1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33 34class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 35 p => p(XSCoreParamsKey).StoreQueueSize 36){ 37} 38 39object SqPtr { 40 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 41 val ptr = Wire(new SqPtr) 42 ptr.flag := f 43 ptr.value := v 44 ptr 45 } 46} 47 48class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 49 val canAccept = Output(Bool()) 50 val lqCanAccept = Input(Bool()) 51 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 52 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 53 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 54} 55 56class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 57 val addr = UInt(PAddrBits.W) 58 val vaddr = UInt(VAddrBits.W) 59 val data = UInt(VLEN.W) 60 val mask = UInt((VLEN/8).W) 61 val wline = Bool() 62 val sqPtr = new SqPtr 63 val prefetch = Bool() 64} 65 66// Store Queue 67class StoreQueue(implicit p: Parameters) extends XSModule 68 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 69 val io = IO(new Bundle() { 70 val hartId = Input(UInt(8.W)) 71 val enq = new SqEnqIO 72 val brqRedirect = Flipped(ValidIO(new Redirect)) 73 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 74 val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include , from stu 75 val vecStoreAddrInactivate = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include , from vsFlowQueue 76 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 77 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs 78 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 79 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 80 val uncacheOutstanding = Input(Bool()) 81 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 82 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 83 val rob = Flipped(new RobLsqIO) 84 val uncache = new UncacheWordIO 85 // val refill = Flipped(Valid(new DCacheLineReq )) 86 val exceptionAddr = new ExceptionAddrIO 87 val sqEmpty = Output(Bool()) 88 val stAddrReadySqPtr = Output(new SqPtr) 89 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 90 val stDataReadySqPtr = Output(new SqPtr) 91 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 92 val stIssuePtr = Output(new SqPtr) 93 val sqDeqPtr = Output(new SqPtr) 94 val sqFull = Output(Bool()) 95 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 96 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 97 val force_write = Output(Bool()) 98 val vecStoreRetire = Flipped(ValidIO(new SqPtr)) 99 }) 100 101 println("StoreQueue: size:" + StoreQueueSize) 102 103 // data modules 104 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 105 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 106 val dataModule = Module(new SQDataModule( 107 numEntries = StoreQueueSize, 108 numRead = EnsbufferWidth, 109 numWrite = StorePipelineWidth, 110 numForward = LoadPipelineWidth 111 )) 112 dataModule.io := DontCare 113 val paddrModule = Module(new SQAddrModule( 114 dataWidth = PAddrBits, 115 numEntries = StoreQueueSize, 116 numRead = EnsbufferWidth, 117 numWrite = StorePipelineWidth, 118 numForward = LoadPipelineWidth 119 )) 120 paddrModule.io := DontCare 121 val vaddrModule = Module(new SQAddrModule( 122 dataWidth = VAddrBits, 123 numEntries = StoreQueueSize, 124 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 125 numWrite = StorePipelineWidth, 126 numForward = LoadPipelineWidth 127 )) 128 vaddrModule.io := DontCare 129 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 130 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 131 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 132 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 133 134 // state & misc 135 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 136 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 137 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 138 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 139 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 140 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 141 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 142 val atomic = Reg(Vec(StoreQueueSize, Bool())) 143 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 144 val vec = Reg(Vec(StoreQueueSize, Bool())) 145 val vecAddrvalid = Reg(Vec(StoreQueueSize, Bool())) // TODO 146 147 // ptr 148 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 149 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 150 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 151 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 152 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 153 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 154 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 155 156 val enqPtr = enqPtrExt(0).value 157 val deqPtr = deqPtrExt(0).value 158 val cmtPtr = cmtPtrExt(0).value 159 160 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 161 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 162 163 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 164 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 165 166 val commitCount = RegNext(io.rob.scommit) 167 168 // store can be committed by ROB 169 io.rob.mmio := DontCare 170 io.rob.uop := DontCare 171 172 // Read dataModule 173 assert(EnsbufferWidth <= 2) 174 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 175 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 176 VecInit(rdataPtrExt.map(_ + 2.U)), 177 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid, 178 VecInit(rdataPtrExt.map(_ + 1.U)), 179 rdataPtrExt 180 ) 181 )) 182 183 // deqPtrExtNext traces which inst is about to leave store queue 184 // 185 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 186 // Before data write finish, sbuffer is unable to provide store to load 187 // forward data. As an workaround, deqPtrExt and allocated flag update 188 // is delayed so that load can get the right data from store queue. 