xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadQueue.scala (revision 730cfbc0bf03569aa07dd82ba3fb41eb7413e13c)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.backend.fu.fpu.FPU
26import xiangshan.backend.rob.RobLsqIO
27import xiangshan.cache._
28import xiangshan.frontend.FtqPtr
29import xiangshan.ExceptionNO._
30import chisel3.ExcitingUtils
31import xiangshan.cache.dcache.ReplayCarry
32import xiangshan.backend.Bundles.{DynInst, MemExuOutput, MemMicroOpRbExt}
33
34class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr](
35  p => p(XSCoreParamsKey).LoadQueueSize
36){
37}
38
39object LqPtr {
40  def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = {
41    val ptr = Wire(new LqPtr)
42    ptr.flag := f
43    ptr.value := v
44    ptr
45  }
46}
47
48trait HasLoadHelper { this: XSModule =>
49  def rdataHelper(uop: DynInst, rdata: UInt): UInt = {
50    val fpWen = uop.fpWen
51    LookupTree(uop.fuOpType, List(
52      LSUOpType.lb   -> SignExt(rdata(7, 0) , XLEN),
53      LSUOpType.lh   -> SignExt(rdata(15, 0), XLEN),
54      /*
55          riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values
56          Any operation that writes a narrower result to an f register must write
57          all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value.
58      */
59      LSUOpType.lw   -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)),
60      LSUOpType.ld   -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)),
61      LSUOpType.lbu  -> ZeroExt(rdata(7, 0) , XLEN),
62      LSUOpType.lhu  -> ZeroExt(rdata(15, 0), XLEN),
63      LSUOpType.lwu  -> ZeroExt(rdata(31, 0), XLEN),
64    ))
65  }
66}
67
68class LqEnqIO(implicit p: Parameters) extends XSBundle {
69  private val LsExuCnt = backendParams.StaCnt + backendParams.LduCnt
70  val canAccept = Output(Bool())
71  val sqCanAccept = Input(Bool())
72  val needAlloc = Vec(LsExuCnt, Input(Bool()))
73  val req = Vec(LsExuCnt, Flipped(ValidIO(new DynInst)))
74  val resp = Vec(LsExuCnt, Output(new LqPtr))
75}
76
77class LqPaddrWriteBundle(implicit p: Parameters) extends XSBundle {
78  val paddr = Output(UInt(PAddrBits.W))
79  val lqIdx = Output(new LqPtr)
80}
81
82class LqVaddrWriteBundle(implicit p: Parameters) extends XSBundle {
83  val vaddr = Output(UInt(VAddrBits.W))
84  val lqIdx = Output(new LqPtr)
85}
86
87class LqTriggerIO(implicit p: Parameters) extends XSBundle {
88  val hitLoadAddrTriggerHitVec = Input(Vec(3, Bool()))
89  val lqLoadAddrTriggerHitVec = Output(Vec(3, Bool()))
90}
91
92class LoadQueueIOBundle(implicit p: Parameters) extends XSBundle {
93  val enq = new LqEnqIO
94  val brqRedirect = Flipped(ValidIO(new Redirect))
95  val loadOut = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) // select load from lq to load pipeline
96  val loadPaddrIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqPaddrWriteBundle)))
97  val loadVaddrIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqVaddrWriteBundle)))
98  val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqWriteBundle)))
99  val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
100  val s2_load_data_forwarded = Vec(LoadPipelineWidth, Input(Bool()))
101  val s3_delayed_load_error = Vec(LoadPipelineWidth, Input(Bool()))
102  val s2_dcache_require_replay = Vec(LoadPipelineWidth, Input(Bool()))
103  val s3_replay_from_fetch = Vec(LoadPipelineWidth, Input(Bool()))
104  val ldout = Vec(2, DecoupledIO(new MemExuOutput)) // writeback int load
105  val ldRawDataOut = Vec(2, Output(new LoadDataFromLQBundle))
106  val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed
107  val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO))
108  val rob = Flipped(new RobLsqIO)
109  val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store
110  val refill = Flipped(ValidIO(new Refill)) // TODO: to be renamed
111  val release = Flipped(ValidIO(new Release))
112  val uncache = new UncacheWordIO
113  val exceptionAddr = new ExceptionAddrIO
114  val lqFull = Output(Bool())
115  val lqCancelCnt = Output(UInt(log2Up(LoadQueueSize + 1).W))
116  val trigger = Vec(LoadPipelineWidth, new LqTriggerIO)
117
118  // for load replay (recieve feedback from load pipe line)
119  val replayFast = Vec(LoadPipelineWidth, Flipped(new LoadToLsqFastIO))
120  val replaySlow = Vec(LoadPipelineWidth, Flipped(new LoadToLsqSlowIO))
121
122  val storeDataValidVec = Vec(StoreQueueSize, Input(Bool()))
123
124  val tlbReplayDelayCycleCtrl = Vec(4, Input(UInt(ReSelectLen.W)))
125}
126
127// Load Queue
128class LoadQueue(implicit p: Parameters) extends XSModule
129  with HasDCacheParameters
130  with HasCircularQueuePtrHelper
131  with HasLoadHelper
132  with HasPerfEvents
133{
134  val io = IO(new LoadQueueIOBundle())
135
136  // dontTouch(io)
137
138  println("LoadQueue: size:" + LoadQueueSize)
139
140  val uop = Reg(Vec(LoadQueueSize, new DynInst))
141  val replayCarryReg = RegInit(VecInit(List.fill(LoadQueueSize)(ReplayCarry(0.U, false.B))))
142  // val data = Reg(Vec(LoadQueueSize, new LsRobEntry))
143  val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumWrite = LoadPipelineWidth))
144  dataModule.io := DontCare
145  // vaddrModule's read port 0 for exception addr, port 1 for uncache vaddr read, port {2, 3} for load replay
146  val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 1 + 1 + LoadPipelineWidth, numWrite = LoadPipelineWidth))
147  vaddrModule.io := DontCare
148  val vaddrTriggerResultModule = Module(new SyncDataModuleTemplate(Vec(3, Bool()), LoadQueueSize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth))
149  vaddrTriggerResultModule.io := DontCare
150  val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated
151  val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid
152  val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB
153  val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache
154  val error = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been corrupted
155  val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request
156  // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result
157  val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
158  val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB
159
160  /**
161    * used for load replay control
162    */
163
164  val tlb_hited = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
165  val ld_ld_check_ok = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
166  val st_ld_check_ok = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
167  val cache_bank_no_conflict = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
168  val cache_no_replay = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
169  val forward_data_valid = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
170  val cache_hited = RegInit(VecInit(List.fill(LoadQueueSize)(true.B)))
171
172
173  /**
174    * used for re-select control
175    */
176
177  val credit = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(ReSelectLen.W))))
178
179  // ptrs to control which cycle to choose
180  val block_ptr_tlb = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(2.W))))
181  val block_ptr_cache = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(2.W))))
182  val block_ptr_others = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(2.W))))
183
184  // specific cycles to block
185  val block_cycles_tlb = Reg(Vec(4, UInt(ReSelectLen.W)))
186  block_cycles_tlb := io.tlbReplayDelayCycleCtrl
187  val block_cycles_cache = RegInit(VecInit(Seq(11.U(ReSelectLen.W), 0.U(ReSelectLen.W), 31.U(ReSelectLen.W), 0.U(ReSelectLen.W))))
188  val block_cycles_others = RegInit(VecInit(Seq(0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W))))
189
190  val sel_blocked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B)))
191
192  // data forward block
193  val block_sq_idx = RegInit(VecInit(List.fill(LoadQueueSize)(0.U((log2Ceil(StoreQueueSize).W)))))
194  val block_by_data_forward_fail = RegInit(VecInit(List.fill(LoadQueueSize)(false.B)))
195
196  // dcache miss block
197  val miss_mshr_id = RegInit(VecInit(List.fill(LoadQueueSize)(0.U((log2Up(cfg.nMissEntries).W)))))
198  val block_by_cache_miss = RegInit(VecInit(List.fill(LoadQueueSize)(false.B)))
199
200  val true_cache_miss_replay = WireInit(VecInit(List.fill(LoadQueueSize)(false.B)))
201  (0 until LoadQueueSize).map{i => {
202    true_cache_miss_replay(i) := tlb_hited(i) && ld_ld_check_ok(i) && st_ld_check_ok(i) && cache_bank_no_conflict(i) &&
203                                 cache_no_replay(i) && forward_data_valid(i) && !cache_hited(i)
204  }}
205
206  val creditUpdate = WireInit(VecInit(List.fill(LoadQueueSize)(0.U(ReSelectLen.W))))
207
208  credit := creditUpdate
209
210  (0 until LoadQueueSize).map(i => {
211    creditUpdate(i) := Mux(credit(i) > 0.U(ReSelectLen.W), credit(i) - 1.U(ReSelectLen.W), credit(i))
212    sel_blocked(i) := creditUpdate(i) =/= 0.U(ReSelectLen.W)
213  })
214
215  (0 until LoadQueueSize).map(i => {
216    block_by_data_forward_fail(i) := Mux(block_by_data_forward_fail(i) === true.B && io.storeDataValidVec(block_sq_idx(i)) === true.B , false.B, block_by_data_forward_fail(i))
217  })
218
219  (0 until LoadQueueSize).map(i => {
220    block_by_cache_miss(i) := Mux(block_by_cache_miss(i) === true.B && io.refill.valid && io.refill.bits.id === miss_mshr_id(i), false.B, block_by_cache_miss(i))
221    when(creditUpdate(i) === 0.U && block_by_cache_miss(i) === true.B) {
222      block_by_cache_miss(i) := false.B
223    }
224    when(block_by_cache_miss(i) === true.B && io.refill.valid && io.refill.bits.id === miss_mshr_id(i)) {
225      creditUpdate(i) := 0.U
226    }
227  })
228
229  val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst
230  val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst
231
232  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr))))
233  val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr))
234  val deqPtrExtNext = Wire(new LqPtr)
235
236  val enqPtr = enqPtrExt(0).value
237  val deqPtr = deqPtrExt.value
238
239  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt)
240  val allowEnqueue = validCount <= (LoadQueueSize - LoadPipelineWidth).U
241
242  val deqMask = UIntToMask(deqPtr, LoadQueueSize)
243  val enqMask = UIntToMask(enqPtr, LoadQueueSize)
244
245  val commitCount = RegNext(io.rob.lcommit)
246
247  val release1cycle = io.release
248  val release2cycle = RegNext(io.release)
249  val release2cycle_dup_lsu = RegNext(io.release)
250
251  /**
252    * Enqueue at dispatch
253    *
254    * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth
255    */
256  io.enq.canAccept := allowEnqueue
257
258  val canEnqueue = io.enq.req.map(_.valid)
259  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
260  for (i <- 0 until io.enq.req.length) {
261    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
262    val lqIdx = enqPtrExt(offset)
263    val index = io.enq.req(i).bits.lqIdx.value
264    when (canEnqueue(i) && !enqCancel(i)) {
265      uop(index) := io.enq.req(i).bits
266      // NOTE: the index will be used when replay
267      uop(index).lqIdx := lqIdx
268      allocated(index) := true.B
269      datavalid(index) := false.B
270      writebacked(index) := false.B
271      released(index) := false.B
272      miss(index) := false.B
273      pending(index) := false.B
274      error(index) := false.B
275
276      /**
277        * used for load replay control
