1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16package xiangshan.mem 17 18import chisel3._ 19import chisel3.util._ 20import chipsalliance.rocketchip.config._ 21import xiangshan._ 22import xiangshan.backend.rob.{RobPtr, RobLsqIO} 23import xiangshan.cache._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.cache._ 26import xiangshan.frontend.FtqPtr 27import xiangshan.ExceptionNO._ 28import xiangshan.cache.dcache.ReplayCarry 29import xiangshan.mem.mdp._ 30import utils._ 31import utility._ 32 33object LoadReplayCauses { 34 // these causes have priority, lower coding has higher priority. 35 // when load replay happens, load unit will select highest priority 36 // from replay causes vector 37 38 /* 39 * Warning: 40 * ************************************************************ 41 * * Don't change the priority. If the priority is changed, * 42 * * deadlock may occur. If you really need to change or * 43 * * add priority, please ensure that no deadlock will occur. * 44 * ************************************************************ 45 * 46 */ 47 // st-ld violation 48 val waitStore = 0 49 // tlb miss check 50 val tlbMiss = 1 51 // st-ld violation re-execute check 52 val schedError = 2 53 // dcache bank conflict check 54 val bankConflict = 3 55 // store-to-load-forwarding check 56 val forwardFail = 4 57 // dcache replay check 58 val dcacheReplay = 5 59 // dcache miss check 60 val dcacheMiss = 6 61 // RAR/RAW queue accept check 62 val rejectEnq = 7 63 // total causes 64 val allCauses = 8 65} 66 67class AgeDetector(numEntries: Int, numEnq: Int, regOut: Boolean = true)(implicit p: Parameters) extends XSModule { 68 val io = IO(new Bundle { 69 // NOTE: deq and enq may come at the same cycle. 70 val enq = Vec(numEnq, Input(UInt(numEntries.W))) 71 val deq = Input(UInt(numEntries.W)) 72 val ready = Input(UInt(numEntries.W)) 73 val out = Output(UInt(numEntries.W)) 74 }) 75 76 // age(i)(j): entry i enters queue before entry j 77 val age = Seq.fill(numEntries)(Seq.fill(numEntries)(RegInit(false.B))) 78 val nextAge = Seq.fill(numEntries)(Seq.fill(numEntries)(Wire(Bool()))) 79 80 // to reduce reg usage, only use upper matrix 81 def get_age(row: Int, col: Int): Bool = if (row <= col) age(row)(col) else !age(col)(row) 82 def get_next_age(row: Int, col: Int): Bool = if (row <= col) nextAge(row)(col) else !nextAge(col)(row) 83 def isFlushed(i: Int): Bool = io.deq(i) 84 def isEnqueued(i: Int, numPorts: Int = -1): Bool = { 85 val takePorts = if (numPorts == -1) io.enq.length else numPorts 86 takePorts match { 87 case 0 => false.B 88 case 1 => io.enq.head(i) && !isFlushed(i) 89 case n => VecInit(io.enq.take(n).map(_(i))).asUInt.orR && !isFlushed(i) 90 } 91 } 92 93 for ((row, i) <- nextAge.zipWithIndex) { 94 val thisValid = get_age(i, i) || isEnqueued(i) 95 for ((elem, j) <- row.zipWithIndex) { 96 when (isFlushed(i)) { 97 // (1) when entry i is flushed or dequeues, set row(i) to false.B 98 elem := false.B 99 }.elsewhen (isFlushed(j)) { 100 // (2) when entry j is flushed or dequeues, set column(j) to validVec 101 elem := thisValid 102 }.elsewhen (isEnqueued(i)) { 103 // (3) when entry i enqueues from port k, 104 // (3.1) if entry j enqueues from previous ports, set to false 105 // (3.2) otherwise, set to true if and only of entry j is invalid 106 // overall: !jEnqFromPreviousPorts && !jIsValid 107 val sel = io.enq.map(_(i)) 