189 // 190 // Modify deqPtrExtNext and io.sqDeq with care! 191 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 192 VecInit(deqPtrExt.map(_ + 2.U)), 193 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 194 VecInit(deqPtrExt.map(_ + 1.U)), 195 deqPtrExt 196 ) 197 ) 198 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 199 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U) 200 )) 201 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 202 203 for (i <- 0 until EnsbufferWidth) { 204 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 205 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 206 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 207 } 208 209 // no inst will be committed 1 cycle before tval update 210 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 211 212 /** 213 * Enqueue at dispatch 214 * 215 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 216 */ 217 io.enq.canAccept := allowEnqueue 218 val canEnqueue = io.enq.req.map(_.valid) 219 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 220 for (i <- 0 until io.enq.req.length) { 221 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 222 val sqIdx = enqPtrExt(offset) 223 val index = io.enq.req(i).bits.sqIdx.value 224 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 225 when (canEnqueue(i) && !enqCancel(i)) { 226 uop(index) := io.enq.req(i).bits 227 // NOTE: the index will be used when replay 228 uop(index).sqIdx := sqIdx 229 allocated(index) := true.B 230 datavalid(index) := false.B 231 addrvalid(index) := false.B 232 committed(index) := false.B 233 pending(index) := false.B 234 prefetch(index) := false.B 235 mmio(index) := false.B 236 vec(index) := enqInstr.isVecStore // check vector store by the encoding of inst 237 vecAddrvalid(index) := false.B//TODO 238 239 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 240 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 241 } 242 io.enq.resp(i) := sqIdx 243 } 244 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 245 246 /** 247 * Update addr/dataReadyPtr when issue from rs 248 */ 249 // update issuePtr 250 val IssuePtrMoveStride = 4 251 require(IssuePtrMoveStride >= 2) 252 253 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 254 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || (vec(ptr.value) && vecAddrvalid(ptr.value))) && ptr =/= enqPtrExt(0)) 255 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 256 addrReadyPtrExt := nextAddrReadyPtr 257 258 (0 until StoreQueueSize).map(i => { 259 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 260 }) 261 262 when (io.brqRedirect.valid) { 263 addrReadyPtrExt := Mux( 264 isAfter(cmtPtrExt(0), deqPtrExt(0)), 265 cmtPtrExt(0), 266 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 267 ) 268 } 269 270 io.stAddrReadySqPtr := addrReadyPtrExt 271 272 // update 273 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 274 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0)) // TODO : flag of vector store data valid not add yet 275 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 276 dataReadyPtrExt := nextDataReadyPtr 277 278 (0 until StoreQueueSize).map(i => { 279 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 280 }) 281 282 when (io.brqRedirect.valid) { 283 dataReadyPtrExt := Mux( 284 isAfter(cmtPtrExt(0), deqPtrExt(0)), 285 cmtPtrExt(0), 286 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 287 ) 288 } 289 290 io.stDataReadySqPtr := dataReadyPtrExt 291 io.stIssuePtr := enqPtrExt(0) 292 io.sqDeqPtr := deqPtrExt(0) 293 294 /** 295 * Writeback store from store units 296 * 297 * Most store instructions writeback to regfile in the previous cycle. 298 * However, 299 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 300 * (in this way it will trigger an exception when it reaches ROB's head) 301 * instead of pending to avoid sending them to lower level. 302 * (2) For an mmio instruction without exceptions, we mark it as pending. 303 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 304 * Upon receiving the response, StoreQueue writes back the instruction 305 * through arbiter with store units. It will later commit as normal. 306 */ 307 308 // Write addr to sq 309 for (i <- 0 until StorePipelineWidth) { 310 paddrModule.io.wen(i) := false.B 311 vaddrModule.io.wen(i) := false.B 312 dataModule.io.mask.wen(i) := false.B 313 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 314 when (io.storeAddrIn(i).fire) { 315 val addr_valid = !io.storeAddrIn(i).bits.miss 316 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 317 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 318 319 paddrModule.io.waddr(i) := stWbIndex 320 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 321 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 322 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 323 paddrModule.io.wen(i) := true.B 324 325 vaddrModule.io.waddr(i) := stWbIndex 326 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 327 