278        */
279      tlb_hited(index) := true.B
280      ld_ld_check_ok(index) := true.B
281      st_ld_check_ok(index) := true.B
282      cache_bank_no_conflict(index) := true.B
283      cache_no_replay(index) := true.B
284      forward_data_valid(index) := true.B
285      cache_hited(index) := true.B
286
287      /**
288        * used for delaying load(block-ptr to control how many cycles to block)
289        */
290      credit(index) := 0.U(ReSelectLen.W)
291      block_ptr_tlb(index) := 0.U(2.W)
292      block_ptr_cache(index) := 0.U(2.W)
293      block_ptr_others(index) := 0.U(2.W)
294
295      block_by_data_forward_fail(index) := false.B
296      block_by_cache_miss(index) := false.B
297
298      XSError(!io.enq.canAccept || !io.enq.sqCanAccept, s"must accept $i\n")
299      XSError(index =/= lqIdx.value, s"must be the same entry $i\n")
300    }
301    io.enq.resp(i) := lqIdx
302  }
303  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
304
305  val lastCycleRedirect = RegNext(io.brqRedirect)
306  val lastlastCycleRedirect = RegNext(lastCycleRedirect)
307
308  // replay logic
309  // replay is splited into 2 stages
310
311  // stage1: select 2 entries and read their vaddr
312  val s0_block_load_mask = WireInit(VecInit((0 until LoadQueueSize).map(x=>false.B)))
313  val s1_block_load_mask = RegNext(s0_block_load_mask)
314  val s2_block_load_mask = RegNext(s1_block_load_mask)
315
316  val loadReplaySel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle
317  val loadReplaySelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid
318
319  val loadReplaySelVec = VecInit((0 until LoadQueueSize).map(i => {
320    val blocked = s1_block_load_mask(i) || s2_block_load_mask(i) || sel_blocked(i) || block_by_data_forward_fail(i) || block_by_cache_miss(i)
321    allocated(i) && (!tlb_hited(i) || !ld_ld_check_ok(i) || !st_ld_check_ok(i) || !cache_bank_no_conflict(i) || !cache_no_replay(i) || !forward_data_valid(i) || !cache_hited(i)) && !blocked
322  })).asUInt() // use uint instead vec to reduce verilog lines
323
324  val remReplayDeqMask = Seq.tabulate(LoadPipelineWidth)(getRemBits(deqMask)(_))
325
326  // generate lastCycleSelect mask
327  val remReplayFireMask = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(UIntToOH(loadReplaySel(rem)))(rem))
328
329  val loadReplayRemSelVecFire = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadReplaySelVec)(rem) & ~remReplayFireMask(rem))
330  val loadReplayRemSelVecNotFire = Seq.tabulate(LoadPipelineWidth)(getRemBits(loadReplaySelVec)(_))
331
332  val replayRemFire = Seq.tabulate(LoadPipelineWidth)(rem => WireInit(false.B))
333
334  val loadReplayRemSel = Seq.tabulate(LoadPipelineWidth)(rem => Mux(
335    replayRemFire(rem),
336    getFirstOne(toVec(loadReplayRemSelVecFire(rem)), remReplayDeqMask(rem)),
337    getFirstOne(toVec(loadReplayRemSelVecNotFire(rem)), remReplayDeqMask(rem))
338  ))
339
340  val loadReplaySelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W)))
341  val loadReplaySelVGen = Wire(Vec(LoadPipelineWidth, Bool()))
342
343  (0 until LoadPipelineWidth).foreach(index => {
344    loadReplaySelGen(index) := (
345      if (LoadPipelineWidth > 1) Cat(loadReplayRemSel(index), index.U(log2Ceil(LoadPipelineWidth).W))
346      else loadReplayRemSel(index)
347    )
348    loadReplaySelVGen(index) := Mux(replayRemFire(index), loadReplayRemSelVecFire(index).asUInt.orR, loadReplayRemSelVecNotFire(index).asUInt.orR)
349  })
350
351  (0 until LoadPipelineWidth).map(i => {
352    vaddrModule.io.raddr(LoadPipelineWidth + i) := loadReplaySelGen(i)
353  })
354
355  (0 until LoadPipelineWidth).map(i => {
356    loadReplaySel(i) := RegNext(loadReplaySelGen(i))
357    loadReplaySelV(i) := RegNext(loadReplaySelVGen(i), init = false.B)
358  })
359
360  // stage2: replay to load pipeline (if no load in S0)
361  (0 until LoadPipelineWidth).map(i => {
362    when(replayRemFire(i)) {
363      s0_block_load_mask(loadReplaySel(i)) := true.B
364    }
365  })
366
367  // init
368  (0 until LoadPipelineWidth).map(i => {
369    replayRemFire(i) := false.B
370  })
371
372  for(i <- 0 until LoadPipelineWidth) {
373    val replayIdx = loadReplaySel(i)
374    val notRedirectLastCycle = !uop(replayIdx).robIdx.needFlush(RegNext(io.brqRedirect))
375
376    io.loadOut(i).valid := loadReplaySelV(i) && notRedirectLastCycle
377
378    io.loadOut(i).bits := DontCare
379    io.loadOut(i).bits.uop := uop(replayIdx)
380    io.loadOut(i).bits.vaddr := vaddrModule.io.rdata(LoadPipelineWidth + i)
381    io.loadOut(i).bits.mask := genWmask(vaddrModule.io.rdata(LoadPipelineWidth + i), uop(replayIdx).fuOpType(1,0))
382    io.loadOut(i).bits.isFirstIssue := false.B
383    io.loadOut(i).bits.isLoadReplay := true.B
384    io.loadOut(i).bits.replayCarry := replayCarryReg(replayIdx)
385    io.loadOut(i).bits.mshrid := miss_mshr_id(replayIdx)
386    io.loadOut(i).bits.forward_tlDchannel := true_cache_miss_replay(replayIdx)
387
388    when(io.loadOut(i).fire) {
389      replayRemFire(i) := true.B
390    }
391
392  }
393  /**
394    * Writeback load from load units
395    *
396    * Most load instructions writeback to regfile at the same time.
397    * However,
398    *   (1) For an mmio instruction with exceptions, it writes back to ROB immediately.
399    *   (2) For an mmio instruction without exceptions, it does not write back.
400    * The mmio instruction will be sent to lower level when it reaches ROB's head.
401    * After uncache response, it will write back through arbiter with loadUnit.
402    *   (3) For cache misses, it is marked miss and sent to dcache later.
403    * After cache refills, it will write back through arbiter with loadUnit.
