1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16package xiangshan.mem 17 18import chisel3._ 19import chisel3.util._ 20import org.chipsalliance.cde.config._ 21import xiangshan._ 22import xiangshan.backend.rob.{RobLsqIO, RobPtr} 23import xiangshan.cache._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.backend.fu.FuConfig._ 26import xiangshan.cache._ 27import xiangshan.frontend.FtqPtr 28import xiangshan.ExceptionNO._ 29import xiangshan.cache.wpu.ReplayCarry 30import xiangshan.mem.mdp._ 31import utils._ 32import utility._ 33import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 34 35object LoadReplayCauses { 36 // these causes have priority, lower coding has higher priority. 37 // when load replay happens, load unit will select highest priority 38 // from replay causes vector 39 40 /* 41 * Warning: 42 * ************************************************************ 43 * * Don't change the priority. If the priority is changed, * 44 * * deadlock may occur. If you really need to change or * 45 * * add priority, please ensure that no deadlock will occur. * 46 * ************************************************************ 47 * 48 */ 49 // st-ld violation re-execute check 50 val C_MA = 0 51 // tlb miss check 52 val C_TM = 1 53 // store-to-load-forwarding check 54 val C_FF = 2 55 // dcache replay check 56 val C_DR = 3 57 // dcache miss check 58 val C_DM = 4 59 // wpu predict fail 60 val C_WF = 5 61 // dcache bank conflict check 62 val C_BC = 6 63 // RAR queue accept check 64 val C_RAR = 7 65 // RAW queue accept check 66 val C_RAW = 8 67 // st-ld violation 68 val C_NK = 9 69 // total causes 70 val allCauses = 10 71} 72 73class AgeDetector(numEntries: Int, numEnq: Int, regOut: Boolean = true)(implicit p: Parameters) extends XSModule { 74 val io = IO(new Bundle { 75 // NOTE: deq and enq may come at the same cycle. 76 val enq = Vec(numEnq, Input(UInt(numEntries.W))) 77 val deq = Input(UInt(numEntries.W)) 78 val ready = Input(UInt(numEntries.W)) 79 val out = Output(UInt(numEntries.W)) 80 }) 81 82 // age(i)(j): entry i enters queue before entry j 83 val age = Seq.fill(numEntries)(Seq.fill(numEntries)(RegInit(false.B))) 84 val nextAge = Seq.fill(numEntries)(Seq.fill(numEntries)(Wire(Bool()))) 85 86 // to reduce reg usage, only use upper matrix 87 def get_age(row: Int, col: Int): Bool = if (row <= col) age(row)(col) else !age(col)(row) 88 def get_next_age(row: Int, col: Int): Bool = if (row <= col) nextAge(row)(col) else !nextAge(col)(row) 89 def isFlushed(i: Int): Bool = io.deq(i) 90 def isEnqueued(i: Int, numPorts: Int = -1): Bool = { 91 val takePorts = if (numPorts == -1) io.enq.length else numPorts 92 takePorts match { 93 case 0 => false.B 94 case 1 => io.enq.head(i) && !isFlushed(i) 95 case n => VecInit(io.enq.take(n).map(_(i))).asUInt.orR && !isFlushed(i) 96 } 97 } 98 99 for ((row, i) <- nextAge.zipWithIndex) { 100 val thisValid = get_age(i, i) || isEnqueued(i) 101 for ((elem, j) <- row.zipWithIndex) { 102 when (isFlushed(i)) { 103 // (1) when entry i is flushed or dequeues, set row(i) to false.B 104 elem := false.B 105 }.elsewhen (isFlushed(j)) { 106 // (2) when entry j is flushed or dequeues, set column(j) to validVec 107 elem := thisValid 108 }.elsewhen (isEnqueued(i)) { 109 // (3) when entry i enqueues from port k, 110 // (3.1) if entry j enqueues from previous ports, set to false 111 // (3.2) otherwise, set to true if and only of entry j is invalid 112 // overall: !jEnqFromPreviousPorts && !jIsValid 113 val sel = io.enq.map(_(i)) 114 val result = (0 until numEnq).map(k => isEnqueued(j, k)) 115 // why ParallelMux: sel must be one-hot since enq is one-hot 116 elem := !get_age(j, j) && !ParallelMux(sel, result) 117 }.otherwise { 118 // default: unchanged 119 elem := get_age(i, j) 120 } 121 age(i)(j) := elem 122 } 123 } 124 125 def getOldest(get: (Int, Int) => Bool): UInt = { 126 VecInit((0 until numEntries).map(i => { 127 io.ready(i) & VecInit((0 until numEntries).map(j => if (i != j) !io.ready(j) || get(i, j) else true.B)).asUInt.andR 128 })).asUInt 129 } 130 val best = getOldest(get_age) 131 val nextBest = getOldest(get_next_age) 132 133 io.out := (if (regOut) best else nextBest) 134} 135 136object AgeDetector { 137 def apply(numEntries: Int, enq: Vec[UInt], deq: UInt, ready: UInt)(implicit p: