1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache._ 26import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 27import xiangshan.backend.rob.{RobLsqIO, RobPtr} 28import difftest._ 29import device.RAMHelper 30 31class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 32 p => p(XSCoreParamsKey).StoreQueueSize 33){ 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 49 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 51} 52 53class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 54 val addr = UInt(PAddrBits.W) 55 val vaddr = UInt(VAddrBits.W) 56 val data = UInt(VLEN.W) 57 val mask = UInt((VLEN/8).W) 58 val wline = Bool() 59 val sqPtr = new SqPtr 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(8.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 73 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 74 val uncacheOutstanding = Input(Bool()) 75 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 76 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 77 val rob = Flipped(new RobLsqIO) 78 val uncache = new UncacheWordIO 79 // val refill = Flipped(Valid(new DCacheLineReq )) 80 val exceptionAddr = new ExceptionAddrIO 81 val sqEmpty = Output(Bool()) 82 val stAddrReadySqPtr = Output(new SqPtr) 83 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 84 val stDataReadySqPtr = Output(new SqPtr) 85 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 86 val stIssuePtr = Output(new SqPtr) 87 val sqDeqPtr = Output(new SqPtr) 88 val sqFull = Output(Bool()) 89 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 90 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 91 val force_write = Output(Bool()) 92 }) 93 94 println("StoreQueue: size:" + StoreQueueSize) 95 96 // data modules 97 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 98 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 99 val dataModule = Module(new SQDataModule( 100 numEntries = StoreQueueSize, 101 numRead = EnsbufferWidth, 102 numWrite = StorePipelineWidth, 103 numForward = StorePipelineWidth 104 )) 105 dataModule.io := DontCare 106 val paddrModule = Module(new SQAddrModule( 107 dataWidth = PAddrBits, 108 numEntries = StoreQueueSize, 109 numRead = EnsbufferWidth, 110 numWrite = StorePipelineWidth, 111 numForward = StorePipelineWidth 112 )) 113 paddrModule.io := DontCare 114 val vaddrModule = Module(new SQAddrModule( 115 dataWidth = VAddrBits, 116 numEntries = StoreQueueSize, 117 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 118 numWrite = StorePipelineWidth, 119 numForward = StorePipelineWidth 120 )) 121 vaddrModule.io := DontCare 122 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 123 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 124 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 125 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 126 127 // state & misc 128 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 129 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 130 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 131 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 132 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 133 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 134 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 135 val atomic = Reg(Vec(StoreQueueSize, Bool())) 136 137 // ptr 138 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 139 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 140 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 141 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 142 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 143 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 144 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 145 146 val enqPtr = enqPtrExt(0).value 147 val deqPtr = deqPtrExt(0).value 148 val cmtPtr = cmtPtrExt(0).value 149 150 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 151 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 152 153 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 154 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 155 156 val commitCount = RegNext(io.rob.scommit) 157 158 // store can be committed by ROB 159 io.rob.mmio := DontCare 160 io.rob.uop := DontCare 161 162 // Read dataModule 163 assert(EnsbufferWidth <= 2) 164 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 165 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 166 VecInit(rdataPtrExt.map(_ + 2.U)), 167 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 168 VecInit(rdataPtrExt.map(_ + 1.U)), 169 rdataPtrExt 170 ) 171 )) 172 173 // deqPtrExtNext traces which inst is about to leave store queue 174 // 175 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 176 // Before data write finish, sbuffer is unable to provide store to load 177 // forward data. As an workaround, deqPtrExt and allocated flag update 178 // is delayed so that load can get the right data from store queue. 179 // 180 // Modify deqPtrExtNext and io.sqDeq with care! 181 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 182 VecInit(deqPtrExt.map(_ + 2.U)), 183 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 184 VecInit(deqPtrExt.map(_ + 1.U)), 185 deqPtrExt 186 ) 187 ) 188 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 189 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 190 )) 191 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 192 193 for (i <- 0 until EnsbufferWidth) { 194 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 195 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 196 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 197 } 198 199 // no inst will be committed 1 cycle before tval update 200 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 201 202 /** 203 * Enqueue at dispatch 204 * 205 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 206 */ 207 io.enq.canAccept := allowEnqueue 208 val canEnqueue = io.enq.req.map(_.valid) 209 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 210 for (i <- 0 until io.enq.req.length) { 211 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 212 val sqIdx = enqPtrExt(offset) 213 val index = io.enq.req(i).bits.sqIdx.value 214 when (canEnqueue(i) && !enqCancel(i)) { 215 