404    */
405  for (i <- 0 until LoadPipelineWidth) {
406    dataModule.io.wb.wen(i) := false.B
407    dataModule.io.paddr.wen(i) := false.B
408    vaddrModule.io.wen(i) := false.B
409    vaddrTriggerResultModule.io.wen(i) := false.B
410    val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value
411
412    // most lq status need to be updated immediately after load writeback to lq
413    // flag bits in lq needs to be updated accurately
414    when(io.loadIn(i).fire()) {
415      when(io.loadIn(i).bits.miss) {
416        XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x mask %x forwardData %x forwardMask: %x mmio %x\n",
417          io.loadIn(i).bits.uop.lqIdx.asUInt,
418          io.loadIn(i).bits.uop.pc,
419          io.loadIn(i).bits.vaddr,
420          io.loadIn(i).bits.paddr,
421          io.loadIn(i).bits.mask,
422          io.loadIn(i).bits.forwardData.asUInt,
423          io.loadIn(i).bits.forwardMask.asUInt,
424          io.loadIn(i).bits.mmio
425        )
426      }.otherwise {
427        XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x mask %x forwardData %x forwardMask: %x mmio %x\n",
428        io.loadIn(i).bits.uop.lqIdx.asUInt,
429        io.loadIn(i).bits.uop.pc,
430        io.loadIn(i).bits.vaddr,
431        io.loadIn(i).bits.paddr,
432        io.loadIn(i).bits.mask,
433        io.loadIn(i).bits.forwardData.asUInt,
434        io.loadIn(i).bits.forwardMask.asUInt,
435        io.loadIn(i).bits.mmio
436      )}
437      if(EnableFastForward){
438        datavalid(loadWbIndex) := !io.loadIn(i).bits.miss &&
439          !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access
440          !io.s2_dcache_require_replay(i) // do not writeback if that inst will be resend from rs
441      } else {
442        datavalid(loadWbIndex) := !io.loadIn(i).bits.miss &&
443          !io.loadIn(i).bits.mmio // mmio data is not valid until we finished uncache access
444      }
445      writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio
446
447      debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio
448      debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr
449
450      val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio
451      if(EnableFastForward){
452        miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i) && !io.s2_dcache_require_replay(i)
453      } else {
454        miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i)
455      }
456      pending(loadWbIndex) := io.loadIn(i).bits.mmio
457      released(loadWbIndex) := release2cycle.valid &&
458        io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) ||
459        release1cycle.valid &&
460        io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release1cycle.bits.paddr(PAddrBits-1, DCacheLineOffset)
461    }
462
463    // data bit in lq can be updated when load_s2 valid
464    // when(io.loadIn(i).bits.lq_data_wen){
465    //   val loadWbData = Wire(new LQDataEntry)
466    //   loadWbData.paddr := io.loadIn(i).bits.paddr
467    //   loadWbData.mask := io.loadIn(i).bits.mask
468    //   loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data
469    //   loadWbData.fwdMask := io.loadIn(i).bits.forwardMask
470    //   dataModule.io.wbWrite(i, loadWbIndex, loadWbData)
471    //   dataModule.io.wb.wen(i) := true.B
472
473    //   // dirty code for load instr
474    //   uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest
475    //   uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf
476    //   uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl
477    //   uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo
478
479    //   vaddrTriggerResultModule.io.waddr(i) := loadWbIndex
480    //   vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec
481
482    //   vaddrTriggerResultModule.io.wen(i) := true.B
483    // }
484
485    // dirty code to reduce load_s2.valid fanout
486    when(io.loadIn(i).bits.lq_data_wen_dup(0)){
487      dataModule.io.wbWrite(i, loadWbIndex, io.loadIn(i).bits.mask)
488      dataModule.io.wb.wen(i) := true.B
489    }
490    // dirty code for load instr
491    // Todo: solve this elegantly
492    when(io.loadIn(i).bits.lq_data_wen_dup(1)){
493      uop(loadWbIndex) := io.loadIn(i).bits.uop
494    }
495    when(io.loadIn(i).bits.lq_data_wen_dup(4)){
496      uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo
497    }
498    when(io.loadIn(i).bits.lq_data_wen_dup(5)){
499      vaddrTriggerResultModule.io.waddr(i) := loadWbIndex
500      vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec
501      vaddrTriggerResultModule.io.wen(i) := true.B
502    }
503
504    when(io.loadPaddrIn(i).valid) {
505      dataModule.io.paddr.wen(i) := true.B
506      dataModule.io.paddr.waddr(i) := io.loadPaddrIn(i).bits.lqIdx.value
507      dataModule.io.paddr.wdata(i) := io.loadPaddrIn(i).bits.paddr
508    }
509
510    // update vaddr in load S1
511    when(io.loadVaddrIn(i).valid) {
512      vaddrModule.io.wen(i) := true.B
513      vaddrModule.io.waddr(i) := io.loadVaddrIn(i).bits.lqIdx.value
514      vaddrModule.io.wdata(i) := io.loadVaddrIn(i).bits.vaddr
515    }
516
517    /**
518      * used for feedback and replay
519      */
520    when(io.replayFast(i).valid){
521      val idx = io.replayFast(i).ld_idx
522      val needreplay = !io.replayFast(i).ld_ld_check_ok || !io.replayFast(i).st_ld_check_ok || !io.replayFast(i).cache_bank_no_conflict
523
524      ld_ld_check_ok(idx) := io.replayFast(i).ld_ld_check_ok
525      st_ld_check_ok(idx) := io.replayFast(i).st_ld_check_ok
526      cache_bank_no_conflict(idx) := io.replayFast(i).cache_bank_no_conflict
527
528      when(needreplay) {
529        creditUpdate(idx) := block_cycles_others(block_ptr_others(idx))
530        block_ptr_others(idx) := Mux(block_ptr_others(idx) === 3.U(2.W), block_ptr_others(idx), block_ptr_others(idx) + 1.U(2.W))
531        // try to replay this load in next cycle
532        s1_block_load_mask(idx) := false.B
533        s2_block_load_mask(idx) := false.B
534
535        // replay this load in next cycle
536        loadReplaySelGen(idx(log2Ceil(LoadPipelineWidth) - 1, 0)) := idx
537        loadReplaySelVGen(idx(log2Ceil(LoadPipelineWidth) - 1, 0)) := true.B
538      }
539    }
540
541    when(io.replaySlow(i).valid){
542      val idx = io.replaySlow(i).ld_idx
543      val needreplay = !io.replaySlow(i).tlb_hited || !io.replaySlow(i).st_ld_check_ok || !io.replaySlow(i).cache_no_replay || !io.replaySlow(i).forward_data_valid || !io.replaySlow(i).cache_hited
544
545      tlb_hited(idx) := io.replaySlow(i).tlb_hited
