1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24// Store Queue 25class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 26 val io = IO(new Bundle() { 27 val enq = new Bundle() { 28 val canAccept = Output(Bool()) 29 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 30 val resp = Vec(RenameWidth, Output(new SqPtr)) 31 } 32 val brqRedirect = Input(Valid(new Redirect)) 33 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 34 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 35 val stout = Vec(2, DecoupledIO(new ExuOutput)) // writeback store 36 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 37 val commits = Flipped(Vec(CommitWidth, Valid(new RoqCommit))) 38 val uncache = new DCacheWordIO 39 val roqDeqPtr = Input(new RoqPtr) 40 // val refill = Flipped(Valid(new DCacheLineReq )) 41 val oldestStore = Output(Valid(new RoqPtr)) 42 val exceptionAddr = new ExceptionAddrIO 43 }) 44 45 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 46 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 47 val dataModule = Module(new LSQueueData(StoreQueueSize, StorePipelineWidth)) 48 dataModule.io := DontCare 49 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 50 val valid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // data is valid 51 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 52 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been writebacked to CDB 53 val miss = Reg(Vec(StoreQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 54 val listening = Reg(Vec(StoreQueueSize, Bool())) // waiting for refill result 55 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 56 57 val ringBufferHeadExtended = RegInit(0.U.asTypeOf(new SqPtr)) 58 val ringBufferTailExtended = RegInit(0.U.asTypeOf(new SqPtr)) 59 val ringBufferHead = ringBufferHeadExtended.value 60 val ringBufferTail = ringBufferTailExtended.value 61 val ringBufferSameFlag = ringBufferHeadExtended.flag === ringBufferTailExtended.flag 62 val ringBufferEmpty = ringBufferHead === ringBufferTail && ringBufferSameFlag 63 val ringBufferFull = ringBufferHead === ringBufferTail && !ringBufferSameFlag 64 val ringBufferAllowin = !ringBufferFull 65 66 val storeCommit = (0 until CommitWidth).map(i => io.commits(i).valid && !io.commits(i).bits.isWalk && io.commits(i).bits.uop.ctrl.commitType === CommitType.STORE) 67 val mcommitIdx = (0 until CommitWidth).map(i => io.commits(i).bits.uop.sqIdx.value) 68 69 val tailMask = (((1.U((StoreQueueSize + 1).W)) << ringBufferTail).asUInt - 1.U)(StoreQueueSize - 1, 0) 70 val headMask = (((1.U((StoreQueueSize + 1).W)) << ringBufferHead).asUInt - 1.U)(StoreQueueSize - 1, 0) 71 val enqDeqMask1 = tailMask ^ headMask 72 val enqDeqMask = Mux(ringBufferSameFlag, enqDeqMask1, ~enqDeqMask1) 73 74 // TODO: misc arbitor 75 76 // Enqueue at dispatch 77 val validEntries = distanceBetween(ringBufferHeadExtended, ringBufferTailExtended) 78 val firedDispatch = io.enq.req.map(_.valid) 79 io.enq.canAccept := validEntries <= (LoadQueueSize - RenameWidth).U 80 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(firedDispatch))}") 81 for (i <- 0 until RenameWidth) { 82 val offset = if (i == 0) 0.U else PopCount((0 until i).map(firedDispatch(_))) 83 val sqIdx = ringBufferHeadExtended + offset 84 val index = sqIdx.value 85 when(io.enq.req(i).valid) { 86 uop(index) := io.enq.req(i).bits 87 allocated(index) := true.B 88 valid(index) := false.B 89 writebacked(index) := false.B 90 