Parameters): Valid[UInt] = { 138 val age = Module(new AgeDetector(numEntries, enq.length, regOut = true)) 139 age.io.enq := enq 140 age.io.deq := deq 141 age.io.ready:= ready 142 val out = Wire(Valid(UInt(deq.getWidth.W))) 143 out.valid := age.io.out.orR 144 out.bits := age.io.out 145 out 146 } 147} 148 149 150class LoadQueueReplay(implicit p: Parameters) extends XSModule 151 with HasDCacheParameters 152 with HasCircularQueuePtrHelper 153 with HasLoadHelper 154 with HasPerfEvents 155{ 156 val io = IO(new Bundle() { 157 // control 158 val redirect = Flipped(ValidIO(new Redirect)) 159 160 // from load unit s3 161 val enq = Vec(LoadPipelineWidth, Flipped(Decoupled(new LqWriteBundle))) 162 163 // from sta s1 164 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 165 166 // from std s1 167 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) 168 169 // queue-based replay 170 val replay = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) 171 val refill = Flipped(ValidIO(new Refill)) 172 val tl_d_channel = Input(new DcacheToLduForwardIO) 173 174 // from StoreQueue 175 val stAddrReadySqPtr = Input(new SqPtr) 176 val stAddrReadyVec = Input(Vec(StoreQueueSize, Bool())) 177 val stDataReadySqPtr = Input(new SqPtr) 178 val stDataReadyVec = Input(Vec(StoreQueueSize, Bool())) 179 180 // 181 val sqEmpty = Input(Bool()) 182 val lqFull = Output(Bool()) 183 val ldWbPtr = Input(new LqPtr) 184 val rarFull = Input(Bool()) 185 val rawFull = Input(Bool()) 186 val l2_hint = Input(Valid(new L2ToL1Hint())) 187 val tlbReplayDelayCycleCtrl = Vec(4, Input(UInt(ReSelectLen.W))) 188 189 val debugTopDown = new LoadQueueTopDownIO 190 }) 191 192 println("LoadQueueReplay size: " + LoadQueueReplaySize) 193 // LoadQueueReplay field: 194 // +-----------+---------+-------+-------------+--------+ 195 // | Allocated | MicroOp | VAddr | Cause | Flags | 196 // +-----------+---------+-------+-------------+--------+ 197 // Allocated : entry has been allocated already 198 // MicroOp : inst's microOp 199 // VAddr : virtual address 200 // Cause : replay cause 201 // Flags : rar/raw queue allocate flags 202 val allocated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) // The control signals need to explicitly indicate the initial value 203 val scheduled = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 204 val uop = Reg(Vec(LoadQueueReplaySize, new DynInst)) 205 val vaddrModule = Module(new LqVAddrModule( 206 gen = UInt(VAddrBits.W), 207 numEntries = LoadQueueReplaySize, 208 numRead = LoadPipelineWidth, 209 numWrite = LoadPipelineWidth, 210 numWBank = LoadQueueNWriteBanks, 211 numWDelay = 2, 212 numCamPort = 0)) 213 vaddrModule.io := DontCare 214 val debug_vaddr = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(VAddrBits.W)))) 215 val cause = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(LoadReplayCauses.allCauses.W)))) 216 val blocking = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 217 218 // freeliset: store valid entries index. 219 // +---+---+--------------+-----+-----+ 220 // | 0 | 1 | ...... | n-2 | n-1 | 221 // +---+---+--------------+-----+-----+ 222 val freeList = Module(new FreeList( 223 size = LoadQueueReplaySize, 224 allocWidth = LoadPipelineWidth, 225 freeWidth = 4, 226 enablePreAlloc = true, 227 moduleName = "LoadQueueReplay freelist" 228 )) 229 freeList.io := DontCare 230 /** 231 * used for re-select control 232 */ 233 val credit = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(ReSelectLen.W)))) 234 val selBlocked = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 235 // Ptrs to control which cycle to choose 236 val blockPtrTlb = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(2.W)))) 237 // Specific cycles to block 238 val blockCyclesTlb = Reg(Vec(4, UInt(ReSelectLen.W))) 239 blockCyclesTlb := io.tlbReplayDelayCycleCtrl 240 val blockSqIdx = Reg(Vec(LoadQueueReplaySize, new SqPtr)) 241 // DCache miss block 242 val missMSHRId = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U((log2Up(cfg.nMissEntries).W))))) 243 // Has this load already updated dcache replacement? 