546      st_ld_check_ok(idx) := io.replaySlow(i).st_ld_check_ok
547      cache_no_replay(idx) := io.replaySlow(i).cache_no_replay
548      forward_data_valid(idx) := io.replaySlow(i).forward_data_valid
549      replayCarryReg(idx) := io.replaySlow(i).replayCarry
550      cache_hited(idx) := io.replaySlow(i).cache_hited
551
552      val invalid_sq_idx = io.replaySlow(i).data_invalid_sq_idx
553
554      when(needreplay) {
555        // update credit and ptr
556        val data_in_last_beat = io.replaySlow(i).data_in_last_beat
557        creditUpdate(idx) := Mux( !io.replaySlow(i).tlb_hited, block_cycles_tlb(block_ptr_tlb(idx)),
558                              Mux(!io.replaySlow(i).cache_hited, block_cycles_cache(block_ptr_cache(idx)) + data_in_last_beat,
559                               Mux(!io.replaySlow(i).cache_no_replay || !io.replaySlow(i).st_ld_check_ok, block_cycles_others(block_ptr_others(idx)), 0.U)))
560        when(!io.replaySlow(i).tlb_hited) {
561          block_ptr_tlb(idx) := Mux(block_ptr_tlb(idx) === 3.U(2.W), block_ptr_tlb(idx), block_ptr_tlb(idx) + 1.U(2.W))
562        }.elsewhen(!io.replaySlow(i).cache_hited) {
563          block_ptr_cache(idx) := Mux(block_ptr_cache(idx) === 3.U(2.W), block_ptr_cache(idx), block_ptr_cache(idx) + 1.U(2.W))
564        }.elsewhen(!io.replaySlow(i).cache_no_replay || !io.replaySlow(i).st_ld_check_ok) {
565          block_ptr_others(idx) := Mux(block_ptr_others(idx) === 3.U(2.W), block_ptr_others(idx), block_ptr_others(idx) + 1.U(2.W))
566        }
567      }
568
569      // special case: data forward fail
570      block_by_data_forward_fail(idx) := false.B
571
572      when(!io.replaySlow(i).forward_data_valid && io.replaySlow(i).tlb_hited) {
573        when(!io.storeDataValidVec(invalid_sq_idx)) {
574          block_by_data_forward_fail(idx) := true.B
575          block_sq_idx(idx) := invalid_sq_idx
576        }
577      }
578
579      // special case: cache miss
580      miss_mshr_id(idx) := io.replaySlow(i).miss_mshr_id
581      block_by_cache_miss(idx) := io.replaySlow(i).tlb_hited && io.replaySlow(i).cache_no_replay && io.replaySlow(i).st_ld_check_ok && // this load tlb hit and no cache replay
582                                  !io.replaySlow(i).cache_hited && !io.replaySlow(i).can_forward_full_data && // cache miss
583                                  !(io.refill.valid && io.refill.bits.id === io.replaySlow(i).miss_mshr_id) && // no refill in this cycle
584                                  creditUpdate(idx) =/= 0.U // credit is not zero
585    }
586
587  }
588
589  when(io.refill.valid) {
590    XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data)
591  }
592
593  // NOTE: we don't refill data from dcache now!
594
595  val s2_dcache_require_replay = WireInit(VecInit((0 until LoadPipelineWidth).map(i =>{
596    RegNext(io.loadIn(i).fire()) && RegNext(io.s2_dcache_require_replay(i))
597  })))
598  dontTouch(s2_dcache_require_replay)
599
600  for (i <- 0 until LoadPipelineWidth) {
601    val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value
602    val lastCycleLoadWbIndex = RegNext(loadWbIndex)
603    // update miss state in load s3
604    if(!EnableFastForward){
605      // s2_dcache_require_replay will be used to update lq flag 1 cycle after for better timing
606      //
607      // io.s2_dcache_require_replay comes from dcache miss req reject, which is quite slow to generate
608      when(s2_dcache_require_replay(i)) {
609        // do not writeback if that inst will be resend from rs
610        // rob writeback will not be triggered by a refill before inst replay
611        miss(lastCycleLoadWbIndex) := false.B // disable refill listening
612        datavalid(lastCycleLoadWbIndex) := false.B // disable refill listening
613        assert(!datavalid(lastCycleLoadWbIndex))
614      }
615    }
616    // update load error state in load s3
617    when(RegNext(io.loadIn(i).fire) && io.s3_delayed_load_error(i)){
618      uop(lastCycleLoadWbIndex).exceptionVec(loadAccessFault) := true.B
619    }
620    // update inst replay from fetch flag in s3
621    when(RegNext(io.loadIn(i).fire) && io.s3_replay_from_fetch(i)){
622      uop(lastCycleLoadWbIndex).replayInst := true.B
623    }
624  }
625
626  /**
627    * Load commits
628    *
629    * When load commited, mark it as !allocated and move deqPtrExt forward.
630    */
631  (0 until CommitWidth).map(i => {
632    when(commitCount > i.U){
633      allocated((deqPtrExt+i.U).value) := false.B
634      XSError(!allocated((deqPtrExt+i.U).value), s"why commit invalid entry $i?\n")
635    }
636  })
637
638  def toVec(a: UInt): Vec[Bool] = {
639    VecInit(a.asBools)
640  }
641
642  def getRemBits(input: UInt)(rem: Int): UInt = {
643    VecInit((0 until LoadQueueSize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt
644  }
645
646  def getFirstOne(mask: Vec[Bool], startMask: UInt) = {
647    val length = mask.length
648    val highBits = (0 until length).map(i => mask(i) & ~startMask(i))
649    val highBitsUint = Cat(highBits.reverse)
650    PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt))
651  }
652
653  def getOldest[T <: MemMicroOpRbExt](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
654    assert(valid.length == bits.length)
655    assert(isPow2(valid.length))
656    if (valid.length == 1) {
657      (valid, bits)
658    } else if (valid.length == 2) {
659      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
660      for (i <- res.indices) {
661        res(i).valid := valid(i)
662        res(i).bits := bits(i)
663      }
664      val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1)))
665      (Seq(oldest.valid), Seq(oldest.bits))
666    } else {
667      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
668      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
669      getOldest(left._1 ++ right._1, left._2 ++ right._2)
670    }
671  }
672
673  def getAfterMask(valid: Seq[Bool], uop: Seq[DynInst]) = {
674    assert(valid.length == uop.length)
675    val length = valid.length
676    (0 until length).map(i => {
677      (0 until length).map(j => {
678        Mux(valid(i) && valid(j),
679          isAfter(uop(i).robIdx, uop(j).robIdx),
680          Mux(!valid(i), true.B, false.B))
681      })
682    })
683  }
684
685
686  /**
687    * Store-Load Memory violation detection
688    *
689    * When store writes back, it searches LoadQueue for younger load instructions
690    * with the same load physical address. They loaded wrong data and need re-execution.
