1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import freechips.rocketchip.tile.HasFPUParameters 6import utils._ 7import xiangshan._ 8import xiangshan.cache._ 9import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants, TlbRequestIO} 10import xiangshan.backend.LSUOpType 11import xiangshan.mem._ 12import xiangshan.backend.roq.RoqLsqIO 13import xiangshan.backend.fu.HasExceptionNO 14 15 16class LqPtr extends CircularQueuePtr(LqPtr.LoadQueueSize) { } 17 18object LqPtr extends HasXSParameter { 19 def apply(f: Bool, v: UInt): LqPtr = { 20 val ptr = Wire(new LqPtr) 21 ptr.flag := f 22 ptr.value := v 23 ptr 24 } 25} 26 27trait HasLoadHelper { this: XSModule => 28 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 29 val fpWen = uop.ctrl.fpWen 30 LookupTree(uop.ctrl.fuOpType, List( 31 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 32 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 33 LSUOpType.lw -> Mux(fpWen, Cat(Fill(32, 1.U(1.W)), rdata(31, 0)), SignExt(rdata(31, 0), XLEN)), 34 LSUOpType.ld -> Mux(fpWen, rdata, SignExt(rdata(63, 0), XLEN)), 35 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 36 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 37 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 38 )) 39 } 40 41 def fpRdataHelper(uop: MicroOp, rdata: UInt): UInt = { 42 LookupTree(uop.ctrl.fuOpType, List( 43 LSUOpType.lw -> recode(rdata(31, 0), S), 44 LSUOpType.ld -> recode(rdata(63, 0), D) 45 )) 46 } 47} 48 49class LqEnqIO extends XSBundle { 50 val canAccept = Output(Bool()) 51 val sqCanAccept = Input(Bool()) 52 val needAlloc = Vec(RenameWidth, Input(Bool())) 53 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 54 val resp = Vec(RenameWidth, Output(new LqPtr)) 55} 56 57// Load Queue 58class LoadQueue extends XSModule 59 with HasDCacheParameters 60 with HasCircularQueuePtrHelper 61 with HasLoadHelper 62 with HasExceptionNO 63{ 64 val io = IO(new Bundle() { 65 val enq = new LqEnqIO 66 val brqRedirect = Flipped(ValidIO(new Redirect)) 67 val flush = Input(Bool()) 68 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 69 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 70 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 71 val needReplayFromRS = Vec(LoadPipelineWidth, Input(Bool())) 72 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 73 val load_s1 = Vec(LoadPipelineWidth, Flipped(new MaskedLoadForwardQueryIO)) 74 val roq = Flipped(new RoqLsqIO) 75 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 76 val dcache = Flipped(ValidIO(new Refill)) 77 val uncache = new DCacheWordIO 78 val exceptionAddr = new ExceptionAddrIO 79 }) 80 81 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 82 // val data = Reg(Vec(LoadQueueSize, new LsRoqEntry)) 83 val dataModule = Module(new LoadQueueData(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 84 dataModule.io := DontCare 85 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 1, numWrite = LoadPipelineWidth)) 86 vaddrModule.io := DontCare 87 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 88 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 89 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 90 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 91 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 92 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 93 94 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 95 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 96 97 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new LqPtr)))) 98 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 99 val deqPtrExtNext = Wire(new LqPtr) 100 val allowEnqueue = RegInit(true.B) 101 102 val enqPtr = enqPtrExt(0).value 103 val deqPtr = deqPtrExt.value 104 105 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 106 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 107 108 val commitCount = RegNext(io.roq.lcommit) 109 110 /** 111 * Enqueue at dispatch 112 * 113 * Currently, LoadQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 114 */ 115 io.enq.canAccept := allowEnqueue 116 117 for (i <- 0 until RenameWidth) { 118 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 119 val lqIdx = enqPtrExt(offset) 120 val index = lqIdx.value 121 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush)) { 122 uop(index) := io.enq.req(i).bits 123 allocated(index) := true.B 124 datavalid(index) := false.B 125 writebacked(index) := false.B 126 miss(index) := false.B 127 // listening(index) := false.B 128 pending(index) := false.B 129 } 130 io.enq.resp(i) := lqIdx 131 } 132 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 133 134 /** 135 * Writeback load from load units 136 * 137 * Most load instructions writeback to regfile at the same time. 138 * However, 139 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 140 * (2) For an mmio instruction without exceptions, it does not write back. 141 * The mmio instruction will be sent to lower level when it reaches ROB's head. 142 * After uncache response, it will write back through arbiter with loadUnit. 