commited(index) := false.B 91 miss(index) := false.B 92 listening(index) := false.B 93 pending(index) := false.B 94 } 95 io.enq.resp(i) := sqIdx 96 97 XSError(!io.enq.canAccept && io.enq.req(i).valid, "should not valid when not ready") 98 } 99 100 when(Cat(firedDispatch).orR) { 101 ringBufferHeadExtended := ringBufferHeadExtended + PopCount(firedDispatch) 102 XSInfo("dispatched %d insts to sq\n", PopCount(firedDispatch)) 103 } 104 105 // writeback store 106 (0 until StorePipelineWidth).map(i => { 107 dataModule.io.wb(i).wen := false.B 108 when(io.storeIn(i).fire()) { 109 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 110 valid(stWbIndex) := !io.storeIn(i).bits.mmio 111 miss(stWbIndex) := io.storeIn(i).bits.miss 112 pending(stWbIndex) := io.storeIn(i).bits.mmio 113 114 val storeWbData = Wire(new LsqEntry) 115 storeWbData := DontCare 116 storeWbData.paddr := io.storeIn(i).bits.paddr 117 storeWbData.vaddr := io.storeIn(i).bits.vaddr 118 storeWbData.mask := io.storeIn(i).bits.mask 119 storeWbData.data := io.storeIn(i).bits.data 120 storeWbData.mmio := io.storeIn(i).bits.mmio 121 storeWbData.exception := io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 122 123 dataModule.io.wbWrite(i, stWbIndex, storeWbData) 124 dataModule.io.wb(i).wen := true.B 125 126 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x miss %x mmio %x roll %x exc %x\n", 127 io.storeIn(i).bits.uop.sqIdx.value, 128 io.storeIn(i).bits.uop.cf.pc, 129 io.storeIn(i).bits.vaddr, 130 io.storeIn(i).bits.paddr, 131 io.storeIn(i).bits.data, 132 io.storeIn(i).bits.miss, 133 io.storeIn(i).bits.mmio, 134 io.storeIn(i).bits.rollback, 135 io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 136 ) 137 } 138 }) 139 140 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 141 val length = mask.length 142 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 143 val highBitsUint = Cat(highBits.reverse) 144 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 145 } 146 147 def getFirstOneWithFlag(mask: Vec[Bool], startMask: UInt, startFlag: Bool) = { 148 val length = mask.length 149 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 150 val highBitsUint = Cat(highBits.reverse) 151 val changeDirection = !highBitsUint.orR() 152 val index = PriorityEncoder(Mux(!changeDirection, highBitsUint, mask.asUInt)) 153 SqPtr(startFlag ^ changeDirection, index) 154 } 155 156 def selectFirstTwo(valid: Vec[Bool], startMask: UInt) = { 157 val selVec = Wire(Vec(2, UInt(log2Up(StoreQueueSize).W))) 158 val selValid = Wire(Vec(2, Bool())) 159 selVec(0) := getFirstOne(valid, startMask) 160 val firstSelMask = UIntToOH(selVec(0)) 161 val secondSelVec = VecInit((0 until valid.length).map(i => valid(i) && !firstSelMask(i))) 162 selVec(1) := getFirstOne(secondSelVec, startMask) 163 selValid(0) := Cat(valid).orR 164 selValid(1) := Cat(secondSelVec).orR 165 (selValid, selVec) 166 } 167 168 def selectFirstTwoRoughly(valid: Vec[Bool]) = { 169 // TODO: do not select according to seq, just select 2 valid bit randomly 170 val firstSelVec = valid 171 val notFirstVec = Wire(Vec(valid.length, Bool())) 172 (0 until valid.length).map(i => 173 notFirstVec(i) := (if(i != 0) { valid(i) || !notFirstVec(i) } else { false.B }) 174 ) 175 val secondSelVec = VecInit((0 until valid.length).map(i => valid(i) && !notFirstVec(i))) 176 177 val selVec = Wire(Vec(2, UInt(log2Up(valid.length).W))) 178 val selValid = Wire(Vec(2, Bool())) 179 selVec(0) := PriorityEncoder(firstSelVec) 180 selVec(1) := PriorityEncoder(secondSelVec) 181 selValid(0) := Cat(firstSelVec).orR 182 selValid(1) := Cat(secondSelVec).orR 183 (selValid, selVec) 184 } 185 186 // select the last writebacked instruction 187 val validStoreVec = VecInit((0 until StoreQueueSize).map(i => !