244 val replacementUpdated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 245 val missDbUpdated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 246 val trueCacheMissReplay = WireInit(VecInit(cause.map(_(LoadReplayCauses.C_DM)))) 247 val creditUpdate = WireInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(ReSelectLen.W)))) 248 (0 until LoadQueueReplaySize).map(i => { 249 creditUpdate(i) := Mux(credit(i) > 0.U(ReSelectLen.W), credit(i)-1.U(ReSelectLen.W), credit(i)) 250 selBlocked(i) := creditUpdate(i) =/= 0.U(ReSelectLen.W) || credit(i) =/= 0.U(ReSelectLen.W) 251 }) 252 val replayCarryReg = RegInit(VecInit(List.fill(LoadQueueReplaySize)(ReplayCarry(nWays, 0.U, false.B)))) 253 val dataInLastBeatReg = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) 254 255 /** 256 * Enqueue 257 */ 258 val canEnqueue = io.enq.map(_.valid) 259 val cancelEnq = io.enq.map(enq => enq.bits.uop.robIdx.needFlush(io.redirect)) 260 val needReplay = io.enq.map(enq => enq.bits.rep_info.need_rep) 261 val hasExceptions = io.enq.map(enq => ExceptionNO.selectByFu(enq.bits.uop.exceptionVec, LduCfg).asUInt.orR && !enq.bits.tlbMiss) 262 val loadReplay = io.enq.map(enq => enq.bits.isLoadReplay) 263 val needEnqueue = VecInit((0 until LoadPipelineWidth).map(w => { 264 canEnqueue(w) && !cancelEnq(w) && needReplay(w) && !hasExceptions(w) 265 })) 266 val canFreeVec = VecInit((0 until LoadPipelineWidth).map(w => { 267 canEnqueue(w) && loadReplay(w) && (!needReplay(w) || hasExceptions(w)) 268 })) 269 270 // select LoadPipelineWidth valid index. 271 val lqFull = freeList.io.empty 272 val lqFreeNums = freeList.io.validCount 273 274 // replay logic 275 // release logic generation 276 val storeAddrInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) 277 val storeDataInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) 278 val addrNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) 279 val dataNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) 280 val storeAddrValidVec = addrNotBlockVec.asUInt | storeAddrInSameCycleVec.asUInt 281 val storeDataValidVec = dataNotBlockVec.asUInt | storeDataInSameCycleVec.asUInt 282 283 // store data valid check 284 val stAddrReadyVec = io.stAddrReadyVec 285 val stDataReadyVec = io.stDataReadyVec 286 287 for (i <- 0 until LoadQueueReplaySize) { 288 // dequeue 289 // FIXME: store*Ptr is not accurate 290 dataNotBlockVec(i) := !isBefore(io.stDataReadySqPtr, blockSqIdx(i)) || stDataReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing 291 addrNotBlockVec(i) := !isBefore(io.stAddrReadySqPtr, blockSqIdx(i)) || stAddrReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing 292 293 // store address execute 294 storeAddrInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { 295 io.storeAddrIn(w).valid && 296 !io.storeAddrIn(w).bits.miss && 297 blockSqIdx(i) === io.storeAddrIn(w).bits.uop.sqIdx 298 })).asUInt.orR // for better timing 299 300 // store data execute 301 storeDataInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { 302 io.storeDataIn(w).valid && 303 blockSqIdx(i) === io.storeDataIn(w).bits.uop.sqIdx 304 })).asUInt.orR // for better timing 305 306 } 307 308 // store addr issue check 309 val stAddrDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) 310 (0 until LoadQueueReplaySize).map(i => { 311 stAddrDeqVec(i) := allocated(i) && storeAddrValidVec(i) 312 }) 313 314 // store data issue check 315 val stDataDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) 316 (0 until LoadQueueReplaySize).map(i => { 317 stDataDeqVec(i) := allocated(i) && storeDataValidVec(i) 318 }) 319 320 // update blocking condition 321 (0 until LoadQueueReplaySize).map(i => { 322 // case C_MA 323 when (cause(i)(LoadReplayCauses.C_MA)) { 324 blocking(i) := Mux(stAddrDeqVec(i), false.B, blocking(i)) 325 } 326 // case C_TM 327 when (cause(i)(LoadReplayCauses.C_TM)) { 328 blocking(i) := Mux(creditUpdate(i) === 0.U, false.B, blocking(i)) 329 } 330 // case C_FF 331 when (cause(i)(LoadReplayCauses.C_FF)) { 332 blocking(i) := Mux(stDataDeqVec(i), false.B, blocking(i)) 333 } 334 // case C_DM 335 when (cause(i)(LoadReplayCauses.C_DM)) { 336 blocking(i) := Mux(io.tl_d_channel.valid && io.tl_d_channel.mshrid === missMSHRId(i), false.B, blocking(i)) 337 } 338 // case C_RAR 339 when (cause(i)(LoadReplayCauses.C_RAR)) { 340 blocking(i) := Mux((!io.rarFull || !isAfter(uop(i).lqIdx, io.ldWbPtr)), false.B, blocking(i)) 341 } 342 // case C_RAW 343 when (cause(i)(LoadReplayCauses.C_RAW)) { 344 blocking(i) := Mux((!io.rawFull || !isAfter(uop(i).sqIdx, io.stAddrReadySqPtr)), false.B, blocking(i)) 