143 * (3) For cache misses, it is marked miss and sent to dcache later. 144 * After cache refills, it will write back through arbiter with loadUnit. 145 */ 146 for (i <- 0 until LoadPipelineWidth) { 147 dataModule.io.wb.wen(i) := false.B 148 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 149 when(io.loadIn(i).fire()) { 150 when(io.loadIn(i).bits.miss) { 151 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 152 io.loadIn(i).bits.uop.lqIdx.asUInt, 153 io.loadIn(i).bits.uop.cf.pc, 154 io.loadIn(i).bits.vaddr, 155 io.loadIn(i).bits.paddr, 156 io.loadIn(i).bits.data, 157 io.loadIn(i).bits.mask, 158 io.loadIn(i).bits.forwardData.asUInt, 159 io.loadIn(i).bits.forwardMask.asUInt, 160 io.loadIn(i).bits.mmio 161 ) 162 }.otherwise { 163 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 164 io.loadIn(i).bits.uop.lqIdx.asUInt, 165 io.loadIn(i).bits.uop.cf.pc, 166 io.loadIn(i).bits.vaddr, 167 io.loadIn(i).bits.paddr, 168 io.loadIn(i).bits.data, 169 io.loadIn(i).bits.mask, 170 io.loadIn(i).bits.forwardData.asUInt, 171 io.loadIn(i).bits.forwardMask.asUInt, 172 io.loadIn(i).bits.mmio 173 )} 174 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 175 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 176 !io.needReplayFromRS(i) // do not writeback if that inst will be resend from rs 177 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 178 179 val loadWbData = Wire(new LQDataEntry) 180 loadWbData.paddr := io.loadIn(i).bits.paddr 181 loadWbData.mask := io.loadIn(i).bits.mask 182 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 183 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 184 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 185 dataModule.io.wb.wen(i) := true.B 186 187 188 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 189 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 190 191 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 192 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.needReplayFromRS(i) 193 pending(loadWbIndex) := io.loadIn(i).bits.mmio 194 uop(loadWbIndex).debugInfo.issueTime := io.loadIn(i).bits.uop.debugInfo.issueTime 195 } 196 // vaddrModule write is delayed, as vaddrModule will not be read right after write 197 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 198 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 199 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 200 } 201 202 when(io.dcache.valid) { 203 XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data) 204 } 205 206 // Refill 64 bit in a cycle 207 // Refill data comes back from io.dcache.resp 208 dataModule.io.refill.valid := io.dcache.valid 209 dataModule.io.refill.paddr := io.dcache.bits.addr 210 dataModule.io.refill.data := io.dcache.bits.data 211 212 (0 until LoadQueueSize).map(i => { 213 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 214 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 215 datavalid(i) := true.B 216 miss(i) := false.B 217 } 218 }) 219 220 // Writeback up to 2 missed load insts to CDB 221 // 222 // Pick 2 missed load (data refilled), write them back to cdb 223 // 2 refilled load will be selected from even/odd entry, separately 224 225 // Stage 0 226 // Generate writeback indexes 227 228 def getEvenBits(input: UInt): UInt = { 229 require(input.getWidth == LoadQueueSize) 230 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt 231 } 232 def getOddBits(input: UInt): UInt = { 233 require(input.getWidth == LoadQueueSize) 234 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt 235 } 236 237 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 238 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 239 240 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 241 allocated(i) && !writebacked(i) && datavalid(i) 242 })).asUInt() // use uint instead vec to reduce verilog lines 243 val evenDeqMask = getEvenBits(deqMask) 244 val oddDeqMask = getOddBits(deqMask) 245 // generate lastCycleSelect mask 246 val evenSelectMask = Mux(io.ldout(0).fire(), getEvenBits(UIntToOH(loadWbSel(0))), 0.U) 247 val oddSelectMask = Mux(io.ldout(1).fire(), getOddBits(UIntToOH(loadWbSel(1))), 0.U) 248 // generate real select vec 249 val loadEvenSelVec = getEvenBits(loadWbSelVec) & ~evenSelectMask 250 val loadOddSelVec = getOddBits(loadWbSelVec) & ~oddSelectMask 251 252 def toVec(a: UInt): Vec[Bool] = { 253 VecInit(a.asBools) 254 } 255 256 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 257 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 258 loadWbSelGen(0) := Cat(getFirstOne(toVec(loadEvenSelVec), evenDeqMask), 0.U(1.W)) 259 loadWbSelVGen(0):= loadEvenSelVec.asUInt.orR 260 loadWbSelGen(1) := Cat(getFirstOne(toVec(loadOddSelVec), oddDeqMask), 1.U(1.W)) 261 loadWbSelVGen(1) := loadOddSelVec.asUInt.orR 262 263 (0 until LoadPipelineWidth).map(i => { 264 loadWbSel(i) := RegNext(loadWbSelGen(i)) 265 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 266 when(io.ldout(i).fire()){ 267 // Mark them as writebacked, so