108 val result = (0 until numEnq).map(k => isEnqueued(j, k)) 109 // why ParallelMux: sel must be one-hot since enq is one-hot 110 elem := !get_age(j, j) && !ParallelMux(sel, result) 111 }.otherwise { 112 // default: unchanged 113 elem := get_age(i, j) 114 } 115 age(i)(j) := elem 116 } 117 } 118 119 def getOldest(get: (Int, Int) => Bool): UInt = { 120 VecInit((0 until numEntries).map(i => { 121 io.ready(i) & VecInit((0 until numEntries).map(j => if (i != j) !io.ready(j) || get(i, j) else true.B)).asUInt.andR 122 })).asUInt 123 } 124 val best = getOldest(get_age) 125 val nextBest = getOldest(get_next_age) 126 127 io.out := (if (regOut) best else nextBest) 128} 129 130object AgeDetector { 131 def apply(numEntries: Int, enq: Vec[UInt], deq: UInt, ready: UInt)(implicit p: Parameters): Valid[UInt] = { 132 val age = Module(new AgeDetector(numEntries, enq.length, regOut = true)) 133 age.io.enq := enq 134 age.io.deq := deq 135 age.io.ready:= ready 136 val out = Wire(Valid(UInt(deq.getWidth.W))) 137 out.valid := age.io.out.orR 138 out.bits := age.io.out 139 out 140 } 141} 142 143 144class LoadQueueReplay(implicit p: Parameters) extends XSModule 145 with HasDCacheParameters 146 with HasCircularQueuePtrHelper 147 with HasLoadHelper 148 with HasPerfEvents 149{ 150 val io = IO(new Bundle() { 151 val redirect = Flipped(ValidIO(new Redirect)) 152 val enq = Vec(LoadPipelineWidth, Flipped(Decoupled(new LqWriteBundle))) 153 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 154 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) 155 val replay = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) 156 val refill = Flipped(ValidIO(new Refill)) 157 val stAddrReadySqPtr = Input(new SqPtr) 158 val stAddrReadyVec = Input(Vec(StoreQueueSize, Bool())) 159 val stDataReadySqPtr = Input(new SqPtr) 160 val stDataReadyVec = Input(Vec(StoreQueueSize, Bool())) 161 val sqEmpty = Input(Bool()) 162 val lqFull = Output(Bool()) 163 val ldWbPtr = Input(new LqPtr) 164 val tlbReplayDelayCycleCtrl = Vec(4, Input(UInt(ReSelectLen.W))) 165 }) 166 167 println("LoadQueueReplay size: " + LoadQueueReplaySize) 168 // LoadQueueReplay field: 169 // +-----------+---------+-------+-------------+--------+ 170 // | Allocated | MicroOp | VAddr | Cause | Flags | 171 // +-----------+---------+-------+-------------+--------+ 172 // Allocated : entry has been allocated already 173 // MicroOp : inst's microOp 174 // VAddr : virtual address 175 // Cause : replay cause 176 // Flags : rar/raw queue allocate flags 177 val allocated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) // The control signals need to explicitly indicate the initial value 178 val sleep = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 179 val uop = Reg(Vec(LoadQueueReplaySize, new MicroOp)) 180 val vaddrModule = Module(new LqVAddrModule( 181 gen = UInt(VAddrBits.W), 182 numEntries = LoadQueueReplaySize, 183 numRead = LoadPipelineWidth, 184 numWrite = LoadPipelineWidth, 185 numWBank = LoadQueueNWriteBanks, 186 numWDelay = 2, 187 numCamPort = 0)) 188 vaddrModule.io := DontCare 189 val cause = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(LoadReplayCauses.allCauses.W)))) 190 191 // freeliset: store valid entries index. 