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 328 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 329 vaddrModule.io.wen(i) := true.B 330 331 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 332 333 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 334 335 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 336 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 337 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 338 io.storeAddrIn(i).bits.uop.sqIdx.value, 339 io.storeAddrIn(i).bits.uop.pc, 340 io.storeAddrIn(i).bits.miss, 341 io.storeAddrIn(i).bits.vaddr, 342 io.storeAddrIn(i).bits.paddr, 343 io.storeAddrIn(i).bits.mmio 344 ) 345 } 346 347 // re-replinish mmio, for pma/pmp will get mmio one cycle later 348 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 349 val stWbIndexReg = RegNext(stWbIndex) 350 when (storeAddrInFireReg) { 351 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 352 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 353 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 354 } 355 // dcache miss info (one cycle later than storeIn) 356 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 357 when (storeAddrInFireReg) { 358 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 359 } 360 361 when(vaddrModule.io.wen(i)){ 362 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 363 } 364 // TODO : When lastElem issue to stu or inactivative issue in vsFlowQueue, set vector store addr ready 365 val vecStWbIndex = io.vecStoreAddrIn(i).bits.uop.sqIdx.value 366 val vecFlowStWbIndex = io.vecStoreAddrInactivate(i).bits.uop.sqIdx.value 367 when(io.vecStoreAddrIn(i).fire && io.vecStoreAddrIn(i).bits.isLastElem){ 368 vecAddrvalid(vecStWbIndex) := !io.vecStoreAddrIn(i).bits.miss 369 } 370 when(io.vecStoreAddrInactivate(i).fire){ 371 vecAddrvalid(vecFlowStWbIndex) := true.B 372 } 373 } 374 375 // Write data to sq 376 // Now store data pipeline is actually 2 stages 377 for (i <- 0 until StorePipelineWidth) { 378 dataModule.io.data.wen(i) := false.B 379 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 380 // sq data write takes 2 cycles: 381 // sq data write s0 382 when (io.storeDataIn(i).fire) { 383 // send data write req to data module 384 dataModule.io.data.waddr(i) := stWbIndex 385 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 386 0.U, 387 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0)) 388 ) 389 dataModule.io.data.wen(i) := true.B 390 391 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 392 393 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 394 io.storeDataIn(i).bits.uop.sqIdx.value, 395 io.storeDataIn(i).bits.uop.pc, 396 io.storeDataIn(i).bits.data, 397 dataModule.io.data.wdata(i) 398 ) 399 } 400 // sq data write s1 401 when ( 402 RegNext(io.storeDataIn(i).fire) 403 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 404 ) { 405 datavalid(RegNext(stWbIndex)) := true.B 406 } 407 } 408 409 // Write mask to sq 410 for (i <- 0 until StorePipelineWidth) { 411 // sq mask write s0 412 when (io.storeMaskIn(i).fire) { 413 // send data write req to data module 414 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 415 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 416 dataModule.io.mask.wen(i) := true.B 417 } 418 } 419 420 /** 421 * load forward query 422 * 423 * Check store queue for instructions that is older than the load. 424 * The response will be valid at the next cycle after req. 425 */ 426 // check over all lq entries and forward data from the first matched store 427 for (i <- 0 until LoadPipelineWidth) { 428 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 429 // (1) if they have the same flag, we need to check range(tail, sqIdx) 430 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 431 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 432 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 433 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 434 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 435 val forwardMask = io.forward(i).sqIdxMask 436 // all addrvalid terms need to be checked 437 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 438 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 439 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 440 441 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR 442 val storeSetHitVec = Mux(lfstEnable, 443 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 444 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 445 ) 446 447 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 448 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 449 val canForward1 = forwardMask1 & allValidVec.asUInt 450 val canForward2 = forwardMask2 & allValidVec.asUInt 451 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 452 453 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 454 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 455 ) 456 457 // do real fwd query (cam lookup in load_s1) 458 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 459 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 460 461 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 462 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 463 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 464 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 465 466 467 // vaddr cam result does not equal to paddr cam result 468 // replay needed 469 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 470 