(allocated(i) && valid(i)))) 188 val storeNotValid = SqPtr(false.B, getFirstOne(validStoreVec, tailMask)) 189 val storeValidIndex = (storeNotValid - 1.U).value 190 io.oldestStore.valid := allocated(ringBufferTailExtended.value) && valid(ringBufferTailExtended.value) && !commited(storeValidIndex) 191 io.oldestStore.bits := uop(storeValidIndex).roqIdx 192 193 // writeback up to 2 store insts to CDB 194 // choose the first two valid store requests from deqPtr 195 val storeWbSelVec = VecInit((0 until StoreQueueSize).map(i => allocated(i) && valid(i) && !writebacked(i))) 196 val (storeWbValid, storeWbSel) = selectFirstTwo(storeWbSelVec, tailMask) 197 198 (0 until StorePipelineWidth).map(i => { 199 io.stout(i).bits.uop := uop(storeWbSel(i)) 200 io.stout(i).bits.uop.sqIdx := storeWbSel(i).asTypeOf(new SqPtr) 201 io.stout(i).bits.uop.cf.exceptionVec := dataModule.io.rdata(storeWbSel(i)).exception.asBools 202 io.stout(i).bits.data := dataModule.io.rdata(storeWbSel(i)).data 203 io.stout(i).bits.redirectValid := false.B 204 io.stout(i).bits.redirect := DontCare 205 io.stout(i).bits.brUpdate := DontCare 206 io.stout(i).bits.debug.isMMIO := dataModule.io.rdata(storeWbSel(i)).mmio 207 io.stout(i).valid := storeWbSelVec(storeWbSel(i)) && storeWbValid(i) 208 when(io.stout(i).fire()) { 209 writebacked(storeWbSel(i)) := true.B 210 } 211 io.stout(i).bits.fflags := DontCare 212 }) 213 214 // remove retired insts from sq, add retired store to sbuffer 215 216 // move tailPtr 217 // allocatedMask: dequeuePtr can go to the next 1-bit 218 val allocatedMask = VecInit((0 until StoreQueueSize).map(i => allocated(i) || !enqDeqMask(i))) 219 // find the first one from deqPtr (ringBufferTail) 220 val nextTail1 = getFirstOneWithFlag(allocatedMask, tailMask, ringBufferTailExtended.flag) 221 val nextTail = Mux(Cat(allocatedMask).orR, nextTail1, ringBufferHeadExtended) 222 ringBufferTailExtended := nextTail 223 224 // load forward query 225 // check over all lq entries and forward data from the first matched store 226 (0 until LoadPipelineWidth).map(i => { 227 io.forward(i).forwardMask := 0.U(8.W).asBools 228 io.forward(i).forwardData := DontCare 229 230 // Compare ringBufferTail (deqPtr) and forward.sqIdx, we have two cases: 231 // (1) if they have the same flag, we need to check range(tail, sqIdx) 232 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 233 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 234 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 235 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 236 237 val differentFlag = ringBufferTailExtended.flag =/= io.forward(i).sqIdx.flag 238 val forwardMask = ((1.U((StoreQueueSize + 1).W)) << io.forward(i).sqIdx.value).asUInt - 1.U 239 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 240 for (j <- 0 until StoreQueueSize) { 241 storeWritebackedVec(j) := valid(j) && allocated(j) // all valid terms need to be checked 242 } 243 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 244 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 245 246 XSDebug("" + i + " f1 %b f2 %b sqIdx %d pa %x\n", needForward1, needForward2, io.forward(i).sqIdx.asUInt, io.forward(i).paddr) 