1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.backend.rob.RobLsqIO 26import xiangshan.cache._ 27import xiangshan.frontend.FtqPtr 28 29 30class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 31 p => p(XSCoreParamsKey).LoadQueueSize 32){ 33 override def cloneType = (new LqPtr).asInstanceOf[this.type] 34} 35 36object LqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 38 val ptr = Wire(new LqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45trait HasLoadHelper { this: XSModule => 46 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 47 val fpWen = uop.ctrl.fpWen 48 LookupTree(uop.ctrl.fuOpType, List( 49 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 50 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 51 /* 52 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 53 Any operation that writes a narrower result to an f register must write 54 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 55 */ 56 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 57 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 58 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 59 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 60 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 61 )) 62 } 63} 64 65class LqEnqIO(implicit p: Parameters) extends XSBundle { 66 val canAccept = Output(Bool()) 67 val sqCanAccept = Input(Bool()) 68 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 69 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 70 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 71} 72 73// Load Queue 74class LoadQueue(implicit p: Parameters) extends XSModule 75 with HasDCacheParameters 76 with HasCircularQueuePtrHelper 77 with HasLoadHelper 78{ 79 val io = IO(new Bundle() { 80 val enq = new LqEnqIO 81 val brqRedirect = Flipped(ValidIO(new Redirect)) 82 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 83 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 84 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 85 val needReplayFromRS = Vec(LoadPipelineWidth, Input(Bool())) 86 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 87 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 88 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 89 val rob = Flipped(new RobLsqIO) 90 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 91 val dcache = Flipped(ValidIO(new Refill)) // TODO: to be renamed 92 val release = Flipped(ValidIO(new Release)) 93 val uncache = new DCacheWordIO 94 val exceptionAddr = new ExceptionAddrIO 95 val lqFull = Output(Bool()) 96 }) 97 98 println("LoadQueue: size:" + LoadQueueSize) 99 100 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 101 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 102 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 103 dataModule.io := DontCare 104 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 3, numWrite = LoadPipelineWidth)) 105 vaddrModule.io := DontCare 106 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 107 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 108 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 109 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 110 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 111 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 112 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 113 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 114 115 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 116 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 117 118 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 119 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 120 val deqPtrExtNext = Wire(new LqPtr) 121 val allowEnqueue = RegInit(true.B) 122 123 val enqPtr = enqPtrExt(0).value 124 val deqPtr = deqPtrExt.value 125 126 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 127 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 128 129 val commitCount = RegNext(io.rob.lcommit) 130 131 /** 132 * Enqueue at dispatch 133 * 134 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 135 */ 136 io.enq.canAccept := allowEnqueue 137 138 for (i <- 0 until io.enq.req.length) { 139 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 140 val lqIdx = enqPtrExt(offset) 141 val index = lqIdx.value 142 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid) { 143 uop(index) := io.enq.req(i).bits 144 allocated(index) := true.B 145 datavalid(index) := false.B 146 writebacked(index) := false.B 147 released(index) := false.B 148 miss(index) := false.B 149 // listening(index) := false.B 150 pending(index) := false.B 151 } 152 io.enq.resp(i) := lqIdx 153 } 154 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 155 156 /** 157 * Writeback load from load units 158 * 159 * Most load instructions writeback to regfile at the same time. 160 * However, 161 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 162 * (2) For an mmio instruction without exceptions, it does not write back. 163 * The mmio instruction will be sent to lower level when it reaches ROB's head. 164 * After uncache response, it will write back through arbiter with loadUnit. 