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 471 val vpmaskNotEqual = ( 472 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 473 RegNext(needForward) & 474 RegNext(addrValidVec.asUInt) 475 ) =/= 0.U 476 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 477 when (vaddrMatchFailed) { 478 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 479 RegNext(io.forward(i).uop.pc), 480 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 481 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 482 ); 483 } 484 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 485 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 486 487 // Fast forward mask will be generated immediately (load_s1) 488 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 489 490 // Forward result will be generated 1 cycle later (load_s2) 491 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 492 io.forward(i).forwardData := dataModule.io.forwardData(i) 493 // If addr match, data not ready, mark it as dataInvalid 494 // load_s1: generate dataInvalid in load_s1 to set fastUop 495 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 496 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 497 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 498 io.forward(i).dataInvalidFast := dataInvalidMask.orR 499 500 // make chisel happy 501 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 502 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 503 // make chisel happy 504 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 505 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 506 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 507 508 // If SSID match, address not ready, mark it as addrInvalid 509 // load_s2: generate addrInvalid 510 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 511 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 512 // make chisel happy 513 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 514 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 515 // make chisel happy 516 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 517 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 518 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 519 520 // load_s2 521 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 522 // check if vaddr forward mismatched 523 io.forward(i).matchInvalid := vaddrMatchFailed 524 525 // data invalid sq index 526 // check whether false fail 527 // check flag 528 val s2_differentFlag = RegNext(differentFlag) 529 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 530 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 531 532 // addr invalid sq index 533 // make chisel happy 534 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 535 addrInvalidMaskRegWire := addrInvalidMaskReg 536 val addrInvalidFlag = addrInvalidMaskRegWire.orR 537 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 538 539 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 540 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 541 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 542 543 // store-set content management 544 // +-----------------------+ 545 // | Search a SSID for the | 546 // | load operation | 547 // +-----------------------+ 548 // | 549 // V 550 // +-------------------+ 551 // | load wait strict? | 552 // +-------------------+ 553 // | 554 // V 555 // +----------------------+ 556 // Set| |Clean 557 // V V 558 // +------------------------+ +------------------------------+ 559 // | Waiting for all older | | Wait until the corresponding | 560 // | stores operations | | older store operations | 561 // +------------------------+ +------------------------------+ 562 563 564 565 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 566 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 567 } .elsewhen (addrInvalidFlag) { 568 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 569 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 570 } .otherwise { 571 // may be store inst has been written to sbuffer already. 572 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 573 } 574 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 575 576 // data invalid sq index 577 // make chisel happy 578 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 579 dataInvalidMaskRegWire := dataInvalidMaskReg 580 val dataInvalidFlag = dataInvalidMaskRegWire.orR 581 582 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 583 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 584 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 585 586 when (dataInvalidFlag) { 587 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 588 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 589 } .otherwise { 590 // may be store inst has been written to sbuffer already. 