192 // +---+---+--------------+-----+-----+ 193 // | 0 | 1 | ...... | n-2 | n-1 | 194 // +---+---+--------------+-----+-----+ 195 val freeList = Module(new FreeList( 196 size = LoadQueueReplaySize, 197 allocWidth = LoadPipelineWidth, 198 freeWidth = 4, 199 moduleName = "LoadQueueReplay freelist" 200 )) 201 freeList.io := DontCare 202 /** 203 * used for re-select control 204 */ 205 val credit = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(ReSelectLen.W)))) 206 val selBlocked = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 207 // Ptrs to control which cycle to choose 208 val blockPtrTlb = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(2.W)))) 209 val blockPtrCache = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(2.W)))) 210 val blockPtrOthers = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(2.W)))) 211 // Specific cycles to block 212 val blockCyclesTlb = Reg(Vec(4, UInt(ReSelectLen.W))) 213 blockCyclesTlb := io.tlbReplayDelayCycleCtrl 214 val blockCyclesCache = RegInit(VecInit(Seq(11.U(ReSelectLen.W), 18.U(ReSelectLen.W), 127.U(ReSelectLen.W), 17.U(ReSelectLen.W)))) 215 val blockCyclesOthers = RegInit(VecInit(Seq(0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W)))) 216 val blockSqIdx = Reg(Vec(LoadQueueReplaySize, new SqPtr)) 217 // block causes 218 val blockByTlbMiss = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 219 val blockByForwardFail = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 220 val blockByWaitStore = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 221 val blockByCacheMiss = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 222 val blockByOthers = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 223 // DCache miss block 224 val missMSHRId = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U((log2Up(cfg.nMissEntries).W))))) 225 val trueCacheMissReplay = WireInit(VecInit(cause.map(_(LoadReplayCauses.dcacheMiss)))) 226 val creditUpdate = WireInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(ReSelectLen.W)))) 227 (0 until LoadQueueReplaySize).map(i => { 228 creditUpdate(i) := Mux(credit(i) > 0.U(ReSelectLen.W), credit(i)-1.U(ReSelectLen.W), credit(i)) 229 selBlocked(i) := creditUpdate(i) =/= 0.U(ReSelectLen.W) || credit(i) =/= 0.U(ReSelectLen.W) 230 }) 231 val replayCarryReg = RegInit(VecInit(List.fill(LoadQueueReplaySize)(ReplayCarry(0.U, false.B)))) 232 233 /** 234 * Enqueue 235 */ 236 val canEnqueue = io.enq.map(_.valid) 237 val cancelEnq = io.enq.map(enq => enq.bits.uop.robIdx.needFlush(io.redirect)) 238 val needReplay = io.enq.map(enq => enq.bits.replayInfo.needReplay()) 239 val hasExceptions = io.enq.map(enq => ExceptionNO.selectByFu(enq.bits.uop.cf.exceptionVec, lduCfg).asUInt.orR && !enq.bits.tlbMiss) 240 val loadReplay = io.enq.map(enq => enq.bits.isLoadReplay) 241 val needEnqueue = VecInit((0 until LoadPipelineWidth).map(w => { 242 canEnqueue(w) && !cancelEnq(w) && needReplay(w) && !hasExceptions(w) 243 })) 244 val canFreeVec = VecInit((0 until LoadPipelineWidth).map(w => { 245 canEnqueue(w) && loadReplay(w) && (!needReplay(w) || hasExceptions(w)) 246 })) 247 248 // select LoadPipelineWidth valid index. 