uop(index) := io.enq.req(i).bits 216 // NOTE: the index will be used when replay 217 uop(index).sqIdx := sqIdx 218 allocated(index) := true.B 219 datavalid(index) := false.B 220 addrvalid(index) := false.B 221 committed(index) := false.B 222 pending(index) := false.B 223 mmio(index) := false.B 224 225 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 226 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 227 } 228 io.enq.resp(i) := sqIdx 229 } 230 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 231 232 /** 233 * Update addr/dataReadyPtr when issue from rs 234 */ 235 // update issuePtr 236 val IssuePtrMoveStride = 4 237 require(IssuePtrMoveStride >= 2) 238 239 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 240 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 241 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 242 addrReadyPtrExt := nextAddrReadyPtr 243 244 (0 until StoreQueueSize).map(i => { 245 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 246 }) 247 248 when (io.brqRedirect.valid) { 249 addrReadyPtrExt := Mux( 250 isAfter(cmtPtrExt(0), deqPtrExt(0)), 251 cmtPtrExt(0), 252 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 253 ) 254 } 255 256 io.stAddrReadySqPtr := addrReadyPtrExt 257 258 // update 259 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 260 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 261 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 262 dataReadyPtrExt := nextDataReadyPtr 263 264 (0 until StoreQueueSize).map(i => { 265 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 266 }) 267 268 when (io.brqRedirect.valid) { 269 dataReadyPtrExt := Mux( 270 isAfter(cmtPtrExt(0), deqPtrExt(0)), 271 cmtPtrExt(0), 272 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 273 ) 274 } 275 276 io.stDataReadySqPtr := dataReadyPtrExt 277 io.stIssuePtr := enqPtrExt(0) 278 io.sqDeqPtr := deqPtrExt(0) 279 280 /** 281 * Writeback store from store units 282 * 283 * Most store instructions writeback to regfile in the previous cycle. 284 * However, 285 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 286 * (in this way it will trigger an exception when it reaches ROB's head) 287 * instead of pending to avoid sending them to lower level. 288 * (2) For an mmio instruction without exceptions, we mark it as pending. 289 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 290 * Upon receiving the response, StoreQueue writes back the instruction 291 * through arbiter with store units. It will later commit as normal. 292 */ 293 294 // Write addr to sq 295 for (i <- 0 until StorePipelineWidth) { 296 paddrModule.io.wen(i) := false.B 297 vaddrModule.io.wen(i) := false.B 298 dataModule.io.mask.wen(i) := false.B 299 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 300 when (io.storeAddrIn(i).fire()) { 301 val addr_valid = !io.storeAddrIn(i).bits.miss 302 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 303 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 304 305 paddrModule.io.waddr(i) := stWbIndex 306 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 307 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 308 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 309 paddrModule.io.wen(i) := true.B 310 311 vaddrModule.io.waddr(i) := stWbIndex 312 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 313 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 314 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 315 vaddrModule.io.wen(i) := true.B 316 317 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 318 319 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 320 321 uop(stWbIndex).ctrl := io.storeAddrIn(i).bits.uop.ctrl 322 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 323 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 324 io.storeAddrIn(i).bits.uop.sqIdx.value, 325 io.storeAddrIn(i).bits.uop.cf.pc, 326 io.storeAddrIn(i).bits.miss, 327 io.storeAddrIn(i).bits.vaddr, 328 io.storeAddrIn(i).bits.paddr, 329 io.storeAddrIn(i).bits.mmio 330 ) 331 } 332 333 // re-replinish mmio, for pma/pmp will get mmio one cycle later 334 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire() && !io.storeAddrIn(i).bits.miss) 335 val stWbIndexReg = RegNext(stWbIndex) 336 when (storeAddrInFireReg) { 337 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 338 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 339 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 340 } 341 342 when(vaddrModule.io.wen(i)){ 343 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 344 } 345 } 346 347 // Write data to sq 348 // Now store data pipeline is actually 2 stages 349 for (i <- 0 until StorePipelineWidth) { 350 dataModule.io.data.wen(i) := false.B 351 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 352 // sq data write takes 2 cycles: 353 // sq data write s0 354 when (io.storeDataIn(i).fire()) { 355 // send data write req to data module 356 dataModule.io.data.waddr(i) := stWbIndex 357 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 358 0.U, 359 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 360 ) 361 dataModule.io.data.wen(i) := true.B 362 363 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 364 365 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 366 io.storeDataIn(i).bits.uop.sqIdx.value, 367 io.storeDataIn(i).bits.uop.cf.pc, 368 io.storeDataIn(i).bits.data, 369 dataModule.io.data.wdata(i) 370 ) 371 } 372 // sq data write s1 373 when ( 374 RegNext(io.storeDataIn(i).fire()) 375 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 376 ) { 377 datavalid(RegNext(stWbIndex)) := true.B 378 } 379 } 380 381 // Write mask to sq 382 for (i <- 0 until StorePipelineWidth) { 383 // sq mask write s0 384 when (io.storeMaskIn(i).fire()) { 385 // send data write req to data module 386 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 387 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 388 dataModule.io.mask.wen(i) := true.B 389 } 390 } 391 392 /** 393 * load forward query 394 * 395 * Check store queue for instructions that is older than the load. 396 * The response will be valid at the next cycle after req. 397 */ 398 // check over all lq entries and forward data from the first matched store 399 for (i <- 0 until