165 * (3) For cache misses, it is marked miss and sent to dcache later. 166 * After cache refills, it will write back through arbiter with loadUnit. 167 */ 168 for (i <- 0 until LoadPipelineWidth) { 169 dataModule.io.wb.wen(i) := false.B 170 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 171 when(io.loadIn(i).fire()) { 172 when(io.loadIn(i).bits.miss) { 173 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 174 io.loadIn(i).bits.uop.lqIdx.asUInt, 175 io.loadIn(i).bits.uop.cf.pc, 176 io.loadIn(i).bits.vaddr, 177 io.loadIn(i).bits.paddr, 178 io.loadIn(i).bits.data, 179 io.loadIn(i).bits.mask, 180 io.loadIn(i).bits.forwardData.asUInt, 181 io.loadIn(i).bits.forwardMask.asUInt, 182 io.loadIn(i).bits.mmio 183 ) 184 }.otherwise { 185 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 186 io.loadIn(i).bits.uop.lqIdx.asUInt, 187 io.loadIn(i).bits.uop.cf.pc, 188 io.loadIn(i).bits.vaddr, 189 io.loadIn(i).bits.paddr, 190 io.loadIn(i).bits.data, 191 io.loadIn(i).bits.mask, 192 io.loadIn(i).bits.forwardData.asUInt, 193 io.loadIn(i).bits.forwardMask.asUInt, 194 io.loadIn(i).bits.mmio 195 )} 196 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 197 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 198 !io.needReplayFromRS(i) // do not writeback if that inst will be resend from rs 199 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 200 201 val loadWbData = Wire(new LQDataEntry) 202 loadWbData.paddr := io.loadIn(i).bits.paddr 203 loadWbData.mask := io.loadIn(i).bits.mask 204 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 205 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 206 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 207 dataModule.io.wb.wen(i) := true.B 208 209 210 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 211 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 212 213 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 214 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.needReplayFromRS(i) 215 pending(loadWbIndex) := io.loadIn(i).bits.mmio 216 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 217 // update replayInst (replay from fetch) bit, 218 // for replayInst may be set to true in load pipeline 219 uop(loadWbIndex).ctrl.replayInst := io.loadIn(i).bits.uop.ctrl.replayInst 220 } 221 // vaddrModule write is delayed, as vaddrModule will not be read right after write 222 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 223 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 224 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 225 } 226 227 when(io.dcache.valid) { 228 XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data) 229 } 230 231 // Refill 64 bit in a cycle 232 // Refill data comes back from io.dcache.resp 233 dataModule.io.refill.valid := io.dcache.valid 234 dataModule.io.refill.paddr := io.dcache.bits.addr 235 dataModule.io.refill.data := io.dcache.bits.data 236 237 (0 until LoadQueueSize).map(i => { 238 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 239 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 240 datavalid(i) := true.B 241 miss(i) := false.B 242 refilling(i) := true.B 243 } 244 }) 245 246 // Writeback up to 2 missed load insts to CDB 247 // 248 // Pick 2 missed load (data refilled), write them back to cdb 249 // 2 refilled load will be selected from even/odd entry, separately 250 251 // Stage 0 252 // Generate writeback indexes 253 254 def getEvenBits(input: UInt): UInt = { 255 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt 256 } 257 def getOddBits(input: UInt): UInt = { 258 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt 259 } 260 261 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 262 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 263 264 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 265 allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 266 })).asUInt() // use uint instead vec to reduce verilog lines 267 val evenDeqMask = getEvenBits(deqMask) 268 val oddDeqMask = getOddBits(deqMask) 269 // generate lastCycleSelect mask 270 val evenFireMask = getEvenBits(UIntToOH(loadWbSel(0))) 271 val oddFireMask = getOddBits(UIntToOH(loadWbSel(1))) 272 // generate real select vec 273 def toVec(a: UInt): Vec[Bool] = { 274 VecInit(a.asBools) 275 } 276 val loadEvenSelVecFire = getEvenBits(loadWbSelVec) & ~evenFireMask 277 val loadOddSelVecFire = getOddBits(loadWbSelVec) & ~oddFireMask 278 val loadEvenSelVecNotFire = getEvenBits(loadWbSelVec) 279 val loadOddSelVecNotFire = getOddBits(loadWbSelVec) 280 val loadEvenSel = Mux( 281 io.ldout(0).fire(), 282 getFirstOne(toVec(loadEvenSelVecFire), evenDeqMask), 283 getFirstOne(toVec(loadEvenSelVecNotFire), evenDeqMask) 284 ) 285 val loadOddSel= Mux( 286 io.ldout(1).fire(), 287 getFirstOne(toVec(loadOddSelVecFire), oddDeqMask), 288 