247 248 // do real fwd query 249 dataModule.io.forwardQuery( 250 channel = i, 251 paddr = io.forward(i).paddr, 252 needForward1 = needForward1, 253 needForward2 = needForward2 254 ) 255 256 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 257 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 258 }) 259 260 // CommitedStoreQueue for timing opt 261 // send commited store inst to sbuffer 262 // select up to 2 writebacked store insts 263 val commitedStoreQueue = Module(new MIMOQueue( 264 UInt(log2Up(StoreQueueSize).W), 265 entries = 64, //FIXME 266 inCnt = 6, 267 outCnt = 2, 268 mem = false, 269 perf = true 270 )) 271 commitedStoreQueue.io.flush := false.B 272 273 // When store commited, mark it as commited (will not be influenced by redirect), 274 // then add store's sq ptr into commitedStoreQueue 275 (0 until CommitWidth).map(i => { 276 when(storeCommit(i)) { 277 commited(mcommitIdx(i)) := true.B 278 XSDebug("store commit %d: idx %d %x\n", i.U, mcommitIdx(i), uop(mcommitIdx(i)).cf.pc) 279 } 280 commitedStoreQueue.io.enq(i).valid := storeCommit(i) 281 commitedStoreQueue.io.enq(i).bits := mcommitIdx(i) 282 // We assume commitedStoreQueue.io.enq(i).ready === true.B, 283 // for commitedStoreQueue.size = 64 284 }) 285 286 class SbufferCandidateEntry extends XSBundle{ 287 val sbuffer = new DCacheWordReq 288 val sqIdx = UInt(log2Up(StoreQueueSize).W) 289 } 290 291 val ensbufferCandidateQueue = Module(new MIMOQueue( 292 new SbufferCandidateEntry, 293 entries = 2, 294 inCnt = 2, 295 outCnt = 2, 296 mem = false, 297 perf = true 298 )) 299 ensbufferCandidateQueue.io.flush := false.B 300 301 val sbufferCandidate = Wire(Vec(2, Decoupled(new SbufferCandidateEntry))) 302 (0 until 2).map(i => { 303 val ptr = commitedStoreQueue.io.deq(i).bits 304 val mmio = dataModule.io.rdata(ptr).mmio 305 sbufferCandidate(i).valid := commitedStoreQueue.io.deq(i).valid && !mmio 306 sbufferCandidate(i).bits.sqIdx := ptr 307 sbufferCandidate(i).bits.sbuffer.cmd := MemoryOpConstants.M_XWR 308 sbufferCandidate(i).bits.sbuffer.addr := dataModule.io.rdata(ptr).paddr 309 sbufferCandidate(i).bits.sbuffer.data := dataModule.io.rdata(ptr).data 310 sbufferCandidate(i).bits.sbuffer.mask := dataModule.io.rdata(ptr).mask 311 sbufferCandidate(i).bits.sbuffer.meta := DontCare 312 sbufferCandidate(i).bits.sbuffer.meta.tlb_miss := false.B 313 sbufferCandidate(i).bits.sbuffer.meta.uop := DontCare 314 sbufferCandidate(i).bits.sbuffer.meta.mmio := mmio 315 sbufferCandidate(i).bits.sbuffer.meta.mask := dataModule.io.rdata(ptr).mask 316 317 when(mmio && commitedStoreQueue.io.deq(i).valid) { 318 allocated(ptr) := false.B 319 } 320 321 commitedStoreQueue.io.deq(i).ready := sbufferCandidate(i).fire() || mmio 322 sbufferCandidate(i).ready := ensbufferCandidateQueue.io.enq(i).ready 323 ensbufferCandidateQueue.io.enq(i).valid := sbufferCandidate(i).valid 324 ensbufferCandidateQueue.io.enq(i).bits.sqIdx := sbufferCandidate(i).bits.sqIdx 325 ensbufferCandidateQueue.io.enq(i).bits.sbuffer := sbufferCandidate(i).bits.sbuffer 326 327 ensbufferCandidateQueue.io.deq(i).ready := io.sbuffer(i).fire() 328 io.sbuffer(i).valid := ensbufferCandidateQueue.io.deq(i).valid 329 io.sbuffer(i).bits := ensbufferCandidateQueue.io.deq(i).bits.sbuffer 330 331 // update sq meta if store inst is send to sbuffer 332 when(ensbufferCandidateQueue.io.deq(i).valid && io.sbuffer(i).ready) { 333 