LoadPipelineWidth) { 400 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 401 // (1) if they have the same flag, we need to check range(tail, sqIdx) 402 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 403 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 404 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 405 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 406 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 407 val forwardMask = io.forward(i).sqIdxMask 408 // all addrvalid terms need to be checked 409 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 410 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 411 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 412 413 val storeSetHitVec = 414 if (LFSTEnable) { 415 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.cf.loadWaitBit && uop(j).robIdx === io.forward(i).uop.cf.waitForRobIdx))) 416 } else { 417 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).cf.storeSetHit && uop(j).cf.ssid === io.forward(i).uop.cf.ssid))) 418 } 419 420 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 421 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 422 val canForward1 = forwardMask1 & allValidVec.asUInt 423 val canForward2 = forwardMask2 & allValidVec.asUInt 424 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 425 426 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 427 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 428 ) 429 430 // do real fwd query (cam lookup in load_s1) 431 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 432 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 433 434 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 435 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 436 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 437 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 438 439 440 // vaddr cam result does not equal to paddr cam result 441 // replay needed 442 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 443 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 444 val vpmaskNotEqual = ( 445 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 446 RegNext(needForward) & 447 RegNext(addrValidVec.asUInt) 448 ) =/= 0.U 449 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 450 when (vaddrMatchFailed) { 451 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 452 RegNext(io.forward(i).uop.cf.pc), 453 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 454 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 455 ); 456 } 457 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 458 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 459 460 // Fast forward mask will be generated immediately (load_s1) 461 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 462 463 // Forward result will be generated 1 cycle later (load_s2) 464 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 465 io.forward(i).forwardData := dataModule.io.forwardData(i) 466 // If addr match, data not ready, mark it as dataInvalid 467 // load_s1: generate dataInvalid in load_s1 to set fastUop 468 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 469 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 470 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 471 io.forward(i).dataInvalidFast := dataInvalidMask.orR 472 473 // make chisel happy 474 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 475 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 476 // make chisel happy 477 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 478 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 479 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 480 481 // If SSID match, address not ready, mark it as addrInvalid 482 // load_s2: generate addrInvalid 483 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 484 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 485 // make chisel happy 486 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 487 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 488 // make chisel happy 489 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 490 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 491 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 492 493 // load_s2 494 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 495 // check if vaddr forward mismatched 496 io.forward(i).matchInvalid := vaddrMatchFailed 497 498 // data invalid sq index 499 // check whether false fail 500 // check flag 501 val s2_differentFlag = RegNext(differentFlag) 502 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 503 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 504 505 // addr invalid sq index 506 // make chisel happy 507 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 508 addrInvalidMaskRegWire := addrInvalidMaskReg 509 val addrInvalidFlag = addrInvalidMaskRegWire.orR 510 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 511 512 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 513 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 514 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 515 516 // store-set content management 517 // +-----------------------+ 518 // | Search a SSID for the | 519 // | load operation | 520 // +-----------------------+ 521 // | 522 // V 523 // +-------------------+ 524 // | load wait strict? | 525 // +-------------------+ 526 // | 527 // V 528 // +----------------------+ 529 // Set| |Clean 530 // V V 531 // +------------------------+ +------------------------------+ 532 // | Waiting for all older | | Wait until the corresponding | 533 // | stores operations | | older store operations | 534 // +------------------------+ +------------------------------+ 535 536 537 538 when (RegNext(io.forward(i).uop.cf.loadWaitStrict)) { 539 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 540 } .elsewhen (addrInvalidFlag) { 541 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 542 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 543 } .otherwise { 544 // may be store inst has been written to sbuffer already. 545 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 546 } 547 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.cf.