249 val lqFull = freeList.io.empty 250 val lqFreeNums = freeList.io.validCount 251 252 // replay logic 253 // release logic generation 254 val storeAddrInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) 255 val storeDataInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) 256 val addrNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) 257 val dataNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) 258 val storeAddrValidVec = addrNotBlockVec.asUInt | storeAddrInSameCycleVec.asUInt 259 val storeDataValidVec = dataNotBlockVec.asUInt | storeDataInSameCycleVec.asUInt 260 261 // store data valid check 262 val stAddrReadyVec = io.stAddrReadyVec 263 val stDataReadyVec = io.stDataReadyVec 264 265 for (i <- 0 until LoadQueueReplaySize) { 266 // dequeue 267 // FIXME: store*Ptr is not accurate 268 dataNotBlockVec(i) := isAfter(io.stAddrReadySqPtr, blockSqIdx(i)) || stDataReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing 269 addrNotBlockVec(i) := !isBefore(io.stAddrReadySqPtr, blockSqIdx(i)) || stAddrReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing 270 271 // store address execute 272 storeAddrInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { 273 io.storeAddrIn(w).valid && 274 !io.storeAddrIn(w).bits.miss && 275 blockSqIdx(i) === io.storeAddrIn(w).bits.uop.sqIdx 276 })).asUInt.orR // for better timing 277 278 // store data execute 279 storeDataInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { 280 io.storeDataIn(w).valid && 281 blockSqIdx(i) === io.storeDataIn(w).bits.uop.sqIdx 282 })).asUInt.orR // for better timing 283 284 } 285 286 // store addr issue check 287 val stAddrDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) 288 (0 until LoadQueueReplaySize).map(i => { 289 stAddrDeqVec(i) := allocated(i) && storeAddrValidVec(i) 290 }) 291 292 // store data issue check 293 val stDataDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) 294 (0 until LoadQueueReplaySize).map(i => { 295 stDataDeqVec(i) := allocated(i) && storeDataValidVec(i) 296 }) 297 298 // update block condition 299 (0 until LoadQueueReplaySize).map(i => { 300 blockByForwardFail(i) := Mux(blockByForwardFail(i) && stDataDeqVec(i), false.B, blockByForwardFail(i)) 301 blockByWaitStore(i) := Mux(blockByWaitStore(i) && stAddrDeqVec(i), false.B, blockByWaitStore(i)) 302 blockByCacheMiss(i) := Mux(blockByCacheMiss(i) && io.refill.valid && io.refill.bits.id === missMSHRId(i), false.B, blockByCacheMiss(i)) 303 304 when (blockByCacheMiss(i) && io.refill.valid && io.refill.bits.id === missMSHRId(i)) { creditUpdate(i) := 0.U } 305 when (blockByCacheMiss(i) && creditUpdate(i) === 0.U) { blockByCacheMiss(i) := false.B } 306 when (blockByTlbMiss(i) && creditUpdate(i) === 0.U) { blockByTlbMiss(i) := false.B } 307 when (blockByOthers(i) && creditUpdate(i) === 0.U) { blockByOthers(i) := false.B } 308 }) 309 310 // Replay is splitted into 3 stages 311 def getRemBits(input: UInt)(rem: Int): UInt = { 312 VecInit((0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt 313 } 314 315 // stage1: select 2 entries and read their vaddr 316 val s1_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize).W)))) 317 val s2_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize).W)))) 318 319 // generate mask 320 val needCancel = Wire(Vec(LoadQueueReplaySize, Bool())) 321 // generate enq mask 322 val selectIndexOH = Wire(Vec(LoadPipelineWidth, UInt(LoadQueueReplaySize.W))) 323 val loadEnqFireMask = io.enq.map(x => x.fire && !x.bits.isLoadReplay).zip(selectIndexOH).map(x => Mux(x._1, x._2, 0.U)) 324 val remLoadEnqFireVec = loadEnqFireMask.map(x => VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(x)(rem)))) 325 val remEnqSelVec = Seq.tabulate(LoadPipelineWidth)(w => VecInit(remLoadEnqFireVec.map(x => x(w)))) 326 327 // generate free mask 328 val loadReplayFreeMask = io.enq.map(_.bits).zip(canFreeVec).map(x => Mux(x._2, UIntToOH(x._1.sleepIndex), 0.U)).reduce(_|_) 329 val loadFreeSelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 330 needCancel(i) || loadReplayFreeMask(i) 331 })).asUInt 332 val remFreeSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadFreeSelMask)(rem))) 333 334 // generate cancel mask 335 val loadReplayFireMask = (0 until LoadPipelineWidth).map(w => Mux(io.replay(w).fire, UIntToOH(s2_oldestSel(w).bits), 0.U)).reduce(_|_) 336 val loadCancelSelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 337 needCancel(i) || loadReplayFireMask(i) 338 })).asUInt 339 val remCancelSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadCancelSelMask)(rem))) 340 341 // generate replay mask 342 val loadReplaySelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 343 val blocked = selBlocked(i) || blockByTlbMiss(i) || blockByForwardFail(i) || blockByCacheMiss(i) || blockByWaitStore(i) || blockByOthers(i) 344 allocated(i) && sleep(i) && !blocked && !loadCancelSelMask(i) 345 })).asUInt // use uint instead vec to reduce verilog lines 346 val oldestPtr = VecInit((0 until CommitWidth).map(x => io.ldWbPtr + x.U)) 347 val oldestSelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 348 loadReplaySelMask(i) && VecInit(oldestPtr.map(_ === uop(i).lqIdx)).asUInt.orR 349 })).asUInt // use uint instead vec to reduce verilog lines 350 val remReplaySelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadReplaySelMask)(rem))) 351 val remOldestSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(oldestSelMask)(rem))) 352 353 // select oldest logic 354 s1_oldestSel := VecInit((0 until LoadPipelineWidth).map(rport => { 355 // select enqueue earlest inst 356 val ageOldest = AgeDetector(LoadQueueReplaySize / LoadPipelineWidth, remEnqSelVec(rport), remFreeSelVec(rport), remReplaySelVec(rport)) 357 assert(!(ageOldest.valid && PopCount(ageOldest.bits) > 1.U), "oldest index must be one-hot!") 358 val ageOldestValid = ageOldest.valid 359 val ageOldestIndex = OHToUInt(ageOldest.bits) 360 361 // select program order oldest 362 val issOldestValid = remOldestSelVec(rport).orR 363 val issOldestIndex = OHToUInt(PriorityEncoderOH(remOldestSelVec(rport))) 364 365 val oldest = Wire(Valid(UInt())) 366 oldest.valid := ageOldest.valid || issOldestValid 367 oldest.bits := Cat(Mux(issOldestValid, issOldestIndex, ageOldestIndex), rport.U(log2Ceil(LoadPipelineWidth).W)) 368 oldest 369 })) 370 371 372 (0 until LoadPipelineWidth).map(w => { 373 vaddrModule.io.raddr(w) := s1_oldestSel(w).bits 374 }) 375 376 // stage2: send replay request to load unit 377 val hasBankConflictVec = RegNext(VecInit(s1_oldestSel.map(x => x.valid && cause(x.bits)(LoadReplayCauses.bankConflict)))) 378 val hasBankConflict = hasBankConflictVec.asUInt.orR 379 val allBankConflict = hasBankConflictVec.asUInt.andR 380 381 // replay cold down 382 val ColdDownCycles = 16 383 384 val coldCounter = RegInit(VecInit(List.fill(LoadPipelineWidth)(0.U(log2Up(ColdDownCycles).W)))) 385 val ColdDownThreshold = Wire(UInt(log2Up(ColdDownCycles).W)) 386 ColdDownThreshold := Constantin.createRecord("ColdDownThreshold_"+p(XSCoreParamsKey).HartId.toString(), initValue = 12.U) 387 assert(ColdDownCycles.U > ColdDownThreshold, "ColdDownCycles must great than ColdDownThreshold!") 