691    *
692    * Cycle 0: Store Writeback
693    *   Generate match vector for store address with rangeMask(stPtr, enqPtr).
694    * Cycle 1: Redirect Generation
695    *   There're up to 2 possible redirect requests.
696    *   Choose the oldest load (part 1).
697    * Cycle 2: Redirect Fire
698    *   Choose the oldest load (part 2).
699    *   Prepare redirect request according to the detected violation.
700    *   Fire redirect request (if valid)
701    */
702
703  // stage 0:        lq                 lq
704  //                 |                  |  (paddr match)
705  // stage 1:        lq                 lq
706  //                 |                  |
707  //                 |                  |
708  //                 |                  |
709  // stage 2:        lq                 lq
710  //                 |                  |
711  //                 --------------------
712  //                          |
713  //                      rollback req
714  io.load_s1 := DontCare
715def detectRollback(i: Int) = {
716    val startIndex = io.storeIn(i).bits.uop.lqIdx.value
717    val lqIdxMask = UIntToMask(startIndex, LoadQueueSize)
718    val xorMask = lqIdxMask ^ enqMask
719    val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag
720    val stToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask)
721
722    // check if load already in lq needs to be rolledback
723    dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr
724    dataModule.io.violation(i).mask := io.storeIn(i).bits.mask
725    val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask)
726    val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => {
727      allocated(j) && stToEnqPtrMask(j) && datavalid(j)
728    })))
729    val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => {
730      addrMaskMatch(j) && entryNeedCheck(j)
731    }))
732    val lqViolation = lqViolationVec.asUInt().orR() && RegNext(!io.storeIn(i).bits.miss)
733    val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask))
734    val lqViolationUop = uop(lqViolationIndex)
735    // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag
736    // lqViolationUop.lqIdx.value := lqViolationIndex
737    XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n")
738
739    XSDebug(
740      lqViolation,
741      "need rollback (ld wb before store) pc %x robidx %d target %x\n",
742      io.storeIn(i).bits.uop.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt
743    )
744
745    (lqViolation, lqViolationUop)
746  }
747
748  def rollbackSel(a: Valid[MemMicroOpRbExt], b: Valid[MemMicroOpRbExt]): ValidIO[MemMicroOpRbExt] = {
749    Mux(
750      a.valid,
751      Mux(
752        b.valid,
753        Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest
754        a // sel a
755      ),
756      b // sel b
757    )
758  }
759
760  // S2: select rollback (part1) and generate rollback request
761  // rollback check
762  // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow
763  val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MemMicroOpRbExt)))
764  // store ftq index for store set update
765  val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr))
766  val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W)))
767  for (i <- 0 until StorePipelineWidth) {
768    val detectedRollback = detectRollback(i)
769    rollbackLq(i).valid := detectedRollback._1 && RegNext(io.storeIn(i).valid)
770    rollbackLq(i).bits.uop := detectedRollback._2
771    rollbackLq(i).bits.flag := i.U
772    stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.ftqPtr)
773    stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.ftqOffset)
774  }
775
776  val rollbackLqVReg = rollbackLq.map(x => RegNext(x.valid))
777  val rollbackLqReg = rollbackLq.map(x => RegEnable(x.bits, x.valid))
778
779  // S3: select rollback (part2), generate rollback request, then fire rollback request
780  // Note that we use robIdx - 1.U to flush the load instruction itself.
781  // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect.
782
783  // select uop in parallel
784  val lqs = getOldest(rollbackLqVReg, rollbackLqReg)
785  val rollbackUopExt = lqs._2(0)
786  val stFtqIdxS3 = RegNext(stFtqIdxS2)
787  val stFtqOffsetS3 = RegNext(stFtqOffsetS2)
788  val rollbackUop = rollbackUopExt.uop
789  val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag)
790  val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag)
791
792  // check if rollback request is still valid in parallel
793  io.rollback.bits.robIdx := rollbackUop.robIdx
794  io.rollback.bits.ftqIdx := rollbackUop.ftqPtr
795  io.rollback.bits.stFtqIdx := rollbackStFtqIdx
796  io.rollback.bits.ftqOffset := rollbackUop.ftqOffset
797  io.rollback.bits.stFtqOffset := rollbackStFtqOffset
798  io.rollback.bits.level := RedirectLevel.flush
799  io.rollback.bits.interrupt := DontCare
800  io.rollback.bits.cfiUpdate := DontCare
801  io.rollback.bits.cfiUpdate.target := rollbackUop.pc
802  io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id
803  // io.rollback.bits.pc := DontCare
804
805  io.rollback.valid := rollbackLqVReg.reduce(_|_) &&
806                        (!lastCycleRedirect.valid || isBefore(rollbackUop.robIdx, lastCycleRedirect.bits.robIdx)) &&
807                        (!lastlastCycleRedirect.valid || isBefore(rollbackUop.robIdx, lastlastCycleRedirect.bits.robIdx))
808
809  when(io.rollback.valid) {
810    // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt)
811  }
812
813  /**
814  * Load-Load Memory violation detection
815  *
816  * When load arrives load_s1, it searches LoadQueue for younger load instructions
817  * with the same load physical address. If younger load has been released (or observed),
818  * the younger load needs to be re-execed.
819  *
820  * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst,
821  * the two loads will be replayed if the older load becomes the head of rob.