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 548 549 // data invalid sq index 550 // make chisel happy 551 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 552 dataInvalidMaskRegWire := dataInvalidMaskReg 553 val dataInvalidFlag = dataInvalidMaskRegWire.orR 554 555 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 556 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 557 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 558 559 when (dataInvalidFlag) { 560 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 561 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 562 } .otherwise { 563 // may be store inst has been written to sbuffer already. 564 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 565 } 566 } 567 568 /** 569 * Memory mapped IO / other uncached operations 570 * 571 * States: 572 * (1) writeback from store units: mark as pending 573 * (2) when they reach ROB's head, they can be sent to uncache channel 574 * (3) response from uncache channel: mark as datavalidmask.wen 575 * (4) writeback to ROB (and other units): mark as writebacked 576 * (5) ROB commits the instruction: same as normal instructions 577 */ 578 //(2) when they reach ROB's head, they can be sent to uncache channel 579 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 580 val uncacheState = RegInit(s_idle) 581 switch(uncacheState) { 582 is(s_idle) { 583 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 584 uncacheState := s_req 585 } 586 } 587 is(s_req) { 588 when (io.uncache.req.fire) { 589 when (io.uncacheOutstanding) { 590 uncacheState := s_wb 591 } .otherwise { 592 uncacheState := s_resp 593 } 594 } 595 } 596 is(s_resp) { 597 when(io.uncache.resp.fire()) { 598 uncacheState := s_wb 599 } 600 } 601 is(s_wb) { 602 when (io.mmioStout.fire()) { 603 uncacheState := s_wait 604 } 605 } 606 is(s_wait) { 607 when(commitCount > 0.U) { 608 uncacheState := s_idle // ready for next mmio 609 } 610 } 611 } 612 io.uncache.req.valid := uncacheState === s_req 613 614 io.uncache.req.bits := DontCare 615 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 616 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 617 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 618 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 619 620 // CBO op type check can be delayed for 1 cycle, 621 // as uncache op will not start in s_idle 622 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 623 val cbo_mmio_op = 0.U //TODO 624 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 625 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 626 io.uncache.req.bits.addr := DontCare // TODO 627 io.uncache.req.bits.data := paddrModule.io.rdata(0) 628 io.uncache.req.bits.mask := DontCare // TODO 629 } 630 631 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 632 633 when(io.uncache.req.fire()){ 634 // mmio store should not be committed until uncache req is sent 635 pending(deqPtr) := false.B 636 637 XSDebug( 638 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 639 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 640 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 641 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 642 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 643 ) 644 } 645 646 // (3) response from uncache channel: mark as datavalid 647 io.uncache.resp.ready := true.B 648 649 // (4) writeback to ROB (and other units): mark as writebacked 650 io.mmioStout.valid := uncacheState === s_wb 651 io.mmioStout.bits.uop := uop(deqPtr) 652 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 653 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 654 io.mmioStout.bits.redirectValid := false.B 655 io.mmioStout.bits.redirect := DontCare 656 io.mmioStout.bits.debug.isMMIO := true.B 657 io.mmioStout.bits.debug.paddr := DontCare 658 io.mmioStout.bits.debug.isPerfCnt := false.B 659 io.mmioStout.bits.fflags := DontCare 660 io.mmioStout.bits.debug.vaddr := DontCare 661 // Remove MMIO inst from store queue after MMIO request is being sent 662 // That inst will be traced by uncache state machine 663 when (io.mmioStout.fire()) { 664 allocated(deqPtr) := false.B 665 } 666 667 /** 668 * ROB commits store instructions (mark them as committed) 669 * 670 * (1) When store commits, mark it as committed. 671 * (2) They will not be cancelled and can be sent to lower level. 672 */ 673 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 674 "should not commit instruction when MMIO has not been finished\n") 675 for (i <- 0 until CommitWidth) { 676 when (commitCount > i.U) { // MMIO inst is not in progress 677 if(i == 0){ 678 // MMIO inst should not update committed flag 679 // Note that commit count has been delayed for 1 cycle 680 when(uncacheState === s_idle){ 681 committed(cmtPtrExt(0).value) := true.B 682 } 683 } else { 684 committed(cmtPtrExt(i).value) := true.B 685 } 686 } 687 } 688 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 689 690 // committed stores will not be cancelled and can be sent to lower level. 691 // remove retired insts from sq, add retired store to sbuffer 692 693 // Read data from data module 694 // As store queue grows larger and larger, time needed to read data from data 695 // module keeps growing higher. Now we give data read a whole cycle. 696 697 val mmioStall = mmio(rdataPtrExt(0).value) 698 for (i <- 0 until EnsbufferWidth) { 699 val ptr = rdataPtrExt(i).value 700 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 701 // Note that store data/addr should both be valid after store's commit 702 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 703 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 704 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 705 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 706 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 707 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 708 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 709 } 710 711 // Send data stored in sbufferReqBitsReg to sbuffer 712 for (i <- 0 until EnsbufferWidth) { 713 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 714 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 715 // Write line request should have all 1 mask 716 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 717 io.sbuffer(i).bits := DontCare 718 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 719 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 720 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 721 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 722 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 723 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 724 725 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 726 // Before data write finish, sbuffer is unable to provide store to load 727 // forward data. As an workaround, deqPtrExt and allocated flag update 728 // is delayed so that load can get the right data from store queue. 