getFirstOne(toVec(loadOddSelVecNotFire), oddDeqMask) 289 ) 290 291 292 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 293 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 294 loadWbSelGen(0) := Cat(loadEvenSel, 0.U(1.W)) 295 loadWbSelVGen(0):= Mux(io.ldout(0).fire(), loadEvenSelVecFire.asUInt.orR, loadEvenSelVecNotFire.asUInt.orR) 296 loadWbSelGen(1) := Cat(loadOddSel, 1.U(1.W)) 297 loadWbSelVGen(1) := Mux(io.ldout(1).fire(), loadOddSelVecFire.asUInt.orR, loadOddSelVecNotFire.asUInt.orR) 298 299 (0 until LoadPipelineWidth).map(i => { 300 loadWbSel(i) := RegNext(loadWbSelGen(i)) 301 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 302 when(io.ldout(i).fire()){ 303 // Mark them as writebacked, so they will not be selected in the next cycle 304 writebacked(loadWbSel(i)) := true.B 305 } 306 }) 307 308 // Stage 1 309 // Use indexes generated in cycle 0 to read data 310 // writeback data to cdb 311 (0 until LoadPipelineWidth).map(i => { 312 // data select 313 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 314 val rdata = dataModule.io.wb.rdata(i).data 315 val seluop = uop(loadWbSel(i)) 316 val func = seluop.ctrl.fuOpType 317 val raddr = dataModule.io.wb.rdata(i).paddr 318 val rdataSel = LookupTree(raddr(2, 0), List( 319 "b000".U -> rdata(63, 0), 320 "b001".U -> rdata(63, 8), 321 "b010".U -> rdata(63, 16), 322 "b011".U -> rdata(63, 24), 323 "b100".U -> rdata(63, 32), 324 "b101".U -> rdata(63, 40), 325 "b110".U -> rdata(63, 48), 326 "b111".U -> rdata(63, 56) 327 )) 328 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 329 330 // writeback missed int/fp load 331 // 332 // Int load writeback will finish (if not blocked) in one cycle 333 io.ldout(i).bits.uop := seluop 334 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 335 io.ldout(i).bits.data := rdataPartialLoad 336 io.ldout(i).bits.redirectValid := false.B 337 io.ldout(i).bits.redirect := DontCare 338 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 339 io.ldout(i).bits.debug.isPerfCnt := false.B 340 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 341 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 342 io.ldout(i).bits.fflags := DontCare 343 io.ldout(i).valid := loadWbSelV(i) 344 345 when(io.ldout(i).fire()) { 346 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 347 io.ldout(i).bits.uop.robIdx.asUInt, 348 io.ldout(i).bits.uop.lqIdx.asUInt, 349 io.ldout(i).bits.uop.cf.pc, 350 debug_mmio(loadWbSel(i)) 351 ) 352 } 353 354 }) 355 356 /** 357 * Load commits 358 * 359 * When load commited, mark it as !allocated and move deqPtrExt forward. 360 */ 361 (0 until CommitWidth).map(i => { 362 when(commitCount > i.U){ 363 allocated((deqPtrExt+i.U).value) := false.B 364 } 365 }) 366 367 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 368 val length = mask.length 369 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 370 val highBitsUint = Cat(highBits.reverse) 371 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 372 } 373 374 def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = { 375 assert(valid.length == uop.length) 376 assert(valid.length == 2) 377 Mux(valid(0) && valid(1), 378 Mux(isAfter(uop(0).robIdx, uop(1).robIdx), uop(1), uop(0)), 379 Mux(valid(0) && !valid(1), uop(0), uop(1))) 380 } 381 382 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 383 assert(valid.length == uop.length) 384 val length = valid.length 385 (0 until length).map(i => { 386 (0 until length).map(j => { 387 Mux(valid(i) && valid(j), 388 isAfter(uop(i).robIdx, uop(j).robIdx), 389 Mux(!valid(i), true.B, false.B)) 390 }) 391 }) 392 } 393 394 /** 395 * Store-Load Memory violation detection 396 * 397 * When store writes back, it searches LoadQueue for younger load instructions 398 * with the same load physical address. They loaded wrong data and need re-execution. 399 * 400 * Cycle 0: Store Writeback 401 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 402 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 403 * Cycle 1: Redirect Generation 404 * There're three possible types of violations, up to 6 possible redirect requests. 405 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 406 * Cycle 2: Redirect Fire 407 * Choose the oldest load (part 2). (3 -> 1) 408 * Prepare redirect request according to the detected violation. 