822  *
823  * When dcache releases a line, mark all writebacked entrys in load queue with
824  * the same line paddr as released.
825  */
826
827  // Load-Load Memory violation query
828  val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize)
829  (0 until LoadPipelineWidth).map(i => {
830    dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr
831    io.loadViolationQuery(i).req.ready := true.B
832    io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire())
833    // Generate real violation mask
834    // Note that we use UIntToMask.rightmask here
835    val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value
836    val lqIdxMask = UIntToMask(startIndex, LoadQueueSize)
837    val xorMask = lqIdxMask ^ enqMask
838    val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === enqPtrExt(0).flag
839    val ldToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask)
840    val ldld_violation_mask_gen_1 = WireInit(VecInit((0 until LoadQueueSize).map(j => {
841      ldToEnqPtrMask(j) && // the load is younger than current load
842      allocated(j) && // entry is valid
843      released(j) && // cacheline is released
844      (datavalid(j) || miss(j)) // paddr is valid
845    })))
846    val ldld_violation_mask_gen_2 = WireInit(VecInit((0 until LoadQueueSize).map(j => {
847      dataModule.io.release_violation(i).match_mask(j)// addr match
848      // addr match result is slow to generate, we RegNext() it
849    })))
850    val ldld_violation_mask = RegNext(ldld_violation_mask_gen_1).asUInt & RegNext(ldld_violation_mask_gen_2).asUInt
851    dontTouch(ldld_violation_mask)
852    ldld_violation_mask.suggestName("ldldViolationMask_" + i)
853    io.loadViolationQuery(i).resp.bits.have_violation := ldld_violation_mask.orR
854  })
855
856  // "released" flag update
857  //
858  // When io.release.valid (release1cycle.valid), it uses the last ld-ld paddr cam port to
859  // update release flag in 1 cycle
860
861  when(release1cycle.valid){
862    // Take over ld-ld paddr cam port
863    dataModule.io.release_violation.takeRight(1)(0).paddr := release1cycle.bits.paddr
864    io.loadViolationQuery.takeRight(1)(0).req.ready := false.B
865  }
866
867  when(release2cycle.valid){
868    // If a load comes in that cycle, we can not judge if it has ld-ld violation
869    // We replay that load inst from RS
870    io.loadViolationQuery.map(i => i.req.ready :=
871      // use lsu side release2cycle_dup_lsu paddr for better timing
872      !i.req.bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle_dup_lsu.bits.paddr(PAddrBits-1, DCacheLineOffset)
873    )
874    // io.loadViolationQuery.map(i => i.req.ready := false.B) // For better timing
875  }
876
877  (0 until LoadQueueSize).map(i => {
878    when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) &&
879      allocated(i) &&
880      datavalid(i) &&
881      release1cycle.valid
882    )){
883      // Note: if a load has missed in dcache and is waiting for refill in load queue,
884      // its released flag still needs to be set as true if addr matches.
885      released(i) := true.B
886    }
887  })
888
889  /**
890    * Memory mapped IO / other uncached operations
891    *
892    * States:
893    * (1) writeback from store units: mark as pending
894    * (2) when they reach ROB's head, they can be sent to uncache channel
895    * (3) response from uncache channel: mark as datavalid
896    * (4) writeback to ROB (and other units): mark as writebacked
897    * (5) ROB commits the instruction: same as normal instructions
898    */
899  //(2) when they reach ROB's head, they can be sent to uncache channel
900  val lqTailMmioPending = WireInit(pending(deqPtr))
901  val lqTailAllocated = WireInit(allocated(deqPtr))
902  val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4)
903  val uncacheState = RegInit(s_idle)
904  switch(uncacheState) {
905    is(s_idle) {
906      when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) {
907        uncacheState := s_req
908      }
909    }
910    is(s_req) {
911      when(io.uncache.req.fire()) {
912        uncacheState := s_resp
913      }
914    }
915    is(s_resp) {
916      when(io.uncache.resp.fire()) {
917        uncacheState := s_wait
918      }
919    }
920    is(s_wait) {
921      when(RegNext(io.rob.commit)) {
922        uncacheState := s_idle // ready for next mmio
923      }
924    }
925  }
926
927  // used for uncache commit
928  val uncacheData = RegInit(0.U(XLEN.W))
929  val uncacheCommitFired = RegInit(false.B)
930
931  when(uncacheState === s_req) {
932    uncacheCommitFired := false.B
933  }
934
935  io.uncache.req.valid := uncacheState === s_req
936
937  dataModule.io.uncache.raddr := deqPtrExtNext.value
938
939  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XRD
940  io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr
941  io.uncache.req.bits.data := DontCare
942  io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask
943  io.uncache.req.bits.id   := RegNext(deqPtrExtNext.value)
944  io.uncache.req.bits.instrtype := DontCare
945  io.uncache.req.bits.replayCarry := DontCare
946  io.uncache.req.bits.atomic := true.B
947
948  io.uncache.resp.ready := true.B
949
950  when (io.uncache.req.fire()) {
951    pending(deqPtr) := false.B
952
953    XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n",
954      uop(deqPtr).pc,
955      io.uncache.req.bits.addr,
956      io.uncache.req.bits.data,
957      io.uncache.req.bits.cmd,
958      io.uncache.req.bits.mask
959    )
960  }
961
962  // (3) response from uncache channel: mark as datavalid
963  when(io.uncache.resp.fire()){
964    datavalid(deqPtr) := true.B
965    uncacheData := io.uncache.resp.bits.data(XLEN-1, 0)
966
967    XSDebug("uncache resp: data %x\n", io.refill.bits.data)
968  }
969
970  // writeback mmio load, Note: only use ldout(0) to write back
971  //
972  // Int load writeback will finish (if not blocked) in one cycle