729 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 730 when (RegNext(io.sbuffer(i).fire())) { 731 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 732 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 733 } 734 } 735 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 736 if (coreParams.dcacheParametersOpt.isEmpty) { 737 for (i <- 0 until EnsbufferWidth) { 738 val ptr = deqPtrExt(i).value 739 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 740 fakeRAM.clk := clock 741 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 742 fakeRAM.rIdx := 0.U 743 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 744 fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0)) 745 fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0))) 746 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 747 } 748 } 749 750 if (env.EnableDifftest) { 751 for (i <- 0 until EnsbufferWidth) { 752 val storeCommit = io.sbuffer(i).fire() 753 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 754 val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask) 755 val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data) 756 val wmask = sbufferMask 757 val wdata = sbufferData & MaskExpand(sbufferMask) 758 759 val difftest = Module(new DifftestStoreEvent) 760 difftest.io.clock := clock 761 difftest.io.coreid := io.hartId 762 difftest.io.index := i.U 763 difftest.io.valid := RegNext(RegNext(storeCommit)) 764 difftest.io.storeAddr := RegNext(RegNext(waddr)) 765 difftest.io.storeData := RegNext(RegNext(wdata)) 766 difftest.io.storeMask := RegNext(RegNext(wmask)) 767 } 768 } 769 770 // Read vaddr for mem exception 771 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 772 773 // misprediction recovery / exception redirect 774 // invalidate sq term using robIdx 775 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 776 for (i <- 0 until StoreQueueSize) { 777 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 778 when (needCancel(i)) { 779 allocated(i) := false.B 780 } 781 } 782 783 /** 784* update pointers 785**/ 786 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 787 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 788 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 789 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 790 791 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 792 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 793 794 when (lastlastCycleRedirect) { 795 // we recover the pointers in 2 cycle after redirect for better timing 796 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 797 }.otherwise { 798 // lastCycleRedirect.valid or nornal case 799 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 800 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 801 } 802 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 803 804 deqPtrExt := deqPtrExtNext 805 rdataPtrExt := rdataPtrExtNext 806 807 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 808 809 // If redirect at T0, sqCancelCnt is at T2 810 io.sqCancelCnt := redirectCancelCount 811 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 812 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 813 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 814 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 815 816 val valid_cnt = PopCount(allocated) 817 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 818 819 // io.sqempty will be used by sbuffer 820 // We delay it for 1 cycle for better timing 821 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 822 // for 1 cycle will also promise that sq is empty in that cycle 823 io.sqEmpty := RegNext( 824 enqPtrExt(0).value === deqPtrExt(0).value && 825 enqPtrExt(0).flag === deqPtrExt(0).flag 826 ) 827 // perf counter 828 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 829 io.sqFull := !allowEnqueue 830 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 831 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 832 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 833 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 834 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 835 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 836 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 837 838 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 839 val perfEvents = Seq( 840 ("mmioCycle ", uncacheState =/= s_idle), 841 ("mmioCnt ", io.uncache.req.fire()), 842 ("mmio_wb_success", io.mmioStout.fire()), 843 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 844 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 845 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 846 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 847 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 848 ) 849 generatePerfEvent() 850 851 // debug info 852 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 853 854 def PrintFlag(flag: Bool, name: String): Unit = { 855 when(flag) { 856 XSDebug(false, true.B, name) 857 }.otherwise { 858 XSDebug(false, true.B, " ") 859 } 860 } 861 862 for (i <- 0 until StoreQueueSize) { 863 XSDebug(i + ": pc %x va %x pa %x data %x ", 864 uop(i).cf.pc, 865 debug_vaddr(i), 866 debug_paddr(i), 867 debug_data(i) 868 ) 869 PrintFlag(allocated(i), "a") 870 PrintFlag(allocated(i) && addrvalid(i), "a") 871 PrintFlag(allocated(i) && datavalid(i), "d") 872 PrintFlag(allocated(i) && committed(i), "c") 873 PrintFlag(allocated(i) && pending(i), "p") 874 PrintFlag(allocated(i) && mmio(i), "m") 875 XSDebug(false, true.B, "\n") 876 } 877 878} 879