xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 0be64786e3f92090f2feec39645c2052ed97cd82)
1package xiangshan.mem
2
3import chisel3._
4import chisel3.util._
5import utils._
6import xiangshan._
7import xiangshan.cache._
8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
9import xiangshan.backend.LSUOpType
10import xiangshan.backend.roq.RoqLsqIO
11
12
13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { }
14
15object SqPtr extends HasXSParameter {
16  def apply(f: Bool, v: UInt): SqPtr = {
17    val ptr = Wire(new SqPtr)
18    ptr.flag := f
19    ptr.value := v
20    ptr
21  }
22}
23
24class SqEnqIO extends XSBundle {
25  val canAccept = Output(Bool())
26  val lqCanAccept = Input(Bool())
27  val needAlloc = Vec(RenameWidth, Input(Bool()))
28  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
29  val resp = Vec(RenameWidth, Output(new SqPtr))
30}
31
32// Store Queue
33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
34  val io = IO(new Bundle() {
35    val enq = new SqEnqIO
36    val brqRedirect = Flipped(ValidIO(new Redirect))
37    val flush = Input(Bool())
38    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
39    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq))
40    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
41    val forward = Vec(LoadPipelineWidth, Flipped(new MaskedLoadForwardQueryIO))
42    val roq = Flipped(new RoqLsqIO)
43    val uncache = new DCacheWordIO
44    // val refill = Flipped(Valid(new DCacheLineReq ))
45    val exceptionAddr = new ExceptionAddrIO
46    val sqempty = Output(Bool())
47    val issuePtrExt = Output(new SqPtr)
48    val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput)))
49  })
50
51  val difftestIO = IO(new Bundle() {
52    val storeCommit = Output(UInt(2.W))
53    val storeAddr   = Output(Vec(2, UInt(64.W)))
54    val storeData   = Output(Vec(2, UInt(64.W)))
55    val storeMask   = Output(Vec(2, UInt(8.W)))
56  })
57  difftestIO <> DontCare
58
59  // data modules
60  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
61  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
62  val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
63  dataModule.io := DontCare
64  val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
65  paddrModule.io := DontCare
66  val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
67  vaddrModule.io := DontCare
68
69  // state & misc
70  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
71  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
72  val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB
73  val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs
74  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
75  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
76  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
77
78  // ptr
79  require(StoreQueueSize > RenameWidth)
80  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
81  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
82  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
83  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
84  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
85  val allowEnqueue = RegInit(true.B)
86
87  val enqPtr = enqPtrExt(0).value
88  val deqPtr = deqPtrExt(0).value
89  val cmtPtr = cmtPtrExt(0).value
90
91  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
92  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
93
94  val commitCount = RegNext(io.roq.scommit)
95
96  // Read dataModule
97  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
98  // if !sbuffer.fire(), read the same ptr
99  // if sbuffer.fire(), read next
100  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
101    VecInit(deqPtrExt.map(_ + 2.U)),
102    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
103      VecInit(deqPtrExt.map(_ + 1.U)),
104      deqPtrExt
105    )
106  ))
107  for (i <- 0 until StorePipelineWidth) {
108    dataModule.io.raddr(i) := deqPtrExtNext(i).value
109    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
110  }
111
112  // no inst will be commited 1 cycle before tval update
113  vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value
114
115  /**
116    * Enqueue at dispatch
117    *
118    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
119    */
120  io.enq.canAccept := allowEnqueue
121  for (i <- 0 until RenameWidth) {
122    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
123    val sqIdx = enqPtrExt(offset)
124    val index = sqIdx.value
125    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) {
126      uop(index) := io.enq.req(i).bits
127      allocated(index) := true.B
128      datavalid(index) := false.B
129      writebacked(index) := false.B
130      issued(index) := false.B
131      commited(index) := false.B
132      pending(index) := false.B
133    }
134    io.enq.resp(i) := sqIdx
135  }
136  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
137
138  /**
139    * Update issuePtr when issue from rs
140    */
141
142  // update state bit issued
143  for (i <- 0 until StorePipelineWidth) {
144    when (io.storeIssue(i).valid) {
145      issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B
146    }
147  }
148
149  // update issuePtr
150  val IssuePtrMoveStride = 4
151  require(IssuePtrMoveStride >= 2)
152
153  val issueLookup = Wire(Vec(IssuePtrMoveStride, Bool()))
154  for (i <- 0 until IssuePtrMoveStride) {
155    val lookUpPtr = issuePtrExt.value + i.U
156    if(i == 0){
157      issueLookup(i) := allocated(lookUpPtr) && issued(lookUpPtr)
158    }else{
159      issueLookup(i) := allocated(lookUpPtr) && issued(lookUpPtr) && issueLookup(i-1)
160    }
161
162    when(issueLookup(i)){
163      issuePtrExt := issuePtrExt + (i+1).U
164    }
165  }
166
167  when(io.brqRedirect.valid || io.flush){
168    issuePtrExt := Mux(
169      isAfter(cmtPtrExt(0), deqPtrExt(0)),
170      cmtPtrExt(0),
171      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
172    )
173  }
174  // send issuePtrExt to rs
175  // io.issuePtrExt := cmtPtrExt(0)
176  io.issuePtrExt := issuePtrExt
177
178  /**
179    * Writeback store from store units
180    *
181    * Most store instructions writeback to regfile in the previous cycle.
