1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.backend.rob.RobLsqIO 26import xiangshan.cache._ 27import xiangshan.frontend.FtqPtr 28import xiangshan.ExceptionNO._ 29 30class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 31 p => p(XSCoreParamsKey).LoadQueueSize 32){ 33} 34 35object LqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 37 val ptr = Wire(new LqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44trait HasLoadHelper { this: XSModule => 45 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 46 val fpWen = uop.ctrl.fpWen 47 LookupTree(uop.ctrl.fuOpType, List( 48 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 49 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 50 /* 51 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 52 Any operation that writes a narrower result to an f register must write 53 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 54 */ 55 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 56 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 57 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 58 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 59 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 60 )) 61 } 62} 63 64class LqEnqIO(implicit p: Parameters) extends XSBundle { 65 val canAccept = Output(Bool()) 66 val sqCanAccept = Input(Bool()) 67 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 68 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 69 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 70} 71 72class LqTriggerIO(implicit p: Parameters) extends XSBundle { 73 val hitLoadAddrTriggerHitVec = Input(Vec(3, Bool())) 74 val lqLoadAddrTriggerHitVec = Output(Vec(3, Bool())) 75} 76 77// Load Queue 78class LoadQueue(implicit p: Parameters) extends XSModule 79 with HasDCacheParameters 80 with HasCircularQueuePtrHelper 81 with HasLoadHelper 82 with HasPerfEvents 83{ 84 val io = IO(new Bundle() { 85 val enq = new LqEnqIO 86 val brqRedirect = Flipped(ValidIO(new Redirect)) 87 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqWriteBundle))) 88 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 89 val s2_load_data_forwarded = Vec(LoadPipelineWidth, Input(Bool())) 90 val s3_delayed_load_error = Vec(LoadPipelineWidth, Input(Bool())) 91 val s2_dcache_require_replay = Vec(LoadPipelineWidth, Input(Bool())) 92 val s3_replay_from_fetch = Vec(LoadPipelineWidth, Input(Bool())) 93 val ldout = Vec(LoadPipelineWidth, DecoupledIO(new ExuOutput)) // writeback int load 94 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 95 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 96 val rob = Flipped(new RobLsqIO) 97 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 98 val refill = Flipped(ValidIO(new Refill)) 99 val release = Flipped(ValidIO(new Release)) 100 val uncache = new UncacheWordIO 101 val exceptionAddr = new ExceptionAddrIO 102 val lqFull = Output(Bool()) 103 val lqCancelCnt = Output(UInt(log2Up(LoadQueueSize + 1).W)) 104 val trigger = Vec(LoadPipelineWidth, new LqTriggerIO) 105 }) 106 107 println("LoadQueue: size:" + LoadQueueSize) 108 109 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 110 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 111 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 112 dataModule.io := DontCare 113 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = LoadPipelineWidth + 1, numWrite = LoadPipelineWidth)) 114 vaddrModule.io := DontCare 115 val vaddrTriggerResultModule = Module(new SyncDataModuleTemplate(Vec(3, Bool()), LoadQueueSize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth)) 116 vaddrTriggerResultModule.io := DontCare 117 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 118 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 119 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 120 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 121 val error = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been corrupted 122 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 123 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 124 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 125 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 126 127 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 128 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 129 130 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 131 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 132 val deqPtrExtNext = Wire(new LqPtr) 133 134 val enqPtr = enqPtrExt(0).value 135 val deqPtr = deqPtrExt.value 136 137 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 138 val allowEnqueue = validCount <= (LoadQueueSize - LoadPipelineWidth).U 139 140 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 141 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 142 143 val commitCount = RegNext(io.rob.lcommit) 144 145 val release1cycle = io.release 146 val release2cycle = RegNext(io.release) 147 val release2cycle_dup_lsu = RegNext(io.release) 148 149 /** 150 * Enqueue at dispatch 151 * 152 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 153 */ 154 io.enq.canAccept := allowEnqueue 155 156 val canEnqueue = io.enq.req.map(_.valid) 157 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 158 for (i <- 0 until io.enq.req.length) { 159 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 160 val lqIdx = enqPtrExt(offset) 161 val index = io.enq.req(i).bits.lqIdx.value 162 when (canEnqueue(i) && !enqCancel(i)) { 163 uop(index).robIdx := io.enq.req(i).bits.robIdx 164 allocated(index) := true.B 165 datavalid(index) := false.B 166 writebacked(index) := false.B 167 released(index) := false.B 168 miss(index) := false.B 169 pending(index) := false.B 170 error(index) := false.B 171 XSError(!io.enq.canAccept || !io.enq.sqCanAccept, s"must accept $i\n") 172 XSError(index =/= lqIdx.value, s"must be the same entry $i\n") 173 } 174 io.enq.resp(i) := lqIdx 175 } 176 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 177 178 /** 179 * Writeback load from load units 180 * 181 * Most load instructions writeback to regfile at the same time. 182 * However, 183 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 184 * (2) For an mmio instruction without exceptions, it does not write back. 185 * The mmio instruction will be sent to lower level when it reaches ROB's head. 186 * After uncache response, it will write back through arbiter with loadUnit. 187 * (3) For cache misses, it is marked miss and sent to dcache later. 188 * After cache refills, it will write back through arbiter with loadUnit. 189 */ 190 for (i <- 0 until LoadPipelineWidth) { 191 dataModule.io.wb.wen(i) := false.B 192 vaddrTriggerResultModule.io.wen(i) := false.B 193 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 194 195 // most lq status need to be updated immediately after load writeback to lq 196 // flag bits in lq needs to be updated accurately 197 when(io.loadIn(i).fire()) { 198 when(io.loadIn(i).bits.miss) { 199 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 200 io.loadIn(i).bits.uop.lqIdx.asUInt, 201 io.loadIn(i).bits.uop.cf.pc, 202 io.loadIn(i).bits.vaddr, 203 io.loadIn(i).bits.paddr, 204 io.loadIn(i).bits.data, 205 io.loadIn(i).bits.mask, 206 io.loadIn(i).bits.forwardData.asUInt, 207 io.loadIn(i).bits.forwardMask.asUInt, 208 io.loadIn(i).bits.mmio 209 ) 210 }.otherwise { 211 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 212 io.loadIn(i).bits.uop.lqIdx.asUInt, 213 io.loadIn(i).bits.uop.cf.pc, 214 io.loadIn(i).bits.vaddr, 215 io.loadIn(i).bits.paddr, 216 io.loadIn(i).bits.data, 217 io.loadIn(i).bits.mask, 218 io.loadIn(i).bits.forwardData.asUInt, 219 io.loadIn(i).bits.forwardMask.asUInt, 220 io.loadIn(i).bits.mmio 221 )} 222 if(EnableFastForward){ 223 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.s2_load_data_forwarded(i)) && 224 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 225 !io.s2_dcache_require_replay(i) // do not writeback if that inst will be resend from rs 226 } else { 227 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.s2_load_data_forwarded(i)) && 228 !io.loadIn(i).bits.mmio // mmio data is not valid until we finished uncache access 229 } 230 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 231 232 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 233 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 234 235 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 236 if(EnableFastForward){ 237 miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i) && !io.s2_dcache_require_replay(i) 238 } else { 239 miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i) 240 } 241 pending(loadWbIndex) := io.loadIn(i).bits.mmio 242 released(loadWbIndex) := release2cycle.valid && 243 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) || 244 release1cycle.valid && 245 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release1cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) 246 } 247 248 // data bit in lq can be updated when load_s2 valid 249 // when(io.loadIn(i).bits.lq_data_wen){ 250 // val loadWbData = Wire(new LQDataEntry) 251 // loadWbData.paddr := io.loadIn(i).bits.paddr 252 // loadWbData.mask := io.loadIn(i).bits.mask 253 // loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 254 // loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 255 // dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 256 // dataModule.io.wb.wen(i) := true.B 257 258 // // dirty code for load instr 259 // uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest 260 // uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf 261 // uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl 262 // uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 263 264 // vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 265 // vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 266 267 // vaddrTriggerResultModule.io.wen(i) := true.B 268 // } 269 270 // dirty code to reduce load_s2.valid fanout 271 when(io.loadIn(i).bits.lq_data_wen_dup(0)){ 272 val loadWbData = Wire(new LQDataEntry) 273 loadWbData.paddr := io.loadIn(i).bits.paddr 274 loadWbData.mask := io.loadIn(i).bits.mask 275 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 276 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 277 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 278 dataModule.io.wb.wen(i) := true.B 279 } 280 // dirty code for load instr 281 when(io.loadIn(i).bits.lq_data_wen_dup(1)){ 282 uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest 283 } 284 when(io.loadIn(i).bits.lq_data_wen_dup(2)){ 285 uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf 286 } 287 when(io.loadIn(i).bits.lq_data_wen_dup(3)){ 288 uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl 289 } 290 when(io.loadIn(i).bits.lq_data_wen_dup(4)){ 291 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 292 } 293 when(io.loadIn(i).bits.lq_data_wen_dup(5)){ 294 vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 295 vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 296 vaddrTriggerResultModule.io.wen(i) := true.B 297 } 298 299 // vaddrModule write is delayed, as vaddrModule will not be read right after write 300 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 301 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 302 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 303 } 304 305 when(io.refill.valid) { 306 XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) 307 } 308 309 // Refill 64 bit in a cycle 310 // Refill data comes back from io.dcache.resp 311 dataModule.io.refill.valid := io.refill.valid 312 dataModule.io.refill.paddr := io.refill.bits.addr 313 dataModule.io.refill.data := io.refill.bits.data 314 315 val s2_dcache_require_replay = WireInit(VecInit((0 until LoadPipelineWidth).map(i =>{ 316 RegNext(io.loadIn(i).fire()) && RegNext(io.s2_dcache_require_replay(i)) 317 }))) 318 dontTouch(s2_dcache_require_replay) 319 320 (0 until LoadQueueSize).map(i => { 321 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 322 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 323 datavalid(i) := true.B 324 miss(i) := false.B 325 when(!s2_dcache_require_replay.asUInt.orR){ 326 refilling(i) := true.B 327 } 328 when(io.refill.bits.error) { 329 error(i) := true.B 330 } 331 } 332 }) 333 334 for (i <- 0 until LoadPipelineWidth) { 335 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 336 val lastCycleLoadWbIndex = RegNext(loadWbIndex) 337 // update miss state in load s3 338 if(!EnableFastForward){ 339 // s2_dcache_require_replay will be used to update lq flag 1 cycle after for better timing 340 // 341 // io.s2_dcache_require_replay comes from dcache miss req reject, which is quite slow to generate 342 when(s2_dcache_require_replay(i)) { 343 // do not writeback if that inst will be resend from rs 344 // rob writeback will not be triggered by a refill before inst replay 345 miss(lastCycleLoadWbIndex) := false.B // disable refill listening 346 datavalid(lastCycleLoadWbIndex) := false.B // disable refill listening 347 assert(!datavalid(lastCycleLoadWbIndex)) 348 } 349 } 350 // update load error state in load s3 351 when(RegNext(io.loadIn(i).fire()) && io.s3_delayed_load_error(i)){ 352 uop(lastCycleLoadWbIndex).cf.exceptionVec(loadAccessFault) := true.B 353 } 354 // update inst replay from fetch flag in s3 355 when(RegNext(io.loadIn(i).fire()) && io.s3_replay_from_fetch(i)){ 356 uop(lastCycleLoadWbIndex).ctrl.replayInst := true.B 357 } 358 } 359 360 361 // Writeback up to 2 missed load insts to CDB 362 // 363 // Pick 2 missed load (data refilled), write them back to cdb 364 // 2 refilled load will be selected from even/odd entry, separately 365 366 // Stage 0 367 // Generate writeback indexes 368 369 def getRemBits(input: UInt)(rem: Int): UInt = { 370 VecInit((0 until LoadQueueSize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt 371 } 372 373 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 374 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 375 376 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 377 // allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 378 allocated(i) && !writebacked(i) && datavalid(i) // query refilling will cause bad timing 379 })).asUInt() // use uint instead vec to reduce verilog lines 380 val remDeqMask = Seq.tabulate(LoadPipelineWidth)(getRemBits(deqMask)(_)) 381 // generate lastCycleSelect mask 382 val remFireMask = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(UIntToOH(loadWbSel(rem)))(rem)) 383 // generate real select vec 384 def toVec(a: UInt): Vec[Bool] = { 385 VecInit(a.asBools) 386 } 387 val loadRemSelVecFire = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadWbSelVec)(rem) & ~remFireMask(rem)) 388 val loadRemSelVecNotFire = Seq.tabulate(LoadPipelineWidth)(getRemBits(loadWbSelVec)(_)) 389 val loadRemSel = Seq.tabulate(LoadPipelineWidth)(rem => Mux( 390 io.ldout(rem).fire(), 391 getFirstOne(toVec(loadRemSelVecFire(rem)), remDeqMask(rem)), 392 getFirstOne(toVec(loadRemSelVecNotFire(rem)), remDeqMask(rem)) 393 )) 394 395 396 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 397 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 398 (0 until LoadPipelineWidth).foreach(index => { 399 loadWbSelGen(index) := ( 400 if (LoadPipelineWidth > 1) Cat(loadRemSel(index), index.U(log2Ceil(LoadPipelineWidth).W)) 401 else loadRemSel(index) 402 ) 403 loadWbSelVGen(index) := Mux(io.ldout(index).fire, loadRemSelVecFire(index).asUInt.orR, loadRemSelVecNotFire(index).asUInt.orR) 404 }) 405 406 (0 until LoadPipelineWidth).map(i => { 407 loadWbSel(i) := RegNext(loadWbSelGen(i)) 408 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 409 when(io.ldout(i).fire()){ 410 // Mark them as writebacked, so they will not be selected in the next cycle 411 writebacked(loadWbSel(i)) := true.B 412 } 413 }) 414 415 // Stage 1 416 // Use indexes generated in cycle 0 to read data 417 // writeback data to cdb 418 (0 until LoadPipelineWidth).map(i => { 419 // data select 420 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 421 val rdata = dataModule.io.wb.rdata(i).data 422 val seluop = uop(loadWbSel(i)) 423 val func = seluop.ctrl.fuOpType 424 val raddr = dataModule.io.wb.rdata(i).paddr 425 val rdataSel = LookupTree(raddr(2, 0), List( 426 "b000".U -> rdata(63, 0), 427 "b001".U -> rdata(63, 8), 428 "b010".U -> rdata(63, 16), 429 "b011".U -> rdata(63, 24), 430 "b100".U -> rdata(63, 32), 431 "b101".U -> rdata(63, 40), 432 "b110".U -> rdata(63, 48), 433 "b111".U -> rdata(63, 56) 434 )) 435 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 436 437 // writeback missed int/fp load 438 // 439 // Int load writeback will finish (if not blocked) in one cycle 440 io.ldout(i).bits.uop := seluop 441 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 442 io.ldout(i).bits.data := rdataPartialLoad 443 io.ldout(i).bits.redirectValid := false.B 444 io.ldout(i).bits.redirect := DontCare 445 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 446 io.ldout(i).bits.debug.isPerfCnt := false.B 447 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 448 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 449 io.ldout(i).bits.fflags := DontCare 450 io.ldout(i).valid := loadWbSelV(i) 451 452 when(io.ldout(i).fire()) { 453 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 454 io.ldout(i).bits.uop.robIdx.asUInt, 455 io.ldout(i).bits.uop.lqIdx.asUInt, 456 io.ldout(i).bits.uop.cf.pc, 457 debug_mmio(loadWbSel(i)) 458 ) 459 } 460 461 }) 462 463 /** 464 * Load commits 465 * 466 * When load commited, mark it as !allocated and move deqPtrExt forward. 467 */ 468 (0 until CommitWidth).map(i => { 469 when(commitCount > i.U){ 470 allocated((deqPtrExt+i.U).value) := false.B 471 XSError(!allocated((deqPtrExt+i.U).value), s"why commit invalid entry $i?