409 * Fire redirect request (if valid) 410 */ 411 412 // stage 0: lq l1 wb l1 wb lq 413 // | | | | | | (paddr match) 414 // stage 1: lq l1 wb l1 wb lq 415 // | | | | | | 416 // | |------------| | 417 // | | | 418 // stage 2: lq l1wb lq 419 // | | | 420 // -------------------- 421 // | 422 // rollback req 423 io.load_s1 := DontCare 424 def detectRollback(i: Int) = { 425 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 426 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 427 val xorMask = lqIdxMask ^ enqMask 428 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 429 val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 430 431 // check if load already in lq needs to be rolledback 432 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 433 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 434 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 435 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 436 allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j)) 437 }))) 438 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 439 addrMaskMatch(j) && entryNeedCheck(j) 440 })) 441 val lqViolation = lqViolationVec.asUInt().orR() 442 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 443 val lqViolationUop = uop(lqViolationIndex) 444 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 445 // lqViolationUop.lqIdx.value := lqViolationIndex 446 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 447 448 // when l/s writeback to rob together, check if rollback is needed 449 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 450 io.loadIn(j).valid && 451 isAfter(io.loadIn(j).bits.uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 452 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 453 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 454 }))) 455 val wbViolation = wbViolationVec.asUInt().orR() 456 val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop)))) 457 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 458 459 // check if rollback is needed for load in l1 460 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 461 io.load_s1(j).valid && // L1 valid 462 isAfter(io.load_s1(j).uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 463 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 464 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 465 }))) 466 val l1Violation = l1ViolationVec.asUInt().orR() 467 val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop)))) 468 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 469 470 XSDebug( 471 l1Violation, 472 "need rollback (l1 load) pc %x robidx %d target %x\n", 473 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, l1ViolationUop.robIdx.asUInt 474 ) 475 XSDebug( 476 lqViolation, 477 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 478 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 479 ) 480 XSDebug( 481 wbViolation, 482 "need rollback (ld/st wb together) pc %x robidx %d target %x\n", 483 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, wbViolationUop.robIdx.asUInt 484 ) 485 486 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 487 } 488 489 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 490 Mux( 491 a.valid, 492 Mux( 493 b.valid, 494 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 495 a // sel a 496 ), 497 b // sel b 498 ) 499 } 500 val lastCycleRedirect = RegNext(io.brqRedirect) 501 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 502 503 // S2: select rollback (part1) and generate rollback request 504 // rollback check 505 // Wb/L1 rollback seq check is done in s2 506 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 507 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 508 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 509 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 510 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 511 // store ftq index for store set update 512 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 513 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 514 for (i <- 0 until StorePipelineWidth) { 515 val detectedRollback = detectRollback(i) 516 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 517 rollbackLq(i).bits.uop := detectedRollback._1._2 518 rollbackLq(i).bits.flag := i.U 519 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 520 rollbackWb(i).bits.uop := detectedRollback._2._2 521 rollbackWb(i).bits.flag := i.U 522 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 523 rollbackL1(i).bits.uop := detectedRollback._3._2 524 rollbackL1(i).bits.flag := i.U 525 rollbackL1Wb(2*i) := rollbackL1(i) 526 rollbackL1Wb(2*i+1) := rollbackWb(i) 527 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 528 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 529 } 530 531 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 532 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 533 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 534 val rollbackLq0VReg = RegNext(rollbackLq(0).valid) 535 val rollbackLq0Reg = RegEnable(rollbackLq(0).bits, rollbackLq(0).valid) 536 val rollbackLq1VReg = RegNext(rollbackLq(1).valid) 537 val rollbackLq1Reg = RegEnable(rollbackLq(1).bits, rollbackLq(1).valid) 538 539 // S3: select rollback (part2), generate rollback request, then fire rollback request 540 // Note that we use robIdx - 1.U to flush the load instruction itself. 