 val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready 1070 val firstWithMisalign = unaligned(rdataPtrExt(0).value) 1071 val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value) 1072 1073 val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit 1074 val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq 1075 // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr. 1076 io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0) 1077 io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire 1078 io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value) 1079 for (i <- 0 until EnsbufferWidth) { 1080 val ptr = rdataPtrExt(i).value 1081 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1082 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1083 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 1084 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 1085 } 1086 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 1087 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 1088 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 1089 1090 // Only the first interface can write unaligned directives. 1091 // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue. 1092 val assert_flag = WireInit(false.B) 1093 when(firstWithMisalign && firstWithCross16Byte) { 1094 dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1095 ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1096 (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall 1097 1098 dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1099 (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1100 (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall 1101 assert_flag := dataBuffer.io.enq(1).valid 1102 }.otherwise { 1103 if (i == 0) { 1104 dataBuffer.io.enq(i).valid := ( 1105 allocated(ptr) && committed(ptr) 1106 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1107 && !mmioStall && !ncStall 1108 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1109 ) 1110 } 1111 else { 1112 dataBuffer.io.enq(i).valid := ( 1113 allocated(ptr) && committed(ptr) 1114 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1115 && !mmioStall && !ncStall 1116 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1117 ) 1118 } 1119 } 1120 1121 val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0) 1122 val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0) 1123 val addrLow4bit = vaddrModule.io.rdata(i)(3, 0) 1124 1125 // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. 1126 val Cross16ByteMask = Wire(UInt(32.W)) 1127 val Cross16ByteData = Wire(UInt(256.W)) 1128 Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit 1129 Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3) 1130 1131 val paddrLow = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1132 val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1133 1134 val vaddrLow = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1135 val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1136 1137 val maskLow = Cross16ByteMask(15, 0) 1138 val maskHigh = Cross16ByteMask(31, 16) 1139 1140 val dataLow = Cross16ByteData(127, 0) 1141 val dataHigh = Cross16ByteData(255, 128) 1142 1143 val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid 1144 when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) { 1145 when(isCross4KPage && isCross4KPageCanDeq) { 1146 if (i == 0) { 1147 dataBuffer.io.enq(i).bits.addr := paddrLow 1148 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1149 dataBuffer.io.enq(i).bits.data := dataLow 1150 dataBuffer.io.enq(i).bits.mask := maskLow 1151 dataBuffer.io.enq(i).bits.wline := false.B 1152 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1153 dataBuffer.io.enq(i).bits.prefetch := false.B 1154 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1155 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1156 } 1157 else { 1158 dataBuffer.io.enq(i).bits.addr := io.maControl.toStoreQueue.paddr 1159 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1160 dataBuffer.io.enq(i).bits.data := dataHigh 1161 dataBuffer.io.enq(i).bits.mask := maskHigh 1162 dataBuffer.io.enq(i).bits.wline := false.B 1163 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1164 dataBuffer.io.enq(i).bits.prefetch := false.B 1165 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1166 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1167 } 1168 } .otherwise { 1169 if (i == 0) { 1170 dataBuffer.io.enq(i).bits.addr := paddrLow 1171 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1172 dataBuffer.io.enq(i).bits.data := dataLow 1173 dataBuffer.io.enq(i).bits.mask := maskLow 1174 dataBuffer.io.enq(i).bits.wline := false.B 1175 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1176 dataBuffer.io.enq(i).bits.prefetch := false.B 1177 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1178 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1179 } 1180 else { 1181 dataBuffer.io.enq(i).bits.addr := paddrHigh 1182 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1183 dataBuffer.io.enq(i).bits.data := dataHigh 1184 dataBuffer.io.enq(i).bits.mask := maskHigh 1185 dataBuffer.io.enq(i).bits.wline := false.B 1186 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1187 dataBuffer.io.enq(i).bits.prefetch := false.B 1188 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1189 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1190 } 1191 } 1192 1193 1194 }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) { 1195 dataBuffer.io.enq(i).bits.addr := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W)) 1196 dataBuffer.io.enq(i).bits.vaddr := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W)) 1197 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data << (addrLow4bit << 3) 1198 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1199 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1200 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1201 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1202 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1203 // when scalar has exception, will also not write into sbuffer 1204 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1205 }.otherwise { 1206 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 1207 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 1208 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 1209 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1210 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1211 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1212 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1213 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1214 // when scalar has exception, will also not write into sbuffer 1215 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1216 1217 } 1218 1219 // Note that store data/addr should both be valid after store's commit 1220 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag) 1221 } 1222 1223 // Send data stored in sbufferReqBitsReg to sbuffer 1224 for (i <- 0 until EnsbufferWidth) { 1225 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1226 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1227 io.sbuffer(i).bits := DontCare 1228 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1229 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1230 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1231 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1232 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1233 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1234 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1235 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1236 io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq 1237 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1238 // Before data write finish, sbuffer is unable to provide store to load 1239 // forward data. As an workaround, deqPtrExt and allocated flag update 1240 // is delayed so that load can get the right data from store queue. 1241 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1242 when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) { 1243 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1244 } 1245 XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr) 1246 } 1247 1248 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1249 // Flags are used to record whether there are any exceptions when the queue is displayed. 1250 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1251 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1252 val ptr = rdataPtrExt(i).value 1253 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1254 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1255 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1256 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1257 } 1258 1259 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1260 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1261 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1262 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1263 // Just select the last Uop tah has an exception. 