345 } 346 }) 347 348 // Replay is splitted into 3 stages 349 require((LoadQueueReplaySize % LoadPipelineWidth) == 0) 350 def getRemBits(input: UInt)(rem: Int): UInt = { 351 VecInit((0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt 352 } 353 354 def getRemSeq(input: Seq[Seq[Bool]])(rem: Int) = { 355 (0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) }) 356 } 357 358 // stage1: select 2 entries and read their vaddr 359 val s0_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(LoadQueueReplaySize.W)))) 360 val s1_can_go = Wire(Vec(LoadPipelineWidth, Bool())) 361 val s1_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize + 1).W)))) 362 val s2_can_go = Wire(Vec(LoadPipelineWidth, Bool())) 363 val s2_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize + 1).W)))) 364 365 // generate mask 366 val needCancel = Wire(Vec(LoadQueueReplaySize, Bool())) 367 // generate enq mask 368 val enqIndexOH = Wire(Vec(LoadPipelineWidth, UInt(LoadQueueReplaySize.W))) 369 val s0_loadEnqFireMask = io.enq.map(x => x.fire && !x.bits.isLoadReplay).zip(enqIndexOH).map(x => Mux(x._1, x._2, 0.U)) 370 val s0_remLoadEnqFireVec = s0_loadEnqFireMask.map(x => VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(x)(rem)))) 371 val s0_remEnqSelVec = Seq.tabulate(LoadPipelineWidth)(w => VecInit(s0_remLoadEnqFireVec.map(x => x(w)))) 372 373 // generate free mask 374 val s0_loadFreeSelMask = needCancel.asUInt 375 val s0_remFreeSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(s0_loadFreeSelMask)(rem))) 376 377 // l2 hint wakes up cache missed load 378 // l2 will send GrantData in next 2/3 cycle, wake up the missed load early and sent them to load pipe, so them will hit the data in D channel or mshr in load S1 379 val s0_loadHintWakeMask = VecInit((0 until LoadQueueReplaySize).map(i => { 380 allocated(i) && !scheduled(i) && cause(i)(LoadReplayCauses.C_DM) && blocking(i) && missMSHRId(i) === io.l2_hint.bits.sourceId && io.l2_hint.valid && !needCancel(i) 381 })).asUInt 382 // l2 will send 2 beats data in 2 cycles, so if data needed by this load is in first beat, select it this cycle, otherwise next cycle 383 val s0_loadHintSelMask = s0_loadHintWakeMask & VecInit(dataInLastBeatReg.map(!_)).asUInt 384 val s0_remLoadHintSelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadHintSelMask)(rem))) 385 val s0_remHintSelValidVec = VecInit((0 until LoadPipelineWidth).map(rem => ParallelORR(s0_remLoadHintSelMask(rem)))) 386 val s0_hintSelValid = s0_loadHintSelMask.orR 387 388 // wake up cache missed load 389 (0 until LoadQueueReplaySize).foreach(i => { 390 when(s0_loadHintWakeMask(i)) { 391 blocking(i) := false.B 392 creditUpdate(i) := 0.U 393 } 394 }) 395 396 // generate replay mask 397 // replay select priority is given as follow 398 // 1. hint wake up load 399 // 2. higher priority load 400 // 3. lower priority load 401 val s0_loadHigherPriorityReplaySelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 402 val blocked = selBlocked(i) || blocking(i) 403 val hasHigherPriority = cause(i)(LoadReplayCauses.C_DM) || cause(i)(LoadReplayCauses.C_FF) 404 allocated(i) && !scheduled(i) && !blocked && hasHigherPriority && !needCancel(i) 405 })).asUInt // use uint instead vec to reduce verilog lines 406 val s0_remLoadHigherPriorityReplaySelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadHigherPriorityReplaySelMask)(rem))) 407 val s0_loadLowerPriorityReplaySelMask = VecInit((0 until LoadQueueReplaySize).map(i => { 408 val blocked = selBlocked(i) || blocking(i) 409 val hasLowerPriority = !cause(i)(LoadReplayCauses.C_DM) && !cause(i)(LoadReplayCauses.C_FF) 410 allocated(i) && !scheduled(i) && !blocked && hasLowerPriority && !needCancel(i) 411 })).asUInt // use uint instead vec to reduce verilog lines 412 val s0_remLoadLowerPriorityReplaySelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadLowerPriorityReplaySelMask)(rem))) 413 val s0_loadNormalReplaySelMask = s0_loadLowerPriorityReplaySelMask | s0_loadHigherPriorityReplaySelMask | s0_loadHintSelMask 414 val s0_remNormalReplaySelVec = VecInit((0 until LoadPipelineWidth).map(rem => s0_remLoadLowerPriorityReplaySelMask(rem) | s0_remLoadHigherPriorityReplaySelMask(rem) | s0_remLoadHintSelMask(rem))) 415 val s0_remPriorityReplaySelVec = VecInit((0 until