388 389 def replayCanFire(i: Int) = coldCounter(i) >= 0.U && coldCounter(i) < ColdDownThreshold 390 def coldDownNow(i: Int) = coldCounter(i) >= ColdDownThreshold 391 392 for (i <- 0 until LoadPipelineWidth) { 393 val s1_replayIdx = s1_oldestSel(i).bits 394 val s2_replayUop = RegNext(uop(s1_replayIdx)) 395 val s2_replayMSHRId = RegNext(missMSHRId(s1_replayIdx)) 396 val s2_replayCauses = RegNext(cause(s1_replayIdx)) 397 val s2_replayCarry = RegNext(replayCarryReg(s1_replayIdx)) 398 val s2_replayCacheMissReplay = RegNext(trueCacheMissReplay(s1_replayIdx)) 399 val cancelReplay = s2_replayUop.robIdx.needFlush(io.redirect) 400 // In order to avoid deadlock, replay one inst which blocked by bank conflict 401 val bankConflictReplay = Mux(hasBankConflict && !allBankConflict, s2_replayCauses(LoadReplayCauses.bankConflict), true.B) 402 403 s2_oldestSel(i).valid := RegNext(s1_oldestSel(i).valid && !loadCancelSelMask(s1_replayIdx)) 404 s2_oldestSel(i).bits := RegNext(s1_oldestSel(i).bits) 405 406 io.replay(i).valid := s2_oldestSel(i).valid && !cancelReplay && bankConflictReplay && replayCanFire(i) 407 io.replay(i).bits := DontCare 408 io.replay(i).bits.uop := s2_replayUop 409 io.replay(i).bits.vaddr := vaddrModule.io.rdata(i) 410 io.replay(i).bits.isFirstIssue := false.B 411 io.replay(i).bits.isLoadReplay := true.B 412 io.replay(i).bits.replayCarry := s2_replayCarry 413 io.replay(i).bits.mshrid := s2_replayMSHRId 414 io.replay(i).bits.forward_tlDchannel := s2_replayCauses(LoadReplayCauses.dcacheMiss) 415 io.replay(i).bits.sleepIndex := s2_oldestSel(i).bits 416 417 when (io.replay(i).fire) { 418 sleep(s2_oldestSel(i).bits) := false.B 419 assert(allocated(s2_oldestSel(i).bits), s"LoadQueueReplay: why replay an invalid entry ${s2_oldestSel(i).bits} ?\n") 420 } 421 } 422 423 // update cold counter 424 val lastReplay = RegNext(VecInit(io.replay.map(_.fire))) 425 for (i <- 0 until LoadPipelineWidth) { 426 when (lastReplay(i) && io.replay(i).fire) { 427 coldCounter(i) := coldCounter(i) + 1.U 428 } .elsewhen (coldDownNow(i)) { 429 coldCounter(i) := coldCounter(i) + 1.U 430 } .otherwise { 431 coldCounter(i) := 0.U 432 } 433 } 434 435 when(io.refill.valid) { 436 XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) 437 } 438 439 // LoadQueueReplay deallocate 440 val freeMaskVec = Wire(Vec(LoadQueueReplaySize, Bool())) 441 442 // init 443 freeMaskVec.map(e => e := false.B) 444 445 // Allocate logic 446 val enqValidVec = Wire(Vec(LoadPipelineWidth, Bool())) 447 val enqIndexVec = Wire(Vec(LoadPipelineWidth, UInt())) 448 val enqOffset = Wire(Vec(LoadPipelineWidth, UInt())) 449 450 val newEnqueue = (0 until LoadPipelineWidth).map(i => { 451 needEnqueue(i) && !io.enq(i).bits.isLoadReplay 452 }) 453 454 for ((enq, w) <- io.enq.zipWithIndex) { 455 vaddrModule.io.wen(w) := false.B 456 freeList.io.doAllocate(w) := false.B 457 458 enqOffset(w) := PopCount(newEnqueue.take(w)) 459 freeList.io.allocateReq(w) := newEnqueue(w) 460 461 // Allocated ready 462 enqValidVec(w) := freeList.io.canAllocate(enqOffset(w)) 463 enqIndexVec(w) := Mux(enq.bits.isLoadReplay, enq.bits.sleepIndex, freeList.io.allocateSlot(enqOffset(w))) 464 selectIndexOH(w) := UIntToOH(enqIndexVec(w)) 465 enq.ready := Mux(enq.bits.isLoadReplay, true.B, enqValidVec(w)) 466 467 val enqIndex = enqIndexVec(w) 468 when (needEnqueue(w) && enq.ready) { 469 470 val debug_robIdx = enq.bits.uop.robIdx.asUInt 471 XSError(allocated(enqIndex) && !enq.bits.isLoadReplay, p"LoadQueueReplay: can not accept more load, check: ldu $w, robIdx $debug_robIdx!") 