1264 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1265 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1266 // compare robidx to select the last flow 1267 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1268 val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && 1269 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1270 val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && ( 1271 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1272 ) 1273 val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire 1274 1275 val vecCommitLastFlow = 1276 // robidx equal => check if 1 is last flow 1277 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1278 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1279 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1280 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1281 1282 1283 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1284 val ptr = rdataPtrExt(i).value 1285 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1286 vecLastFlowCommit 1287 }.reduce(_ || _) 1288 1289 // When a LastFlow with an exception instruction is commited, clear the flag. 1290 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1291 vecExceptionFlag.valid := true.B 1292 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1293 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1294 vecExceptionFlag.valid := false.B 1295 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1296 } 1297 1298 // A dumb defensive code. The flag should not be placed for a long period of time. 1299 // A relatively large timeout period, not have any special meaning. 1300 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1301 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1302 1303 // Initialize when unenabled difftest. 1304 for (i <- 0 until EnsbufferWidth) { 1305 io.sbufferVecDifftestInfo(i) := DontCare 1306 } 1307 // Consistent with the logic above. 1308 // Only the vector store difftest required signal is separated from the rtl code. 1309 if (env.EnableDifftest) { 1310 for (i <- 0 until EnsbufferWidth) { 1311 val ptr = dataBuffer.io.enq(i).bits.sqPtr.value 1312 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1313 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1314 } 1315 for (i <- 0 until EnsbufferWidth) { 1316 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1317 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1318 1319 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1320 } 1321 1322 // commit cbo.inval to difftest 1323 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1324 cmoInvalEvent.coreid := io.hartId 1325 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1326 cmoInvalEvent.addr := cboMmioAddr 1327 } 1328 1329 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1330 if (coreParams.dcacheParametersOpt.isEmpty) { 1331 for (i <- 0 until EnsbufferWidth) { 1332 val ptr = deqPtrExt(i).value 1333 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1334 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1335 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1336 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1337 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1338 when (wen) { 1339 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1340 } 1341 } 1342 } 1343 1344 // Read vaddr for mem exception 1345 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1346 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1347 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1348 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1349 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1350 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1351 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1352 1353 // vector commit or replay from 1354 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1355 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1356 for (i <- 0 until StoreQueueSize) { 1357 val fbk = io.vecFeedback 1358 for (j <- 0 until VecStorePipelineWidth) { 1359 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1360 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1361 } 1362 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1363 1364 when (vecCommit(i)) { 1365 vecMbCommit(i) := true.B 1366 } 1367 } 1368 1369 // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed. 1370 // TODO FIXME Can vecMbCommit be removed? 1371 when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) { 1372 vecMbCommit(rdataPtrExt(0).value) := true.B 1373 } 1374 1375 // misprediction recovery / exception redirect 1376 // invalidate sq term using robIdx 1377 for (i <- 0 until StoreQueueSize) { 1378 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 1379 when (needCancel(i)) { 1380 allocated(i) := false.B 1381 } 1382 } 1383 1384 /** 1385* update pointers 1386**/ 1387 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1388 v && x.bits.robIdx.needFlush(io.brqRedirect) 1389 } 1390 val enqCancelNum = enqCancelValid.zip(vStoreFlow).map{case (v, flow) => 1391 Mux(v, flow, 0.U) 1392 } 1393 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1394 1395 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1396 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1397 val enqNumber = validVStoreFlow.reduce(_ + _) 1398 1399 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1400 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1401 1402 when (lastlastCycleRedirect) { 1403 // we recover the pointers in 2 cycle after redirect for better timing 1404 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1405 }.otherwise { 1406 // lastCycleRedirect.valid or nornal case 1407 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1408 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1409 } 1410 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1411 1412 deqPtrExt := deqPtrExtNext 1413 rdataPtrExt := rdataPtrExtNext 1414 1415 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1416 1417 // If redirect at T0, sqCancelCnt is at T2 1418 io.sqCancelCnt := redirectCancelCount 1419 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1420 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1421 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1422 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1423 1424 val valid_cnt = PopCount(allocated) 1425 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1426 1427 // io.sqempty will be used by sbuffer 1428 // We delay it for 1 cycle for better timing 1429 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1430 // for 1 cycle will also promise that sq is empty in that cycle 1431 io.sqEmpty := RegNext( 1432 enqPtrExt(0).value === deqPtrExt(0).value && 1433 enqPtrExt(0).flag === deqPtrExt(0).flag 1434 ) 1435 // perf counter 1436 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1437 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1438 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1439 io.sqFull := !allowEnqueue 1440 XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req 1441 XSPerfAccumulate("mmioCnt", mmioDoReq) 1442 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1443 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1444 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1445 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1446 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1447 1448 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1449 val perfEvents = Seq( 1450 ("mmioCycle ", mmioState =/= s_idle), 1451 ("mmioCnt ", mmioDoReq), 1452 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1453 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1454 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1455 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1456 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1457 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1458 ) 1459 generatePerfEvent() 1460 1461 // debug info 1462 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1463 1464 def PrintFlag(flag: Bool, name: String): Unit = { 1465 XSDebug(false, flag, name) // when(flag) 1466 XSDebug(false, !flag, " ") // otherwirse 1467 } 1468 1469 for (i <- 0 until StoreQueueSize) { 1470 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1471 uop(i).pc, 1472 debug_vaddr(i), 1473 debug_paddr(i), 1474 debug_data(i) 1475 ) 1476 PrintFlag(allocated(i), "a") 1477 PrintFlag(allocated(i) && addrvalid(i), "a") 1478 PrintFlag(allocated(i) && datavalid(i), "d") 1479 PrintFlag(allocated(i) && committed(i), "c") 1480 PrintFlag(allocated(i) && pending(i), "p") 1481 PrintFlag(allocated(i) && mmio(i), "m") 1482 XSDebug(false, true.B, "\n") 1483 } 1484 1485} 1486