591 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 592 } 593 } 594 595 /** 596 * Memory mapped IO / other uncached operations 597 * 598 * States: 599 * (1) writeback from store units: mark as pending 600 * (2) when they reach ROB's head, they can be sent to uncache channel 601 * (3) response from uncache channel: mark as datavalidmask.wen 602 * (4) writeback to ROB (and other units): mark as writebacked 603 * (5) ROB commits the instruction: same as normal instructions 604 */ 605 //(2) when they reach ROB's head, they can be sent to uncache channel 606 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 607 val uncacheState = RegInit(s_idle) 608 switch(uncacheState) { 609 is(s_idle) { 610 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 611 uncacheState := s_req 612 } 613 } 614 is(s_req) { 615 when (io.uncache.req.fire) { 616 when (io.uncacheOutstanding) { 617 uncacheState := s_wb 618 } .otherwise { 619 uncacheState := s_resp 620 } 621 } 622 } 623 is(s_resp) { 624 when(io.uncache.resp.fire) { 625 uncacheState := s_wb 626 } 627 } 628 is(s_wb) { 629 when (io.mmioStout.fire) { 630 uncacheState := s_wait 631 } 632 } 633 is(s_wait) { 634 when(commitCount > 0.U) { 635 uncacheState := s_idle // ready for next mmio 636 } 637 } 638 } 639 io.uncache.req.valid := uncacheState === s_req 640 641 io.uncache.req.bits := DontCare 642 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 643 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 644 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 645 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 646 647 // CBO op type check can be delayed for 1 cycle, 648 // as uncache op will not start in s_idle 649 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 650 val cbo_mmio_op = 0.U //TODO 651 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 652 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 653 io.uncache.req.bits.addr := DontCare // TODO 654 io.uncache.req.bits.data := paddrModule.io.rdata(0) 655 io.uncache.req.bits.mask := DontCare // TODO 656 } 657 658 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 659 660 when(io.uncache.req.fire){ 661 // mmio store should not be committed until uncache req is sent 662 pending(deqPtr) := false.B 663 664 XSDebug( 665 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 666 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 667 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 668 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 669 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 670 ) 671 } 672 673 // (3) response from uncache channel: mark as datavalid 674 io.uncache.resp.ready := true.B 675 676 // (4) writeback to ROB (and other units): mark as writebacked 677 io.mmioStout.valid := uncacheState === s_wb 678 io.mmioStout.bits.uop := uop(deqPtr) 679 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 680 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 681 io.mmioStout.bits.debug.isMMIO := true.B 682 io.mmioStout.bits.debug.paddr := DontCare 683 io.mmioStout.bits.debug.isPerfCnt := false.B 684 io.mmioStout.bits.debug.vaddr := DontCare 685 // Remove MMIO inst from store queue after MMIO request is being sent 686 // That inst will be traced by uncache state machine 687 when (io.mmioStout.fire) { 688 allocated(deqPtr) := false.B 689 } 690 691 /** 692 * ROB commits store instructions (mark them as committed) 693 * 694 * (1) When store commits, mark it as committed. 695 * (2) They will not be cancelled and can be sent to lower level. 696 */ 697 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 698 "should not commit instruction when MMIO has not been finished\n") 699 for (i <- 0 until CommitWidth) { 700 when (commitCount > i.U) { // MMIO inst is not in progress 701 if(i == 0){ 702 // MMIO inst should not update committed flag 703 // Note that commit count has been delayed for 1 cycle 704 when(uncacheState === s_idle){ 705 committed(cmtPtrExt(0).value) := true.B 706 } 707 } else { 708 committed(cmtPtrExt(i).value) := true.B 709 } 710 } 711 } 712 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 713 714 // committed stores will not be cancelled and can be sent to lower level. 715 // remove retired insts from sq, add retired store to sbuffer 716 717 // Read data from data module 718 // As store queue grows larger and larger, time needed to read data from data 719 // module keeps growing higher. Now we give data read a whole cycle. 720 721 // Vector stores are written to sbuffer by vector store flow queue rather than sq 722 XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store") 723 XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry") 724 XSError(io.vecStoreRetire.valid && vec(rdataPtrExt(0).value) && !vecAddrvalid(rdataPtrExt(0).value), "Vector store is trying to retire without write last element!") 725 when (io.vecStoreRetire.valid) { 726 assert(io.vecStoreRetire.bits === rdataPtrExt(0)) 727 vec(rdataPtrExt(0).value) := false.B 728 vecAddrvalid(rdataPtrExt(0).value) := false.B 729 allocated(rdataPtrExt(0).value) := false.B 730 } 731 732 val mmioStall = mmio(rdataPtrExt(0).value) 733 val vecStall = vec(rdataPtrExt(0).value) 734 for (i <- 0 until EnsbufferWidth) { 735 val ptr = rdataPtrExt(i).value 736 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall 737 // Note that store data/addr should both be valid after store's commit 738 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 739 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 740 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 741 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 742 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 743 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 744 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 745 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 746 } 747 748 // Send data stored in sbufferReqBitsReg to sbuffer 749 for (i <- 0 until EnsbufferWidth) { 750 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 751 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 752 // Write line request should have all 1 mask 753 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 754 io.sbuffer(i).bits := DontCare 755 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 756 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 757 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 758 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 759 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 760 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 761 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 762 763 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 764 // Before data write finish, sbuffer is unable to provide store to load 765 // forward data. As an workaround, deqPtrExt and allocated flag update 766 // is delayed so that load can get the right data from store queue. 