LoadPipelineWidth).map(rem => { 416 Mux(s0_remHintSelValidVec(rem), s0_remLoadHintSelMask(rem), 417 Mux(ParallelORR(s0_remLoadHigherPriorityReplaySelMask(rem)), s0_remLoadHigherPriorityReplaySelMask(rem), s0_remLoadLowerPriorityReplaySelMask(rem))) 418 })) 419 /****************************************************************************************************** 420 * WARNING: Make sure that OldestSelectStride must less than or equal stages of load pipeline. * 421 ****************************************************************************************************** 422 */ 423 val OldestSelectStride = 4 424 val oldestPtrExt = (0 until OldestSelectStride).map(i => io.ldWbPtr + i.U) 425 val s0_oldestMatchMaskVec = (0 until LoadQueueReplaySize).map(i => (0 until OldestSelectStride).map(j => s0_loadNormalReplaySelMask(i) && uop(i).lqIdx === oldestPtrExt(j))) 426 val s0_remOldsetMatchMaskVec = (0 until LoadPipelineWidth).map(rem => getRemSeq(s0_oldestMatchMaskVec.map(_.take(1)))(rem)) 427 val s0_remOlderMatchMaskVec = (0 until LoadPipelineWidth).map(rem => getRemSeq(s0_oldestMatchMaskVec.map(_.drop(1)))(rem)) 428 val s0_remOldestSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => { 429 VecInit((0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { 430 Mux(ParallelORR(s0_remOldsetMatchMaskVec(rem).map(_(0))), s0_remOldsetMatchMaskVec(rem)(i)(0), s0_remOlderMatchMaskVec(rem)(i).reduce(_|_)) 431 })).asUInt 432 })) 433 val s0_remOldestHintSelVec = s0_remOldestSelVec.zip(s0_remLoadHintSelMask).map { 434 case(oldestVec, hintVec) => oldestVec & hintVec 435 } 436 437 // select oldest logic 438 s0_oldestSel := VecInit((0 until LoadPipelineWidth).map(rport => { 439 // select enqueue earlest inst 440 val ageOldest = AgeDetector(LoadQueueReplaySize / LoadPipelineWidth, s0_remEnqSelVec(rport), s0_remFreeSelVec(rport), s0_remPriorityReplaySelVec(rport)) 441 assert(!(ageOldest.valid && PopCount(ageOldest.bits) > 1.U), "oldest index must be one-hot!") 442 val ageOldestValid = ageOldest.valid 443 val ageOldestIndexOH = ageOldest.bits 444 445 // select program order oldest 446 val l2HintFirst = io.l2_hint.valid && ParallelORR(s0_remOldestHintSelVec(rport)) 447 val issOldestValid = l2HintFirst || ParallelORR(s0_remOldestSelVec(rport)) 448 val issOldestIndexOH = Mux(l2HintFirst, PriorityEncoderOH(s0_remOldestHintSelVec(rport)), PriorityEncoderOH(s0_remOldestSelVec(rport))) 449 450 val oldest = Wire(Valid(UInt())) 451 val oldestSel = Mux(issOldestValid, issOldestIndexOH, ageOldestIndexOH) 452 val oldestBitsVec = Wire(Vec(LoadQueueReplaySize, Bool())) 453 454 require((LoadQueueReplaySize % LoadPipelineWidth) == 0) 455 oldestBitsVec.foreach(e => e := false.B) 456 for (i <- 0 until LoadQueueReplaySize / LoadPipelineWidth) { 457 oldestBitsVec(i * LoadPipelineWidth + rport) := oldestSel(i) 458 } 459 460 oldest.valid := ageOldest.valid || issOldestValid 461 oldest.bits := oldestBitsVec.asUInt 462 oldest 463 })) 464 465 466 // Replay port reorder 467 class BalanceEntry extends XSBundle { 468 val balance = Bool() 469 val index = UInt(log2Up(LoadQueueReplaySize).W) 470 val port = UInt(log2Up(LoadPipelineWidth).W) 471 } 472 473 def balanceReOrder(sel: Seq[ValidIO[BalanceEntry]]): Seq[ValidIO[BalanceEntry]] = { 474 require(sel.length > 0) 475 val balancePick = ParallelPriorityMux(sel.map(x => (x.valid && x.bits.balance) -> x)) 476 val reorderSel = Wire(Vec(sel.length, ValidIO(new BalanceEntry))) 477 (0 until sel.length).map(i => 478 if (i == 0) { 479 when (balancePick.valid && balancePick.bits.balance) { 480 reorderSel(i) := balancePick 481 } .otherwise { 482 reorderSel(i) := sel(i) 483 } 484 } else { 485 when (balancePick.valid && balancePick.bits.balance && i.U === balancePick.bits.port) { 486 reorderSel(i) := sel(0) 487 } .otherwise { 488 reorderSel(i) := sel(i) 489 } 490 } 491 ) 492 reorderSel 493 } 494 495 // stage2: send replay request to load unit 496 // replay cold down 497 val ColdDownCycles = 16 498 val coldCounter = RegInit(VecInit(List.fill(LoadPipelineWidth)(0.U(log2Up(ColdDownCycles).W)))) 499 val ColdDownThreshold = Wire(UInt(log2Up(ColdDownCycles).W)) 500 ColdDownThreshold := Constantin.createRecord("ColdDownThreshold_"+p(XSCoreParamsKey).HartId.toString(), initValue = 12.U) 501 assert(ColdDownCycles.U > ColdDownThreshold, "ColdDownCycles must great than ColdDownThreshold!") 