541 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 542 543 // FIXME: this is ugly 544 val rollbackValidVec = Seq(rollbackL1WbVReg, rollbackLq0VReg, rollbackLq1VReg) 545 val rollbackUopExtVec = Seq(rollbackL1WbReg, rollbackLq0Reg, rollbackLq1Reg) 546 547 // select uop in parallel 548 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 549 val oneAfterZero = mask(1)(0) 550 val rollbackUopExt = Mux(oneAfterZero && mask(2)(0), 551 rollbackUopExtVec(0), 552 Mux(!oneAfterZero && mask(2)(1), rollbackUopExtVec(1), rollbackUopExtVec(2))) 553 val stFtqIdxS3 = RegNext(stFtqIdxS2) 554 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 555 val rollbackUop = rollbackUopExt.uop 556 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 557 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 558 559 // check if rollback request is still valid in parallel 560 val rollbackValidVecChecked = Wire(Vec(3, Bool())) 561 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 562 rollbackValidVecChecked(idx) := v && 563 (!lastCycleRedirect.valid || isBefore(uop.robIdx, lastCycleRedirect.bits.robIdx)) && 564 (!lastlastCycleRedirect.valid || isBefore(uop.robIdx, lastlastCycleRedirect.bits.robIdx)) 565 } 566 567 io.rollback.bits.robIdx := rollbackUop.robIdx 568 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 569 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 570 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 571 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 572 io.rollback.bits.level := RedirectLevel.flush 573 io.rollback.bits.interrupt := DontCare 574 io.rollback.bits.cfiUpdate := DontCare 575 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 576 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 577 // io.rollback.bits.pc := DontCare 578 579 io.rollback.valid := rollbackValidVecChecked.asUInt.orR 580 581 when(io.rollback.valid) { 582 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 583 } 584 585 /** 586 * Load-Load Memory violation detection 587 * 588 * When load arrives load_s1, it searches LoadQueue for younger load instructions 589 * with the same load physical address. If younger load has been released (or observed), 590 * the younger load needs to be re-execed. 591 * 592 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 593 * the two loads will be replayed if the older load becomes the head of rob. 594 * 595 * When dcache releases a line, mark all writebacked entrys in load queue with 596 * the same line paddr as released. 597 */ 598 599 // Load-Load Memory violation query 600 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 601 (0 until LoadPipelineWidth).map(i => { 602 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 603 io.loadViolationQuery(i).req.ready := true.B 604 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 605 // Generate real violation mask 606 // Note that we use UIntToMask.rightmask here 607 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 608 val lqIdxMask = UIntToMask.rightmask(startIndex, LoadQueueSize) 609 val xorMask = lqIdxMask ^ deqRightMask 610 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === deqPtrExt.flag 611 val toDeqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 612 val ldld_violation_mask = WireInit(VecInit((0 until LoadQueueSize).map(j => { 613 dataModule.io.release_violation(i).match_mask(j) && // addr match 614 toDeqPtrMask(j) && // the load is younger than current load 615 allocated(j) && // entry is valid 616 released(j) && // cacheline is released 617 (datavalid(j) || miss(j)) // paddr is valid 618 }))) 619 dontTouch(ldld_violation_mask) 620 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 621 io.loadViolationQuery(i).resp.bits.have_violation := RegNext(ldld_violation_mask.asUInt.orR) 622 }) 623 624 // "released" flag update 625 // 626 // When io.release.valid, it uses the last ld-ld paddr cam port to 627 // update release flag in 1 cycle 628 when(io.release.valid){ 629 // Take over ld-ld paddr cam port 630 dataModule.io.release_violation.takeRight(1)(0).paddr := io.release.bits.paddr 631 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 632 // If a load needs that cam port, replay it from rs 633 } 634 635 (0 until LoadQueueSize).map(i => { 636 when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && 637 allocated(i) && 638 writebacked(i) && 639 io.release.valid 640 )){ 641 // Note: if a load has missed in dcache and is waiting for refill in load queue, 642 // its released flag still needs to be set as true if addr matches. 