767 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 768 when (RegNext(io.sbuffer(i).fire)) { 769 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 770 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 771 } 772 } 773 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 774 if (coreParams.dcacheParametersOpt.isEmpty) { 775 for (i <- 0 until EnsbufferWidth) { 776 val ptr = deqPtrExt(i).value 777 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 778 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 779 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 780 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 781 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 782 when (wen) { 783 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 784 } 785 } 786 } 787 788 // Read vaddr for mem exception 789 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 790 791 // misprediction recovery / exception redirect 792 // invalidate sq term using robIdx 793 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 794 for (i <- 0 until StoreQueueSize) { 795 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 796 when (needCancel(i)) { 797 allocated(i) := false.B 798 } 799 } 800 801 /** 802* update pointers 803**/ 804 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 805 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 806 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 807 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 808 809 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 810 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 811 812 when (lastlastCycleRedirect) { 813 // we recover the pointers in 2 cycle after redirect for better timing 814 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 815 }.otherwise { 816 // lastCycleRedirect.valid or nornal case 817 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 818 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 819 } 820 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 821 822 deqPtrExt := deqPtrExtNext 823 rdataPtrExt := rdataPtrExtNext 824 825 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 826 827 // If redirect at T0, sqCancelCnt is at T2 828 io.sqCancelCnt := redirectCancelCount 829 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 830 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 831 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 832 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 833 834 val valid_cnt = PopCount(allocated) 835 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 836 837 // io.sqempty will be used by sbuffer 838 // We delay it for 1 cycle for better timing 839 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 840 // for 1 cycle will also promise that sq is empty in that cycle 841 io.sqEmpty := RegNext( 842 enqPtrExt(0).value === deqPtrExt(0).value && 843 enqPtrExt(0).flag === deqPtrExt(0).flag 844 ) 845 // perf counter 846 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 847 io.sqFull := !allowEnqueue 848 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 849 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 850 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 851 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 852 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 853 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 854 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 855 856 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 857 val perfEvents = Seq( 858 ("mmioCycle ", uncacheState =/= s_idle), 859 ("mmioCnt ", io.uncache.req.fire), 860 ("mmio_wb_success", io.mmioStout.fire), 861 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 862 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 863 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 864 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 865 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 866 ) 867 generatePerfEvent() 868 869 // debug info 870 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 871 872 def PrintFlag(flag: Bool, name: String): Unit = { 873 when(flag) { 874 XSDebug(false, true.B, name) 875 }.otherwise { 876 XSDebug(false, true.B, " ") 877 } 878 } 879 880 for (i <- 0 until StoreQueueSize) { 881 XSDebug(i + ": pc %x va %x pa %x data %x ", 882 uop(i).pc, 883 debug_vaddr(i), 884 debug_paddr(i), 885 debug_data(i) 886 ) 887 PrintFlag(allocated(i), "a") 888 PrintFlag(allocated(i) && addrvalid(i), "a") 889 PrintFlag(allocated(i) && datavalid(i), "d") 890 PrintFlag(allocated(i) && committed(i), "c") 891 PrintFlag(allocated(i) && pending(i), "p") 892 PrintFlag(allocated(i) && mmio(i), "m") 893 XSDebug(false, true.B, "\n") 894 } 895 896} 897