502 503 def replayCanFire(i: Int) = coldCounter(i) >= 0.U && coldCounter(i) < ColdDownThreshold 504 def coldDownNow(i: Int) = coldCounter(i) >= ColdDownThreshold 505 506 val s1_balanceOldestSelExt = (0 until LoadPipelineWidth).map(i => { 507 val wrapper = Wire(Valid(new BalanceEntry)) 508 wrapper.valid := s1_oldestSel(i).valid 509 wrapper.bits.balance := cause(s1_oldestSel(i).bits)(LoadReplayCauses.C_BC) 510 wrapper.bits.index := s1_oldestSel(i).bits 511 wrapper.bits.port := i.U 512 wrapper 513 }) 514 515 val s1_balanceOldestSel = VecInit(balanceReOrder(s1_balanceOldestSelExt)) 516 for (i <- 0 until LoadPipelineWidth) { 517 val s0_can_go = s1_can_go(s1_balanceOldestSel(i).bits.port) || uop(s1_oldestSel(i).bits).robIdx.needFlush(io.redirect) 518 val s0_oldestSelIndexOH = s0_oldestSel(i).bits // one-hot 519 s1_oldestSel(i).valid := RegEnable(s0_oldestSel(i).valid, s0_can_go) 520 s1_oldestSel(i).bits := RegEnable(OHToUInt(s0_oldestSel(i).bits), s0_can_go) 521 522 for (j <- 0 until LoadQueueReplaySize) { 523 when (s0_can_go && s0_oldestSel(i).valid && s0_oldestSelIndexOH(j)) { 524 scheduled(j) := true.B 525 } 526 } 527 } 528 val s2_cancelReplay = Wire(Vec(LoadPipelineWidth, Bool())) 529 for (i <- 0 until LoadPipelineWidth) { 530 val s1_cancel = uop(s1_balanceOldestSel(i).bits.index).robIdx.needFlush(io.redirect) 531 val s1_oldestSelV = s1_balanceOldestSel(i).valid && !s1_cancel 532 s1_can_go(i) := Mux(s2_oldestSel(i).valid && !s2_cancelReplay(i), io.replay(i).ready && replayCanFire(i), true.B) 533 s2_oldestSel(i).valid := RegEnable(s1_oldestSelV, s1_can_go(i)) 534 s2_oldestSel(i).bits := RegEnable(s1_balanceOldestSel(i).bits.index, s1_can_go(i)) 535 536 vaddrModule.io.ren(i) := s1_balanceOldestSel(i).valid && s1_can_go(i) 537 vaddrModule.io.raddr(i) := s1_balanceOldestSel(i).bits.index 538 } 539 540 for (i <- 0 until LoadPipelineWidth) { 541 val s1_replayIdx = s1_balanceOldestSel(i).bits.index 542 val s2_replayUop = RegEnable(uop(s1_replayIdx), s1_can_go(i)) 543 val s2_replayMSHRId = RegEnable(missMSHRId(s1_replayIdx), s1_can_go(i)) 544 val s2_replacementUpdated = RegEnable(replacementUpdated(s1_replayIdx), s1_can_go(i)) 545 val s2_missDbUpdated = RegEnable(missDbUpdated(s1_replayIdx), s1_can_go(i)) 546 val s2_replayCauses = RegEnable(cause(s1_replayIdx), s1_can_go(i)) 547 val s2_replayCarry = RegEnable(replayCarryReg(s1_replayIdx), s1_can_go(i)) 548 val s2_replayCacheMissReplay = RegEnable(trueCacheMissReplay(s1_replayIdx), s1_can_go(i)) 549 s2_cancelReplay(i) := s2_replayUop.robIdx.needFlush(io.redirect) 550 551 s2_can_go(i) := DontCare 552 io.replay(i).valid := s2_oldestSel(i).valid && !s2_cancelReplay(i) && replayCanFire(i) 553 io.replay(i).bits := DontCare 554 io.replay(i).bits.uop := s2_replayUop 555 io.replay(i).bits.vaddr := vaddrModule.io.rdata(i) 556 io.replay(i).bits.isFirstIssue := false.B 557 io.replay(i).bits.isLoadReplay := true.B 558 io.replay(i).bits.replayCarry := s2_replayCarry 559 io.replay(i).bits.mshrid := s2_replayMSHRId 560 io.replay(i).bits.replacementUpdated := s2_replacementUpdated 561 io.replay(i).bits.missDbUpdated := s2_missDbUpdated 562 io.replay(i).bits.forward_tlDchannel := s2_replayCauses(LoadReplayCauses.C_DM) 563 io.replay(i).bits.schedIndex := s2_oldestSel(i).bits 564 565 when (io.replay(i).fire) { 566 XSError(!allocated(s2_oldestSel(i).bits), p"LoadQueueReplay: why replay an invalid entry ${s2_oldestSel(i).bits} ?") 567 } 568 } 569 570 // update cold counter 571 val lastReplay = RegNext(VecInit(io.replay.map(_.fire))) 572 for (i <- 0 until LoadPipelineWidth) { 573 when (lastReplay(i) && io.replay(i).fire) { 574 coldCounter(i) := coldCounter(i) + 1.U 575 } .elsewhen (coldDownNow(i)) { 576 coldCounter(i) := coldCounter(i) + 1.U 577 } .otherwise { 578 coldCounter(i) := 0.U 579 } 580 } 581 582 when(io.refill.valid) { 583 XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) 584 } 585 586 // LoadQueueReplay deallocate 587 val freeMaskVec = Wire(Vec(LoadQueueReplaySize, Bool())) 588 589 // init 590 freeMaskVec.map(e => e := false.B) 591 592 // Allocate logic 593 val newEnqueue = (0 until LoadPipelineWidth).map(i => { 594 needEnqueue(i) && !io.enq(i).bits.isLoadReplay 595 }) 596 597 for ((enq, w) <- io.enq.zipWithIndex) { 598 vaddrModule.io.wen(w) := false.B 