they will not be selected in the next cycle 268 writebacked(loadWbSel(i)) := true.B 269 } 270 }) 271 272 // Stage 1 273 // Use indexes generated in cycle 0 to read data 274 // writeback data to cdb 275 (0 until LoadPipelineWidth).map(i => { 276 // data select 277 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 278 val rdata = dataModule.io.wb.rdata(i).data 279 val seluop = uop(loadWbSel(i)) 280 val func = seluop.ctrl.fuOpType 281 val raddr = dataModule.io.wb.rdata(i).paddr 282 val rdataSel = LookupTree(raddr(2, 0), List( 283 "b000".U -> rdata(63, 0), 284 "b001".U -> rdata(63, 8), 285 "b010".U -> rdata(63, 16), 286 "b011".U -> rdata(63, 24), 287 "b100".U -> rdata(63, 32), 288 "b101".U -> rdata(63, 40), 289 "b110".U -> rdata(63, 48), 290 "b111".U -> rdata(63, 56) 291 )) 292 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 293 294 // writeback missed int/fp load 295 // 296 // Int load writeback will finish (if not blocked) in one cycle 297 io.ldout(i).bits.uop := seluop 298 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 299 io.ldout(i).bits.data := rdataPartialLoad 300 io.ldout(i).bits.redirectValid := false.B 301 io.ldout(i).bits.redirect := DontCare 302 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 303 io.ldout(i).bits.debug.isPerfCnt := false.B 304 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 305 io.ldout(i).bits.fflags := DontCare 306 io.ldout(i).valid := loadWbSelV(i) 307 308 when(io.ldout(i).fire()) { 309 XSInfo("int load miss write to cbd roqidx %d lqidx %d pc 0x%x mmio %x\n", 310 io.ldout(i).bits.uop.roqIdx.asUInt, 311 io.ldout(i).bits.uop.lqIdx.asUInt, 312 io.ldout(i).bits.uop.cf.pc, 313 debug_mmio(loadWbSel(i)) 314 ) 315 } 316 317 }) 318 319 /** 320 * Load commits 321 * 322 * When load commited, mark it as !allocated and move deqPtrExt forward. 323 */ 324 (0 until CommitWidth).map(i => { 325 when(commitCount > i.U){ 326 allocated(deqPtr+i.U) := false.B 327 } 328 }) 329 330 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 331 val length = mask.length 332 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 333 val highBitsUint = Cat(highBits.reverse) 334 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 335 } 336 337 def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = { 338 assert(valid.length == uop.length) 339 assert(valid.length == 2) 340 Mux(valid(0) && valid(1), 341 Mux(isAfter(uop(0).roqIdx, uop(1).roqIdx), uop(1), uop(0)), 342 Mux(valid(0) && !valid(1), uop(0), uop(1))) 343 } 344 345 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 346 assert(valid.length == uop.length) 347 val length = valid.length 348 (0 until length).map(i => { 349 (0 until length).map(j => { 350 Mux(valid(i) && valid(j), 351 isAfter(uop(i).roqIdx, uop(j).roqIdx), 352 Mux(!valid(i), true.B, false.B)) 353 }) 354 }) 355 } 356 357 /** 358 * Memory violation detection 359 * 360 * When store writes back, it searches LoadQueue for younger load instructions 361 * with the same load physical address. They loaded wrong data and need re-execution. 362 * 363 * Cycle 0: Store Writeback 364 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 365 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 366 * Cycle 1: Redirect Generation 367 * There're three possible types of violations, up to 6 possible redirect requests. 368 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 369 * Cycle 2: Redirect Fire 370 * Choose the oldest load (part 2). (3 -> 1) 371 * Prepare redirect request according to the detected violation. 372 * Fire redirect request (if valid) 373 */ 374 375 // stage 0: lq l1 wb l1 wb lq 376 // | | | | | | (paddr match) 377 // stage 1: lq l1 wb l1 wb lq 378 // | | | | | | 379 // | |------------| | 380 // | | | 381 // stage 2: lq l1wb lq 382 // | | | 383 // -------------------- 384 // | 385 // rollback req 386 io.load_s1 := DontCare 387 def detectRollback(i: Int) = { 388 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 389 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 390 val xorMask = lqIdxMask ^ enqMask 391 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 392 val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 393 394 // check if load already in lq needs to be rolledback 395 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 396 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 397 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 398 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 399 allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j)) 400 }))) 401 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 402 addrMaskMatch(j) && entryNeedCheck(j) 403 })) 404 val lqViolation = lqViolationVec.asUInt().orR() 405 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 406 val lqViolationUop = uop(lqViolationIndex) 407 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 408 // lqViolationUop.lqIdx.value := lqViolationIndex 409 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 410 411 // when l/s writeback to roq