182    * However,
183    *   (1) For an mmio instruction with exceptions, we need to mark it as datavalid
184    * (in this way it will trigger an exception when it reaches ROB's head)
185    * instead of pending to avoid sending them to lower level.
186    *   (2) For an mmio instruction without exceptions, we mark it as pending.
187    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
188    * Upon receiving the response, StoreQueue writes back the instruction
189    * through arbiter with store units. It will later commit as normal.
190    */
191  for (i <- 0 until StorePipelineWidth) {
192    dataModule.io.wen(i) := false.B
193    paddrModule.io.wen(i) := false.B
194    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
195    when (io.storeIn(i).fire()) {
196      datavalid(stWbIndex) := !io.storeIn(i).bits.mmio
197      writebacked(stWbIndex) := !io.storeIn(i).bits.mmio
198      pending(stWbIndex) := io.storeIn(i).bits.mmio
199
200      val storeWbData = Wire(new SQDataEntry)
201      storeWbData := DontCare
202      storeWbData.mask := io.storeIn(i).bits.mask
203      storeWbData.data := io.storeIn(i).bits.data
204
205      dataModule.io.waddr(i) := stWbIndex
206      dataModule.io.wdata(i) := storeWbData
207      dataModule.io.wen(i) := true.B
208
209      paddrModule.io.waddr(i) := stWbIndex
210      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
211      paddrModule.io.wen(i) := true.B
212
213
214      mmio(stWbIndex) := io.storeIn(i).bits.mmio
215
216      XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n",
217        io.storeIn(i).bits.uop.sqIdx.value,
218        io.storeIn(i).bits.uop.cf.pc,
219        io.storeIn(i).bits.vaddr,
220        io.storeIn(i).bits.paddr,
221        io.storeIn(i).bits.data,
222        io.storeIn(i).bits.mmio
223        )
224    }
225    // vaddrModule write is delayed, as vaddrModule will not be read right after write
226    vaddrModule.io.waddr(i) := RegNext(stWbIndex)
227    vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr)
228    vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire())
229  }
230
231  /**
232    * load forward query
233    *
234    * Check store queue for instructions that is older than the load.
235    * The response will be valid at the next cycle after req.
236    */
237  // check over all lq entries and forward data from the first matched store
238  for (i <- 0 until LoadPipelineWidth) {
239    io.forward(i).forwardMask := 0.U(8.W).asBools
240    io.forward(i).forwardData := DontCare
241
242    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
243    // (1) if they have the same flag, we need to check range(tail, sqIdx)
244    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
245    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
246    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
247    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
248    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
249    val forwardMask = io.forward(i).sqIdxMask
250    val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B)))
251    for (j <- 0 until StoreQueueSize) {
252      storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked
253    }
254    val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt
255    val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt
256
257    XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " +
258      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
259    )
260
261    // do real fwd query
262    dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt
263    dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt
264
265    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
266
267    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
268    io.forward(i).forwardData := dataModule.io.forwardData(i)
269  }
270
271  /**
272    * Memory mapped IO / other uncached operations
273    *
274    * States:
275    * (1) writeback from store units: mark as pending
276    * (2) when they reach ROB's head, they can be sent to uncache channel
277    * (3) response from uncache channel: mark as datavalid
278    * (4) writeback to ROB (and other units): mark as writebacked
279    * (5) ROB commits the instruction: same as normal instructions
280    */
281  //(2) when they reach ROB's head, they can be sent to uncache channel
282  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
283  val uncacheState = RegInit(s_idle)
284  switch(uncacheState) {
285    is(s_idle) {
286      when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) {
287        uncacheState := s_req
288      }
289    }
290    is(s_req) {
291      when(io.uncache.req.fire()) {
292        uncacheState := s_resp
293      }
294    }
295    is(s_resp) {
296      when(io.uncache.resp.fire()) {
297        uncacheState := s_wb
298      }
299    }
300    is(s_wb) {
301      when (io.mmioStout.fire()) {
302        uncacheState := s_wait
303      }
304    }
305    is(s_wait) {
306      when(io.roq.commit) {
307        uncacheState := s_idle // ready for next mmio
308      }
309    }
310  }
311  io.uncache.req.valid := uncacheState === s_req
312
313  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
314  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
315  io.uncache.req.bits.data := dataModule.io.rdata(0).data
316  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
317
318  io.uncache.req.bits.id   := DontCare
319
320  when(io.uncache.req.fire()){
321    pending(deqPtr) := false.B
322
323    XSDebug(
324      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
325      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
326      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
327      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
328      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
329    )
330  }
331
332  // (3) response from uncache channel: mark as datavalid
333  io.uncache.resp.ready := true.B
334  when (io.uncache.resp.fire()) {
335    datavalid(deqPtr) := true.B
336  }
337
338  // (4) writeback to ROB (and other units): mark as writebacked
339  io.mmioStout.valid := uncacheState === s_wb // allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr)
340  io.mmioStout.bits.uop := uop(deqPtr)
341  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
342  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
343  io.mmioStout.bits.redirectValid := false.B
344  io.mmioStout.bits.redirect := DontCare
345  io.mmioStout.bits.debug.isMMIO := true.B
346  io.mmioStout.bits.debug.paddr := DontCare
347  io.mmioStout.bits.debug.isPerfCnt := false.B
348  io.mmioStout.bits.fflags := DontCare
349  when (io.mmioStout.fire()) {
350    writebacked(deqPtr) := true.B
351    allocated(deqPtr) := false.B
352  }
353
354  /**
355    * ROB commits store instructions (mark them as commited)
356    *
357    * (1) When store commits, mark it as commited.