\n") 472 } 473 }) 474 475 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 476 val length = mask.length 477 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 478 val highBitsUint = Cat(highBits.reverse) 479 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 480 } 481 482 def getOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 483 assert(valid.length == bits.length) 484 assert(isPow2(valid.length)) 485 if (valid.length == 1) { 486 (valid, bits) 487 } else if (valid.length == 2) { 488 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 489 for (i <- res.indices) { 490 res(i).valid := valid(i) 491 res(i).bits := bits(i) 492 } 493 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 494 (Seq(oldest.valid), Seq(oldest.bits)) 495 } else { 496 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 497 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 498 getOldest(left._1 ++ right._1, left._2 ++ right._2) 499 } 500 } 501 502 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 503 assert(valid.length == uop.length) 504 val length = valid.length 505 (0 until length).map(i => { 506 (0 until length).map(j => { 507 Mux(valid(i) && valid(j), 508 isAfter(uop(i).robIdx, uop(j).robIdx), 509 Mux(!valid(i), true.B, false.B)) 510 }) 511 }) 512 } 513 514 /** 515 * Store-Load Memory violation detection 516 * 517 * When store writes back, it searches LoadQueue for younger load instructions 518 * with the same load physical address. They loaded wrong data and need re-execution. 519 * 520 * Cycle 0: Store Writeback 521 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 522 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 523 * Cycle 1: Redirect Generation 524 * There're three possible types of violations, up to 6 possible redirect requests. 525 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 526 * Cycle 2: Redirect Fire 527 * Choose the oldest load (part 2). (3 -> 1) 528 * Prepare redirect request according to the detected violation. 529 * Fire redirect request (if valid) 530 */ 531 532 // stage 0: lq l1 wb l1 wb lq 533 // | | | | | | (paddr match) 534 // stage 1: lq l1 wb l1 wb lq 535 // | | | | | | 536 // | |------------| | 537 // | | | 538 // stage 2: lq l1wb lq 539 // | | | 540 // -------------------- 541 // | 542 // rollback req 543 io.load_s1 := DontCare 544 def detectRollback(i: Int) = { 545 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 546 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 547 val xorMask = lqIdxMask ^ enqMask 548 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 549 val stToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 550 551 // check if load already in lq needs to be rolledback 552 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 553 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 554 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 555 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 556 allocated(j) && stToEnqPtrMask(j) && (datavalid(j) || miss(j)) 557 }))) 558 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 559 addrMaskMatch(j) && entryNeedCheck(j) 560 })) 561 val lqViolation = lqViolationVec.asUInt().orR() 562 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 563 val lqViolationUop = uop(lqViolationIndex) 564 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 565 // lqViolationUop.lqIdx.value := lqViolationIndex 566 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 567 568 // when l/s writeback to rob together, check if rollback is needed 569 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 570 io.loadIn(j).valid && 571 isAfter(io.loadIn(j).bits.uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 572 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 573 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 574 }))) 575 val wbViolation = wbViolationVec.asUInt().orR() && RegNext(io.storeIn(i).valid && !io.storeIn(i).bits.miss) 576 val wbViolationUop = getOldest(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits))))._2(0).uop 577 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 578 579 // check if rollback is needed for load in l1 580 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 581 io.load_s1(j).valid && // L1 valid 582 isAfter(io.load_s1(j).uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 583 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 584 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 585 }))) 586 val l1Violation = l1ViolationVec.asUInt().orR() && RegNext(io.storeIn(i).valid && !io.storeIn(i).bits.miss) 587 val load_s1 = Wire(Vec(LoadPipelineWidth, new XSBundleWithMicroOp)) 588 (0 until LoadPipelineWidth).foreach(i => load_s1(i).uop := io.load_s1(i).uop) 589 val l1ViolationUop = getOldest(l1ViolationVec, RegNext(load_s1))._2(0).uop 590 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 591 592 XSDebug( 593 