allocated(ensbufferCandidateQueue.io.deq(i).bits.sqIdx) := false.B 334 } 335 }) 336 337 // Memory mapped IO / other uncached operations 338 339 // setup misc mem access req 340 // mask / paddr / data can be get from sq.data 341 val commitType = io.commits(0).bits.uop.ctrl.commitType 342 io.uncache.req.valid := pending(ringBufferTail) && allocated(ringBufferTail) && 343 commitType === CommitType.STORE && 344 io.roqDeqPtr === uop(ringBufferTail).roqIdx && 345 !io.commits(0).bits.isWalk 346 347 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 348 io.uncache.req.bits.addr := dataModule.io.rdata(ringBufferTail).paddr 349 io.uncache.req.bits.data := dataModule.io.rdata(ringBufferTail).data 350 io.uncache.req.bits.mask := dataModule.io.rdata(ringBufferTail).mask 351 352 io.uncache.req.bits.meta.id := DontCare // TODO: // FIXME 353 io.uncache.req.bits.meta.vaddr := DontCare 354 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(ringBufferTail).paddr 355 io.uncache.req.bits.meta.uop := uop(ringBufferTail) 356 io.uncache.req.bits.meta.mmio := true.B // dataModule.io.rdata(ringBufferTail).mmio 357 io.uncache.req.bits.meta.tlb_miss := false.B 358 io.uncache.req.bits.meta.mask := dataModule.io.rdata(ringBufferTail).mask 359 io.uncache.req.bits.meta.replay := false.B 360 361 io.uncache.resp.ready := true.B 362 363 when(io.uncache.req.fire()){ 364 pending(ringBufferTail) := false.B 365 } 366 367 when(io.uncache.resp.fire()){ 368 valid(ringBufferTail) := true.B 369 // TODO: write back exception info 370 } 371 372 when(io.uncache.req.fire()){ 373 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 374 uop(ringBufferTail).cf.pc, 375 io.uncache.req.bits.addr, 376 io.uncache.req.bits.data, 377 io.uncache.req.bits.cmd, 378 io.uncache.req.bits.mask 379 ) 380 } 381 382 // Read vaddr for mem exception 383 io.exceptionAddr.vaddr := dataModule.io.rdata(io.exceptionAddr.lsIdx.sqIdx.value).vaddr 384 385 // misprediction recovery / exception redirect 386 // invalidate sq term using robIdx 387 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 388 for (i <- 0 until StoreQueueSize) { 389 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 390 when(needCancel(i)) { 391 when(io.brqRedirect.bits.isReplay){ 392 valid(i) := false.B 393 writebacked(i) := false.B 394 listening(i) := false.B 395 miss(i) := false.B 396 pending(i) := false.B 397 }.otherwise{ 398 allocated(i) := false.B 399 } 400 } 401 } 402 when (io.brqRedirect.valid && io.brqRedirect.bits.isMisPred) { 403 ringBufferHeadExtended := ringBufferHeadExtended - PopCount(needCancel) 404 } 405 406 // debug info 407 XSDebug("head %d:%d tail %d:%d\n", ringBufferHeadExtended.flag, ringBufferHead, ringBufferTailExtended.flag, ringBufferTail) 408 409 def PrintFlag(flag: Bool, name: String): Unit = { 410 when(flag) { 411 XSDebug(false, true.B, name) 412 }.otherwise { 413 XSDebug(false, true.B, " ") 414 } 415 } 416 417 for (i <- 0 until StoreQueueSize) { 418 if (i % 4 == 0) XSDebug("") 419 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.rdata(i).paddr) 420 PrintFlag(allocated(i), "a") 421 PrintFlag(allocated(i) && valid(i), "v") 422 PrintFlag(allocated(i) && writebacked(i), "w") 423 PrintFlag(allocated(i) && commited(i), "c") 424 PrintFlag(allocated(i) && miss(i), "m") 425 PrintFlag(allocated(i) && listening(i), "l") 426 PrintFlag(allocated(i) && pending(i), "p") 427 XSDebug(false, true.B, " ") 428 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 429 } 430 431} 432