358    * (2) They will not be cancelled and can be sent to lower level.
359    */
360  for (i <- 0 until CommitWidth) {
361    when (commitCount > i.U) {
362      commited(cmtPtrExt(i).value) := true.B
363    }
364  }
365  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
366
367  // Commited stores will not be cancelled and can be sent to lower level.
368  // remove retired insts from sq, add retired store to sbuffer
369  for (i <- 0 until StorePipelineWidth) {
370    // We use RegNext to prepare data for sbuffer
371    val ptr = deqPtrExt(i).value
372    // if !sbuffer.fire(), read the same ptr
373    // if sbuffer.fire(), read next
374    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
375    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
376    io.sbuffer(i).bits.addr := paddrModule.io.rdata(i)
377    io.sbuffer(i).bits.data := dataModule.io.rdata(i).data
378    io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask
379    io.sbuffer(i).bits.id   := DontCare
380
381    when (io.sbuffer(i).fire()) {
382      allocated(ptr) := false.B
383      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
384    }
385  }
386  when (io.sbuffer(1).fire()) {
387    assert(io.sbuffer(0).fire())
388  }
389
390  val storeCommit = PopCount(io.sbuffer.map(_.fire()))
391  val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64)))
392  val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask)))
393  val wmask = VecInit(io.sbuffer.map(_.bits.mask))
394
395  if (!env.FPGAPlatform) {
396    difftestIO.storeCommit := RegNext(storeCommit)
397    difftestIO.storeAddr   := RegNext(waddr)
398    difftestIO.storeData   := RegNext(wdata)
399    difftestIO.storeMask   := RegNext(wmask)
400  }
401
402  // Read vaddr for mem exception
403  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
404
405  // misprediction recovery / exception redirect
406  // invalidate sq term using robIdx
407  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
408  for (i <- 0 until StoreQueueSize) {
409    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i)
410    when (needCancel(i)) {
411        allocated(i) := false.B
412    }
413  }
414
415  /**
416    * update pointers
417    */
418  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
419  val lastCycleFlush = RegNext(io.flush)
420  val lastCycleCancelCount = PopCount(RegNext(needCancel))
421  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
422  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U)
423  when (lastCycleRedirect || lastCycleFlush) {
424    // we recover the pointers in the next cycle after redirect
425    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
426  }.otherwise {
427    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
428  }
429
430  deqPtrExt := deqPtrExtNext
431
432  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
433  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
434
435  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
436
437  // io.sqempty will be used by sbuffer
438  // We delay it for 1 cycle for better timing
439  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
440  // for 1 cycle will also promise that sq is empty in that cycle
441  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
442
443  // perf counter
444  XSPerf("utilization", validCount)
445  XSPerf("full", !allowEnqueue)
446  XSPerf("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
447  XSPerf("mmioCnt", io.uncache.req.fire())
448  XSPerf("writeback", io.mmioStout.fire())
449  XSPerf("wbBlocked", io.mmioStout.valid && !io.mmioStout.ready)
450  XSPerf("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
451  XSPerf("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
452  XSPerf("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
453
454  // debug info
455  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
456
457  def PrintFlag(flag: Bool, name: String): Unit = {
458    when(flag) {
459      XSDebug(false, true.B, name)
460    }.otherwise {
461      XSDebug(false, true.B, " ")
462    }
463  }
464
465  for (i <- 0 until StoreQueueSize) {
466    if (i % 4 == 0) XSDebug("")
467    XSDebug(false, true.B, "%x ", uop(i).cf.pc)
468    PrintFlag(allocated(i), "a")
469    PrintFlag(allocated(i) && datavalid(i), "v")
470    PrintFlag(allocated(i) && writebacked(i), "w")
471    PrintFlag(allocated(i) && commited(i), "c")
472    PrintFlag(allocated(i) && pending(i), "p")
473    XSDebug(false, true.B, " ")
474    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
475  }
476
477}
478