973  io.ldout(0).bits.uop := uop(deqPtr)
974  io.ldout(0).bits.uop.lqIdx := deqPtr.asTypeOf(new LqPtr)
975  io.ldout(0).bits.data := DontCare // not used
976  io.ldout(0).bits.debug.isMMIO := true.B
977  io.ldout(0).bits.debug.isPerfCnt := false.B
978  io.ldout(0).bits.debug.paddr := debug_paddr(deqPtr)
979  io.ldout(0).bits.debug.vaddr := vaddrModule.io.rdata(1)
980
981  io.ldout(0).valid := (uncacheState === s_wait) && !uncacheCommitFired
982
983  io.ldout(1).bits := DontCare
984  io.ldout(1).valid := false.B
985
986  // merged data, uop and offset for data sel in load_s3
987  io.ldRawDataOut(0).lqData := uncacheData
988  io.ldRawDataOut(0).uop := io.ldout(0).bits.uop
989  io.ldRawDataOut(0).addrOffset := dataModule.io.uncache.rdata.paddr
990
991  io.ldRawDataOut(1) := DontCare
992
993  when(io.ldout(0).fire()){
994    uncacheCommitFired := true.B
995  }
996
997  XSPerfAccumulate("uncache_load_write_back", io.ldout(0).fire())
998
999  // Read vaddr for mem exception
1000  // no inst will be commited 1 cycle before tval update
1001  vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value
1002  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
1003
1004  // read vaddr for mmio, and only port {1} is used
1005  vaddrModule.io.raddr(1) := deqPtr
1006
1007  (0 until LoadPipelineWidth).map(i => {
1008    if(i == 0) {
1009      vaddrTriggerResultModule.io.raddr(i) := deqPtr
1010      io.trigger(i).lqLoadAddrTriggerHitVec := Mux(
1011        io.ldout(i).valid,
1012        vaddrTriggerResultModule.io.rdata(i),
1013        VecInit(Seq.fill(3)(false.B))
1014      )
1015    }else {
1016      vaddrTriggerResultModule.io.raddr(i) := DontCare
1017      io.trigger(i).lqLoadAddrTriggerHitVec := VecInit(Seq.fill(3)(false.B))
1018    }
1019    // vaddrTriggerResultModule.io.raddr(i) := loadWbSelGen(i)
1020    // io.trigger(i).lqLoadAddrTriggerHitVec := Mux(
1021    //   loadWbSelV(i),
1022    //   vaddrTriggerResultModule.io.rdata(i),
1023    //   VecInit(Seq.fill(3)(false.B))
1024    // )
1025  })
1026
1027  // misprediction recovery / exception redirect
1028  // invalidate lq term using robIdx
1029  val needCancel = Wire(Vec(LoadQueueSize, Bool()))
1030  for (i <- 0 until LoadQueueSize) {
1031    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i)
1032    when (needCancel(i)) {
1033      allocated(i) := false.B
1034    }
1035  }
1036
1037  /**
1038    * update pointers
1039    */
1040  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
1041  val lastCycleCancelCount = PopCount(RegNext(needCancel))
1042  val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
1043  when (lastCycleRedirect.valid) {
1044    // we recover the pointers in the next cycle after redirect
1045    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
1046  }.otherwise {
1047    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1048  }
1049
1050  deqPtrExtNext := deqPtrExt + commitCount
1051  deqPtrExt := deqPtrExtNext
1052
1053  io.lqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
1054
1055  /**
1056    * misc
1057    */
1058  // perf counter
1059  QueuePerf(LoadQueueSize, validCount, !allowEnqueue)
1060  io.lqFull := !allowEnqueue
1061  XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated
1062  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1063  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
1064  XSPerfAccumulate("refill", io.refill.valid)
1065  XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire()))))
1066  XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready))))
1067  XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i))))
1068
1069  if (env.EnableTopDown) {
1070    val stall_loads_bound = WireDefault(0.B)
1071    ExcitingUtils.addSink(stall_loads_bound, "stall_loads_bound", ExcitingUtils.Perf)
1072    val have_miss_entry = (allocated zip miss).map(x => x._1 && x._2).reduce(_ || _)
1073    val l1d_loads_bound = stall_loads_bound && !have_miss_entry
1074    ExcitingUtils.addSource(l1d_loads_bound, "l1d_loads_bound", ExcitingUtils.Perf)
1075    XSPerfAccumulate("l1d_loads_bound", l1d_loads_bound)
1076    val stall_l1d_load_miss = stall_loads_bound && have_miss_entry
1077    ExcitingUtils.addSource(stall_l1d_load_miss, "stall_l1d_load_miss", ExcitingUtils.Perf)
1078    ExcitingUtils.addSink(WireInit(0.U), "stall_l1d_load_miss", ExcitingUtils.Perf)
1079  }
1080
1081  val perfValidCount = RegNext(validCount)
1082
1083  val perfEvents = Seq(
1084    ("rollback         ", io.rollback.valid),
1085    ("mmioCycle        ", uncacheState =/= s_idle),
1086    ("mmio_Cnt         ", io.uncache.req.fire()),
1087    ("refill           ", io.refill.valid),
1088    ("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))),
1089    ("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))),
1090    ("ltq_1_4_valid    ", (perfValidCount < (LoadQueueSize.U/4.U))),
1091    ("ltq_2_4_valid    ", (perfValidCount > (LoadQueueSize.U/4.U)) & (perfValidCount <= (LoadQueueSize.U/2.U))),
1092    ("ltq_3_4_valid    ", (perfValidCount > (LoadQueueSize.U/2.U)) & (perfValidCount <= (LoadQueueSize.U*3.U/4.U))),
1093    ("ltq_4_4_valid    ", (perfValidCount > (LoadQueueSize.U*3.U/4.U)))
1094  )
1095  generatePerfEvent()
1096
1097  // debug info
1098  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr)
1099
1100  def PrintFlag(flag: Bool, name: String): Unit = {
1101    when(flag) {
1102      XSDebug(false, true.B, name)
1103    }.otherwise {
1104      XSDebug(false, true.B, " ")
1105    }
1106  }
1107
1108  for (i <- 0 until LoadQueueSize) {
1109    XSDebug(i + " pc %x pa %x ", uop(i).pc, debug_paddr(i))
1110    PrintFlag(allocated(i), "a")
1111    PrintFlag(allocated(i) && datavalid(i), "v")
1112    PrintFlag(allocated(i) && writebacked(i), "w")
1113    PrintFlag(allocated(i) && miss(i), "m")
1114    PrintFlag(allocated(i) && pending(i), "p")
1115    XSDebug(false, true.B, "\n")
1116  }
1117
1118}
1119