599 freeList.io.doAllocate(w) := false.B 600 601 freeList.io.allocateReq(w) := true.B 602 603 // Allocated ready 604 val offset = PopCount(newEnqueue.take(w)) 605 val canAccept = freeList.io.canAllocate(offset) 606 val enqIndex = Mux(enq.bits.isLoadReplay, enq.bits.schedIndex, freeList.io.allocateSlot(offset)) 607 enqIndexOH(w) := UIntToOH(enqIndex) 608 enq.ready := Mux(enq.bits.isLoadReplay, true.B, canAccept) 609 610 when (needEnqueue(w) && enq.ready) { 611 612 val debug_robIdx = enq.bits.uop.robIdx.asUInt 613 XSError(allocated(enqIndex) && !enq.bits.isLoadReplay, p"LoadQueueReplay: can not accept more load, check: ldu $w, robIdx $debug_robIdx!") 614 XSError(hasExceptions(w), p"LoadQueueReplay: The instruction has exception, it can not be replay, check: ldu $w, robIdx $debug_robIdx!") 615 616 freeList.io.doAllocate(w) := !enq.bits.isLoadReplay 617 618 // Allocate new entry 619 allocated(enqIndex) := true.B 620 scheduled(enqIndex) := false.B 621 uop(enqIndex) := enq.bits.uop 622 623 vaddrModule.io.wen(w) := true.B 624 vaddrModule.io.waddr(w) := enqIndex 625 vaddrModule.io.wdata(w) := enq.bits.vaddr 626 debug_vaddr(enqIndex) := enq.bits.vaddr 627 628 /** 629 * used for feedback and replay 630 */ 631 // set flags 632 val replayInfo = enq.bits.rep_info 633 val dataInLastBeat = replayInfo.last_beat 634 cause(enqIndex) := replayInfo.cause.asUInt 635 636 // update credit 637 val blockCyclesTlbPtr = blockPtrTlb(enqIndex) 638 639 // init 640 blocking(enqIndex) := true.B 641 creditUpdate(enqIndex) := 0.U 642 643 // update blocking pointer 644 when (replayInfo.cause(LoadReplayCauses.C_BC) || 645 replayInfo.cause(LoadReplayCauses.C_NK) || 646 replayInfo.cause(LoadReplayCauses.C_DR)) { 647 // normal case: bank conflict or schedule error or dcache replay 648 // can replay next cycle 649 blocking(enqIndex) := false.B 650 } 651 652 // special case: tlb miss 653 when (replayInfo.cause(LoadReplayCauses.C_TM)) { 654 creditUpdate(enqIndex) := blockCyclesTlb(blockCyclesTlbPtr) 655 blockPtrTlb(enqIndex) := Mux(blockPtrTlb(enqIndex) === 3.U(2.W), blockPtrTlb(enqIndex), blockPtrTlb(enqIndex) + 1.U(2.W)) 656 } 657 658 // special case: dcache miss 659 when (replayInfo.cause(LoadReplayCauses.C_DM) && enq.bits.handledByMSHR) { 660 blocking(enqIndex) := !replayInfo.full_fwd && // dcache miss 661 !(io.tl_d_channel.valid && io.tl_d_channel.mshrid === replayInfo.mshr_id) // no refill in this cycle 662 } 663 664 // special case: st-ld violation 665 when (replayInfo.cause(LoadReplayCauses.C_MA)) { 666 blockSqIdx(enqIndex) := replayInfo.addr_inv_sq_idx 667 } 668 669 // special case: data forward fail 670 when (replayInfo.cause(LoadReplayCauses.C_FF)) { 671 blockSqIdx(enqIndex) := replayInfo.data_inv_sq_idx 672 } 673 // extra info 674 replayCarryReg(enqIndex) := replayInfo.rep_carry 675 replacementUpdated(enqIndex) := enq.bits.replacementUpdated 676 missDbUpdated(enqIndex) := enq.bits.missDbUpdated 677 // update mshr_id only when the load has already been handled by mshr 678 when(enq.bits.handledByMSHR) { 679 missMSHRId(enqIndex) := replayInfo.mshr_id 680 } 681 dataInLastBeatReg(enqIndex) := dataInLastBeat 682 } 683 684 // 685 val schedIndex = enq.bits.schedIndex 686 when (enq.valid && enq.bits.isLoadReplay) { 687 when (!needReplay(w) || hasExceptions(w)) { 688 allocated(schedIndex) := false.B 689 freeMaskVec(schedIndex) := true.B 690 } .otherwise { 691 scheduled(schedIndex) := false.B 692 } 693 } 694 } 695 696 // misprediction recovery / exception redirect 697 for (i <- 0 until LoadQueueReplaySize) { 698 needCancel(i) := uop(i).robIdx.needFlush(io.redirect) && allocated(i) 699 when (needCancel(i)) { 700 allocated(i) := false.B 701 freeMaskVec(i) := true.B 702 } 703 } 704 705 freeList.io.free := freeMaskVec.asUInt 706 707 io.lqFull := lqFull 708 709 // Topdown 710 val robHeadVaddr = io.debugTopDown.robHeadVaddr 711 712 val uop_wrapper = Wire(Vec(LoadQueueReplaySize, new XSBundleWithMicroOp)) 713 (uop_wrapper.zipWithIndex).foreach { 714 case (u, i) => { 715 u.uop := uop(i) 716 } 717 } 718 val lq_match_vec = (debug_vaddr.zip(allocated)).map{case(va, alloc) => alloc && (va === robHeadVaddr.bits)} 719 val rob_head_lq_match = ParallelOperation(lq_match_vec.zip(uop_wrapper), (a: Tuple2[Bool, XSBundleWithMicroOp], b: Tuple2[Bool, XSBundleWithMicroOp]) => { 