472 XSError(hasExceptions(w), p"LoadQueueReplay: The instruction has exception, it can not be replay, check: ldu $w, robIdx $debug_robIdx!") 473 474 freeList.io.doAllocate(w) := !enq.bits.isLoadReplay 475 476 // Allocate new entry 477 allocated(enqIndex) := true.B 478 sleep(enqIndex) := true.B 479 uop(enqIndex) := enq.bits.uop 480 481 vaddrModule.io.wen(w) := true.B 482 vaddrModule.io.waddr(w) := enqIndex 483 vaddrModule.io.wdata(w) := enq.bits.vaddr 484 485 /** 486 * used for feedback and replay 487 */ 488 // set flags 489 val replayInfo = enq.bits.replayInfo 490 val dataInLastBeat = replayInfo.dataInLastBeat 491 cause(enqIndex) := replayInfo.cause.asUInt 492 493 // update credit 494 val blockCyclesTlbPtr = blockPtrTlb(enqIndex) 495 val blockCyclesCachePtr = blockPtrCache(enqIndex) 496 val blockCyclesOtherPtr = blockPtrOthers(enqIndex) 497 creditUpdate(enqIndex) := Mux(replayInfo.cause(LoadReplayCauses.tlbMiss), blockCyclesTlb(blockCyclesTlbPtr), 498 Mux(replayInfo.cause(LoadReplayCauses.dcacheMiss), blockCyclesCache(blockCyclesCachePtr) + dataInLastBeat, blockCyclesOthers(blockCyclesOtherPtr))) 499 500 // init 501 blockByTlbMiss(enqIndex) := false.B 502 blockByWaitStore(enqIndex) := false.B 503 blockByForwardFail(enqIndex) := false.B 504 blockByCacheMiss(enqIndex) := false.B 505 blockByOthers(enqIndex) := false.B 506 507 // update block pointer 508 when (replayInfo.cause(LoadReplayCauses.dcacheReplay) || replayInfo.cause(LoadReplayCauses.rejectEnq)) { 509 // normal case: dcache replay or rar/raw reject 510 blockByOthers(enqIndex) := true.B 511 blockPtrOthers(enqIndex) := Mux(blockPtrOthers(enqIndex) === 3.U(2.W), blockPtrOthers(enqIndex), blockPtrOthers(enqIndex) + 1.U(2.W)) 512 } .elsewhen (replayInfo.cause(LoadReplayCauses.bankConflict) || replayInfo.cause(LoadReplayCauses.schedError)) { 513 // normal case: bank conflict or schedule error 514 // can replay next cycle 515 creditUpdate(enqIndex) := 0.U 516 blockByOthers(enqIndex) := false.B 517 } 518 519 // special case: tlb miss 520 when (replayInfo.cause(LoadReplayCauses.tlbMiss)) { 521 blockByTlbMiss(enqIndex) := true.B 522 blockPtrTlb(enqIndex) := Mux(blockPtrTlb(enqIndex) === 3.U(2.W), blockPtrTlb(enqIndex), blockPtrTlb(enqIndex) + 1.U(2.W)) 523 } 524 525 // special case: dcache miss 526 when (replayInfo.cause(LoadReplayCauses.dcacheMiss)) { 527 blockByCacheMiss(enqIndex) := !replayInfo.canForwardFullData && // dcache miss 528 !(io.refill.valid && io.refill.bits.id === replayInfo.missMSHRId) && // no refill in this cycle 529 creditUpdate(enqIndex) =/= 0.U // credit is not zero 530 blockPtrCache(enqIndex) := Mux(blockPtrCache(enqIndex) === 3.U(2.W), blockPtrCache(enqIndex), blockPtrCache(enqIndex) + 1.U(2.W)) 531 } 532 533 // special case: st-ld violation 534 when (replayInfo.cause(LoadReplayCauses.waitStore)) { 535 blockByWaitStore(enqIndex) := true.B 536 blockSqIdx(enqIndex) := replayInfo.addrInvalidSqIdx 537 blockPtrOthers(enqIndex) := Mux(blockPtrOthers(enqIndex) === 3.U(2.W), blockPtrOthers(enqIndex), blockPtrOthers(enqIndex) + 1.U(2.W)) 538 } 539 540 // special case: data forward fail 541 when (replayInfo.cause(LoadReplayCauses.forwardFail)) { 542 blockByForwardFail(enqIndex) := true.B 543 blockSqIdx(enqIndex) := replayInfo.dataInvalidSqIdx 544 blockPtrOthers(enqIndex) := Mux(blockPtrOthers(enqIndex) === 3.U(2.W), blockPtrOthers(enqIndex), blockPtrOthers(enqIndex) + 1.U(2.W)) 545 } 546 547 // 548 replayCarryReg(enqIndex) := replayInfo.replayCarry 549 missMSHRId(enqIndex) := replayInfo.missMSHRId 550 } 551 552 // 553 val sleepIndex = enq.bits.sleepIndex 554 when (enq.valid && enq.bits.isLoadReplay) { 555 when (!needReplay(w) || hasExceptions(w)) { 556 allocated(sleepIndex) := false.B 557 freeMaskVec(sleepIndex) := true.B 558 } .otherwise { 559 sleep(sleepIndex) := true.B 560 } 561 } 562 } 563 564 // misprediction recovery / exception redirect 565 for (i <- 0 until LoadQueueReplaySize) { 566 needCancel(i) := uop(i).robIdx.needFlush(io.redirect) && allocated(i) 567 when (needCancel(i)) { 568 allocated(i) := false.B 569 freeMaskVec(i) := true.B 570 } 571 } 572 573 freeList.io.free := freeMaskVec.asUInt 574 575 io.lqFull := lqFull 576 577 // perf cnt 578 val enqCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay)) 579 val deqCount = PopCount(io.replay.map(_.fire)) 580 val deqBlockCount = PopCount(io.replay.map(r => r.valid && !r.ready)) 581 val replayTlbMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.tlbMiss))) 582 val replayWaitStoreCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.waitStore))) 583 val replaySchedErrorCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.schedError))) 584 val replayRejectEnqCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.rejectEnq))) 585 val replayBankConflictCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.bankConflict))) 586 val replayDCacheReplayCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.dcacheReplay))) 587 val replayForwardFailCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.forwardFail))) 588 val replayDCacheMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.replayInfo.cause(LoadReplayCauses.dcacheMiss))) 589 XSPerfAccumulate("enq", enqCount) 590 XSPerfAccumulate("deq", deqCount) 591 XSPerfAccumulate("deq_block", deqBlockCount) 592 XSPerfAccumulate("replay_full", io.lqFull) 593 XSPerfAccumulate("replay_reject_enq", replayRejectEnqCount) 594 XSPerfAccumulate("replay_sched_error", replaySchedErrorCount) 595 XSPerfAccumulate("replay_wait_store", replayWaitStoreCount) 596 XSPerfAccumulate("replay_tlb_miss", replayTlbMissCount) 597 XSPerfAccumulate("replay_bank_conflict", replayBankConflictCount) 598 XSPerfAccumulate("replay_dcache_replay", replayDCacheReplayCount) 599 XSPerfAccumulate("replay_forward_fail", replayForwardFailCount) 600 XSPerfAccumulate("replay_dcache_miss", replayDCacheMissCount) 601 602 val perfEvents: Seq[(String, UInt)] = Seq( 603 ("enq", enqCount), 604 ("deq", deqCount), 605 ("deq_block", deqBlockCount), 606 ("replay_full", io.lqFull), 607 ("replay_reject_enq", replayRejectEnqCount), 608 ("replay_advance_sched", replaySchedErrorCount), 609 ("replay_wait_store", replayWaitStoreCount), 610 ("replay_tlb_miss", replayTlbMissCount), 611 ("replay_bank_conflict", replayBankConflictCount), 612 ("replay_dcache_replay", replayDCacheReplayCount), 613 ("replay_forward_fail", replayForwardFailCount), 614 ("replay_dcache_miss", replayDCacheMissCount), 615 ) 616 generatePerfEvent() 617 // end 618} 619