l1Violation, 594 "need rollback (l1 load) pc %x robidx %d target %x\n", 595 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, l1ViolationUop.robIdx.asUInt 596 ) 597 XSDebug( 598 lqViolation, 599 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 600 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 601 ) 602 XSDebug( 603 wbViolation, 604 "need rollback (ld/st wb together) pc %x robidx %d target %x\n", 605 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, wbViolationUop.robIdx.asUInt 606 ) 607 608 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 609 } 610 611 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 612 Mux( 613 a.valid, 614 Mux( 615 b.valid, 616 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 617 a // sel a 618 ), 619 b // sel b 620 ) 621 } 622 val lastCycleRedirect = RegNext(io.brqRedirect) 623 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 624 625 // S2: select rollback (part1) and generate rollback request 626 // rollback check 627 // Wb/L1 rollback seq check is done in s2 628 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 629 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 630 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 631 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 632 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 633 // store ftq index for store set update 634 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 635 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 636 for (i <- 0 until StorePipelineWidth) { 637 val detectedRollback = detectRollback(i) 638 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 639 rollbackLq(i).bits.uop := detectedRollback._1._2 640 rollbackLq(i).bits.flag := i.U 641 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 642 rollbackWb(i).bits.uop := detectedRollback._2._2 643 rollbackWb(i).bits.flag := i.U 644 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 645 rollbackL1(i).bits.uop := detectedRollback._3._2 646 rollbackL1(i).bits.flag := i.U 647 rollbackL1Wb(2*i) := rollbackL1(i) 648 rollbackL1Wb(2*i+1) := rollbackWb(i) 649 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 650 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 651 } 652 653 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 654 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 655 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 656 val rollbackLqVReg = rollbackLq.map(x => RegNext(x.valid)) 657 val rollbackLqReg = rollbackLq.map(x => RegEnable(x.bits, x.valid)) 658 659 // S3: select rollback (part2), generate rollback request, then fire rollback request 660 // Note that we use robIdx - 1.U to flush the load instruction itself. 661 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 662 663 val rollbackValidVec = rollbackL1WbVReg +: rollbackLqVReg 664 val rollbackUopExtVec = rollbackL1WbReg +: rollbackLqReg 665 666 // select uop in parallel 667 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 668 val lqs = getOldest(rollbackLqVReg, rollbackLqReg) 669 val rollbackUopExt = getOldest(lqs._1 :+ rollbackL1WbVReg, lqs._2 :+ rollbackL1WbReg)._2(0) 670 val stFtqIdxS3 = RegNext(stFtqIdxS2) 671 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 672 val rollbackUop = rollbackUopExt.uop 673 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 674 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 675 676 // check if rollback request is still valid in parallel 677 val rollbackValidVecChecked = Wire(Vec(LoadPipelineWidth + 1, Bool())) 678 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 679 rollbackValidVecChecked(idx) := v && 680 (!lastCycleRedirect.valid || isBefore(uop.robIdx, lastCycleRedirect.bits.robIdx)) && 681 (!lastlastCycleRedirect.valid || isBefore(uop.robIdx, lastlastCycleRedirect.bits.robIdx)) 682 } 683 684 io.rollback.bits.robIdx := rollbackUop.robIdx 685 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 686 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 687 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 688 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 689 io.rollback.bits.level := RedirectLevel.flush 690 io.rollback.bits.interrupt := DontCare 691 io.rollback.bits.cfiUpdate := DontCare 692 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 693 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 694 // io.rollback.bits.pc := DontCare 695 696 io.rollback.valid := rollbackValidVecChecked.asUInt.orR 697 698 when(io.rollback.valid) { 699 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 700 } 701 702 /** 703 * Load-Load Memory violation detection 704 * 705 * When load arrives load_s1, it searches LoadQueue for younger load instructions 706 * with the same load physical address. If younger load has been released (or observed), 707 * the younger load needs to be re-execed. 