720 val (a_v, a_uop) = (a._1, a._2) 721 val (b_v, b_uop) = (b._1, b._2) 722 723 val res = Mux(a_v && b_v, Mux(isAfter(a_uop.uop.robIdx, b_uop.uop.robIdx), b_uop, a_uop), 724 Mux(a_v, a_uop, 725 Mux(b_v, b_uop, 726 a_uop))) 727 (a_v || b_v, res) 728 }) 729 730 val lq_match_bits = rob_head_lq_match._2.uop 731 val lq_match = rob_head_lq_match._1 && robHeadVaddr.valid 732 val lq_match_idx = lq_match_bits.lqIdx.value 733 734 val rob_head_tlb_miss = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_TM) 735 val rob_head_nuke = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_NK) 736 val rob_head_mem_amb = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_MA) 737 val rob_head_confilct_replay = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_BC) 738 val rob_head_forward_fail = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_FF) 739 val rob_head_mshrfull_replay = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_DR) 740 val rob_head_dcache_miss = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_DM) 741 val rob_head_rar_nack = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_RAR) 742 val rob_head_raw_nack = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_RAW) 743 val rob_head_other_replay = lq_match && (rob_head_rar_nack || rob_head_raw_nack || rob_head_forward_fail) 744 745 val rob_head_vio_replay = rob_head_nuke || rob_head_mem_amb 746 747 val rob_head_miss_in_dtlb = io.debugTopDown.robHeadMissInDTlb 748 io.debugTopDown.robHeadTlbReplay := rob_head_tlb_miss && !rob_head_miss_in_dtlb 749 io.debugTopDown.robHeadTlbMiss := rob_head_tlb_miss && rob_head_miss_in_dtlb 750 io.debugTopDown.robHeadLoadVio := rob_head_vio_replay 751 io.debugTopDown.robHeadLoadMSHR := rob_head_mshrfull_replay 752 io.debugTopDown.robHeadOtherReplay := rob_head_other_replay 753 val perfValidCount = RegNext(PopCount(allocated)) 754 755 // perf cnt 756 val enqNumber = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay)) 757 val deqNumber = PopCount(io.replay.map(_.fire)) 758 val deqBlockCount = PopCount(io.replay.map(r => r.valid && !r.ready)) 759 val replayTlbMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_TM))) 760 val replayMemAmbCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_NK))) 761 val replayNukeCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_MA))) 762 val replayRARRejectCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_RAR))) 763 val replayRAWRejectCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_RAW))) 764 val replayBankConflictCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_BC))) 765 val replayDCacheReplayCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_DR))) 766 val replayForwardFailCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_FF))) 767 val replayDCacheMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_DM))) 768 XSPerfAccumulate("enq", enqNumber) 769 XSPerfAccumulate("deq", deqNumber) 770 XSPerfAccumulate("deq_block", deqBlockCount) 771 XSPerfAccumulate("replay_full", io.lqFull) 772 XSPerfAccumulate("replay_rar_nack", replayRARRejectCount) 773 XSPerfAccumulate("replay_raw_nack", replayRAWRejectCount) 774 XSPerfAccumulate("replay_nuke", replayNukeCount) 775 XSPerfAccumulate("replay_mem_amb", replayMemAmbCount) 776 XSPerfAccumulate("replay_tlb_miss", replayTlbMissCount) 777 XSPerfAccumulate("replay_bank_conflict", replayBankConflictCount) 778 XSPerfAccumulate("replay_dcache_replay", replayDCacheReplayCount) 779 XSPerfAccumulate("replay_forward_fail", replayForwardFailCount) 780 XSPerfAccumulate("replay_dcache_miss", replayDCacheMissCount) 781 XSPerfAccumulate("replay_hint_wakeup", s0_hintSelValid) 782 783 val perfEvents: Seq[(String, UInt)] = Seq( 784 ("enq", enqNumber), 785 ("deq", deqNumber), 786 ("deq_block", deqBlockCount), 787 ("replay_full", io.lqFull), 788 ("replay_rar_nack", replayRARRejectCount), 789 ("replay_raw_nack", replayRAWRejectCount), 790 ("replay_nuke", replayNukeCount), 791 ("replay_mem_amb", replayMemAmbCount), 792 ("replay_tlb_miss", replayTlbMissCount), 793 ("replay_bank_conflict", replayBankConflictCount), 794 ("replay_dcache_replay", replayDCacheReplayCount), 795 ("replay_forward_fail", replayForwardFailCount), 796 ("replay_dcache_miss", replayDCacheMissCount), 797 ) 798 generatePerfEvent() 799 // end 800} 801