643 released(i) := true.B 644 } 645 }) 646 647 /** 648 * Memory mapped IO / other uncached operations 649 * 650 * States: 651 * (1) writeback from store units: mark as pending 652 * (2) when they reach ROB's head, they can be sent to uncache channel 653 * (3) response from uncache channel: mark as datavalid 654 * (4) writeback to ROB (and other units): mark as writebacked 655 * (5) ROB commits the instruction: same as normal instructions 656 */ 657 //(2) when they reach ROB's head, they can be sent to uncache channel 658 val lqTailMmioPending = WireInit(pending(deqPtr)) 659 val lqTailAllocated = WireInit(allocated(deqPtr)) 660 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 661 val uncacheState = RegInit(s_idle) 662 switch(uncacheState) { 663 is(s_idle) { 664 when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) { 665 uncacheState := s_req 666 } 667 } 668 is(s_req) { 669 when(io.uncache.req.fire()) { 670 uncacheState := s_resp 671 } 672 } 673 is(s_resp) { 674 when(io.uncache.resp.fire()) { 675 uncacheState := s_wait 676 } 677 } 678 is(s_wait) { 679 when(RegNext(io.rob.commit)) { 680 uncacheState := s_idle // ready for next mmio 681 } 682 } 683 } 684 io.uncache.req.valid := uncacheState === s_req 685 686 dataModule.io.uncache.raddr := deqPtrExtNext.value 687 688 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 689 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 690 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 691 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 692 693 io.uncache.req.bits.id := DontCare 694 io.uncache.req.bits.instrtype := DontCare 695 696 io.uncache.resp.ready := true.B 697 698 when (io.uncache.req.fire()) { 699 pending(deqPtr) := false.B 700 701 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 702 uop(deqPtr).cf.pc, 703 io.uncache.req.bits.addr, 704 io.uncache.req.bits.data, 705 io.uncache.req.bits.cmd, 706 io.uncache.req.bits.mask 707 ) 708 } 709 710 // (3) response from uncache channel: mark as datavalid 711 dataModule.io.uncache.wen := false.B 712 when(io.uncache.resp.fire()){ 713 datavalid(deqPtr) := true.B 714 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 715 dataModule.io.uncache.wen := true.B 716 717 XSDebug("uncache resp: data %x\n", io.dcache.bits.data) 718 } 719 720 // Read vaddr for mem exception 721 // no inst will be commited 1 cycle before tval update 722 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 723 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 724 725 // Read vaddr for debug trigger 726 (0 until LoadPipelineWidth).map(i => { 727 vaddrModule.io.raddr(i+1) := loadWbSel(i) 728 }) 729 730 731 // misprediction recovery / exception redirect 732 // invalidate lq term using robIdx 733 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 734 for (i <- 0 until LoadQueueSize) { 735 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 736 when (needCancel(i)) { 737 allocated(i) := false.B 738 } 739 } 740 741 /** 742 * update pointers 743 */ 744 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 745 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 746 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 747 when (lastCycleRedirect.valid) { 748 // we recover the pointers in the next cycle after redirect 749 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 750 }.otherwise { 751 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 752 } 753 754 deqPtrExtNext := deqPtrExt + commitCount 755 deqPtrExt := deqPtrExtNext 756 757 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 758 759 allowEnqueue := validCount + enqNumber <= (LoadQueueSize - io.enq.req.length).U 760 761 /** 762 * misc 763 */ 764 // perf counter 765 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 766 io.lqFull := !allowEnqueue 767 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 768 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 769 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 770 XSPerfAccumulate("refill", io.dcache.valid) 771 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 772 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 773 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 774 775 val perfinfo = IO(new Bundle(){ 776 val perfEvents = Output(new PerfEventsBundle(10)) 777 }) 778 val perfEvents = Seq( 779 ("rollback ", io.rollback.valid ), 780 ("mmioCycle ", uncacheState =/= s_idle ), 781 ("mmio_Cnt ", io.uncache.req.fire() ), 782 ("refill ", io.dcache.valid ), 783 ("writeback_success ", PopCount(VecInit(io.ldout.map(i => i.fire()))) ), 784 ("writeback_blocked ", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready))) ), 785 ("ltq_1/4_valid ", (validCount < (LoadQueueSize.U/4.U)) ), 786 ("ltq_2/4_valid ", (validCount > (LoadQueueSize.U/4.U)) & (validCount <= (LoadQueueSize.U/2.U)) ), 787 ("ltq_3/4_valid ", (validCount > (LoadQueueSize.U/2.U)) & (validCount <= (LoadQueueSize.U*3.U/4.U))), 788 ("ltq_4/4_valid ", (validCount > (LoadQueueSize.U*3.U/4.U)) ), 789 ) 790 791 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 792 perf_out.incr_step := RegNext(perf) 793 } 794 // debug info 795 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 796 797 def PrintFlag(flag: Bool, name: String): Unit = { 798 when(flag) { 799 XSDebug(false, true.B, name) 800 }.otherwise { 801 XSDebug(false, true.B, " ") 802 } 803 } 804 805 for (i <- 0 until LoadQueueSize) { 806 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 807 PrintFlag(allocated(i), "a") 808 PrintFlag(allocated(i) && datavalid(i), "v") 809 PrintFlag(allocated(i) && writebacked(i), "w") 810 PrintFlag(allocated(i) && miss(i), "m") 811 PrintFlag(allocated(i) && pending(i), "p") 812 XSDebug(false, true.B, "\n") 813 } 814 815} 816