708 * 709 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 710 * the two loads will be replayed if the older load becomes the head of rob. 711 * 712 * When dcache releases a line, mark all writebacked entrys in load queue with 713 * the same line paddr as released. 714 */ 715 716 // Load-Load Memory violation query 717 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 718 (0 until LoadPipelineWidth).map(i => { 719 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 720 io.loadViolationQuery(i).req.ready := true.B 721 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 722 // Generate real violation mask 723 // Note that we use UIntToMask.rightmask here 724 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 725 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 726 val xorMask = lqIdxMask ^ enqMask 727 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === enqPtrExt(0).flag 728 val ldToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 729 val ldld_violation_mask_gen_1 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 730 ldToEnqPtrMask(j) && // the load is younger than current load 731 allocated(j) && // entry is valid 732 released(j) && // cacheline is released 733 (datavalid(j) || miss(j)) // paddr is valid 734 }))) 735 val ldld_violation_mask_gen_2 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 736 dataModule.io.release_violation(i).match_mask(j)// addr match 737 // addr match result is slow to generate, we RegNext() it 738 }))) 739 val ldld_violation_mask = RegNext(ldld_violation_mask_gen_1).asUInt & RegNext(ldld_violation_mask_gen_2).asUInt 740 dontTouch(ldld_violation_mask) 741 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 742 io.loadViolationQuery(i).resp.bits.have_violation := ldld_violation_mask.orR 743 }) 744 745 // "released" flag update 746 // 747 // When io.release.valid (release1cycle.valid), it uses the last ld-ld paddr cam port to 748 // update release flag in 1 cycle 749 750 when(release1cycle.valid){ 751 // Take over ld-ld paddr cam port 752 dataModule.io.release_violation.takeRight(1)(0).paddr := release1cycle.bits.paddr 753 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 754 } 755 756 when(release2cycle.valid){ 757 // If a load comes in that cycle, we can not judge if it has ld-ld violation 758 // We replay that load inst from RS 759 io.loadViolationQuery.map(i => i.req.ready := 760 // use lsu side release2cycle_dup_lsu paddr for better timing 761 !i.req.bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle_dup_lsu.bits.paddr(PAddrBits-1, DCacheLineOffset) 762 ) 763 // io.loadViolationQuery.map(i => i.req.ready := false.B) // For better timing 764 } 765 766 (0 until LoadQueueSize).map(i => { 767 when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && 768 allocated(i) && 769 datavalid(i) && 770 release1cycle.valid 771 )){ 772 // Note: if a load has missed in dcache and is waiting for refill in load queue, 773 // its released flag still needs to be set as true if addr matches. 774 released(i) := true.B 775 } 776 }) 777 778 /** 779 * Memory mapped IO / other uncached operations 780 * 781 * States: 782 * (1) writeback from store units: mark as pending 783 * (2) when they reach ROB's head, they can be sent to uncache channel 784 * (3) response from uncache channel: mark as datavalid 785 * (4) writeback to ROB (and other units): mark as writebacked 786 * (5) ROB commits the instruction: same as normal instructions 787 */ 788 //(2) when they reach ROB's head, they can be sent to uncache channel 789 val lqTailMmioPending = WireInit(pending(deqPtr)) 790 val lqTailAllocated = WireInit(allocated(deqPtr)) 791 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 792 val uncacheState = RegInit(s_idle) 793 switch(uncacheState) { 794 is(s_idle) { 795 when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) { 796 uncacheState := s_req 797 } 798 } 799 is(s_req) { 800 when(io.uncache.req.fire()) { 801 uncacheState := s_resp 802 } 803 } 804 is(s_resp) { 805 when(io.uncache.resp.fire()) { 806 uncacheState := s_wait 807 } 808 } 809 is(s_wait) { 810 when(RegNext(io.rob.commit)) { 811 uncacheState := s_idle // ready for next mmio 812 } 813 } 814 } 815 io.uncache.req.valid := uncacheState === s_req 816 817 dataModule.io.uncache.raddr := deqPtrExtNext.value 818 819 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 820 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 821 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 822 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 823 824 io.uncache.req.bits.id := DontCare 825 io.uncache.req.bits.instrtype := DontCare 826 827 io.uncache.resp.ready := true.B 828 829 when (io.uncache.req.fire()) { 830 pending(deqPtr) := false.B 831 832 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 833 uop(deqPtr).cf.pc, 834 io.uncache.req.bits.addr, 835 io.uncache.req.bits.data, 836 io.uncache.req.bits.cmd, 837 io.uncache.req.bits.mask 838 ) 839 } 840 841 // (3) response from uncache channel: mark as datavalid 842 dataModule.io.uncache.wen := false.B 843 when(io.uncache.resp.fire()){ 844 datavalid(deqPtr) := true.B 845 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 846 dataModule.io.uncache.wen := true.B 847 848 XSDebug("uncache resp: data %x\n", io.refill.bits.data) 849 } 850 851 // Read vaddr for mem exception 852 // no inst will be commited 1 cycle before tval update 853 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 854 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 855 856 // Read vaddr for debug 857 (0 until LoadPipelineWidth).map(i => { 858 vaddrModule.io.raddr(i+1) := loadWbSel(i) 859 }) 860 861 (0 until LoadPipelineWidth).map(i => { 862 vaddrTriggerResultModule.io.raddr(i) := loadWbSelGen(i) 863 io.trigger(i).lqLoadAddrTriggerHitVec := Mux( 864 loadWbSelV(i), 865 vaddrTriggerResultModule.io.rdata(i), 866 VecInit(Seq.fill(3)(false.B)) 867 ) 868 }) 869 870 // misprediction recovery / exception redirect 871 // invalidate lq term using robIdx 872 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 873 for (i <- 0 until LoadQueueSize) { 874 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 875 when (needCancel(i)) { 876 allocated(i) := false.B 877 } 878 } 879 880 /** 881 * update pointers 882 */ 883 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 884 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 885 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 886 when (lastCycleRedirect.valid) { 887 // we recover the pointers in the next cycle after redirect 888 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 889 }.otherwise { 890 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 891 } 892 893 deqPtrExtNext := deqPtrExt + commitCount 894 deqPtrExt := deqPtrExtNext 895 896 io.lqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 897 898 /** 899 * misc 900 */ 901 // perf counter 902 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 903 io.lqFull := !allowEnqueue 904 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 905 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 906 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 907 XSPerfAccumulate("refill", io.refill.valid) 908 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 909 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 910 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 911 912 val perfValidCount = RegNext(validCount) 913 914 val perfEvents = Seq( 915 ("rollback ", io.rollback.valid), 916 ("mmioCycle ", uncacheState =/= s_idle), 917 ("mmio_Cnt ", io.uncache.req.fire()), 918 ("refill ", io.refill.valid), 919 ("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))), 920 ("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))), 921 ("ltq_1_4_valid ", (perfValidCount < (LoadQueueSize.U/4.U))), 922 ("ltq_2_4_valid ", (perfValidCount > (LoadQueueSize.U/4.U)) & (perfValidCount <= (LoadQueueSize.U/2.U))), 923 ("ltq_3_4_valid ", (perfValidCount > (LoadQueueSize.U/2.U)) & (perfValidCount <= (LoadQueueSize.U*3.U/4.U))), 924 ("ltq_4_4_valid ", (perfValidCount > (LoadQueueSize.U*3.U/4.U))) 925 ) 926 generatePerfEvent() 927 928 // debug info 929 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 930 931 def PrintFlag(flag: Bool, name: String): Unit = { 932 when(flag) { 933 XSDebug(false, true.B, name) 934 }.otherwise { 935 XSDebug(false, true.B, " ") 936 } 937 } 938 939 for (i <- 0 until LoadQueueSize) { 940 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 941 PrintFlag(allocated(i), "a") 942 PrintFlag(allocated(i) && datavalid(i), "v") 943 PrintFlag(allocated(i) && writebacked(i), "w") 944 PrintFlag(allocated(i) && miss(i), "m") 945 PrintFlag(allocated(i) && pending(i), "p") 946 XSDebug(false, true.B, "\n") 947 } 948 949} 950