together, check if rollback is needed 412 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 413 io.loadIn(j).valid && 414 isAfter(io.loadIn(j).bits.uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) && 415 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 416 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 417 }))) 418 val wbViolation = wbViolationVec.asUInt().orR() 419 val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop)))) 420 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 421 422 // check if rollback is needed for load in l1 423 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 424 io.load_s1(j).valid && // L1 valid 425 isAfter(io.load_s1(j).uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) && 426 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 427 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 428 }))) 429 val l1Violation = l1ViolationVec.asUInt().orR() 430 val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop)))) 431 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 432 433 XSDebug( 434 l1Violation, 435 "need rollback (l1 load) pc %x roqidx %d target %x\n", 436 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, l1ViolationUop.roqIdx.asUInt 437 ) 438 XSDebug( 439 lqViolation, 440 "need rollback (ld wb before store) pc %x roqidx %d target %x\n", 441 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, lqViolationUop.roqIdx.asUInt 442 ) 443 XSDebug( 444 wbViolation, 445 "need rollback (ld/st wb together) pc %x roqidx %d target %x\n", 446 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, wbViolationUop.roqIdx.asUInt 447 ) 448 449 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 450 } 451 452 def rollbackSel(a: Valid[MicroOp], b: Valid[MicroOp]): ValidIO[MicroOp] = { 453 Mux( 454 a.valid, 455 Mux( 456 b.valid, 457 Mux(isAfter(a.bits.roqIdx, b.bits.roqIdx), b, a), // a,b both valid, sel oldest 458 a // sel a 459 ), 460 b // sel b 461 ) 462 } 463 val lastCycleRedirect = RegNext(io.brqRedirect) 464 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 465 val lastCycleFlush = RegNext(io.flush) 466 val lastlastCycleFlush = RegNext(lastCycleFlush) 467 468 // S2: select rollback (part1) and generate rollback request 469 // rollback check 470 // Wb/L1 rollback seq check is done in s2 471 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOp))) 472 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOp))) 473 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOp))) 474 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 475 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOp))) 476 for (i <- 0 until StorePipelineWidth) { 477 val detectedRollback = detectRollback(i) 478 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 479 rollbackLq(i).bits := detectedRollback._1._2 480 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 481 rollbackWb(i).bits := detectedRollback._2._2 482 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 483 rollbackL1(i).bits := detectedRollback._3._2 484 rollbackL1Wb(2*i) := rollbackL1(i) 485 rollbackL1Wb(2*i+1) := rollbackWb(i) 486 } 487 488 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 489 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 490 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 491 val rollbackLq0VReg = RegNext(rollbackLq(0).valid) 492 val rollbackLq0Reg = RegEnable(rollbackLq(0).bits, rollbackLq(0).valid) 493 val rollbackLq1VReg = RegNext(rollbackLq(1).valid) 494 val rollbackLq1Reg = RegEnable(rollbackLq(1).bits, rollbackLq(1).valid) 495 496 // S3: select rollback (part2), generate rollback request, then fire rollback request 497 // Note that we use roqIdx - 1.U to flush the load instruction itself. 498 // Thus, here if last cycle's roqIdx equals to this cycle's roqIdx, it still triggers the redirect. 499 500 // FIXME: this is ugly 501 val rollbackValidVec = Seq(rollbackL1WbVReg, rollbackLq0VReg, rollbackLq1VReg) 502 val rollbackUopVec = Seq(rollbackL1WbReg, rollbackLq0Reg, rollbackLq1Reg) 503 504 // select uop in parallel 505 val mask = getAfterMask(rollbackValidVec, rollbackUopVec) 506 val oneAfterZero = mask(1)(0) 507 val rollbackUop = Mux(oneAfterZero && mask(2)(0), 508 rollbackUopVec(0), 509 Mux(!oneAfterZero && mask(2)(1), rollbackUopVec(1), rollbackUopVec(2))) 510 511 // check if rollback request is still valid in parallel 512 val rollbackValidVecChecked = Wire(Vec(3, Bool())) 513 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopVec).zipWithIndex) { 514 rollbackValidVecChecked(idx) := v && 515 (!lastCycleRedirect.valid || isBefore(uop.roqIdx, lastCycleRedirect.bits.roqIdx)) && 516 (!lastlastCycleRedirect.valid || isBefore(uop.roqIdx, lastlastCycleRedirect.bits.roqIdx)) 517 } 518 519 io.rollback.bits.roqIdx := rollbackUop.roqIdx 520 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 521 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 522 io.rollback.bits.level := RedirectLevel.flush 523 io.rollback.bits.interrupt := DontCare 524 io.rollback.bits.cfiUpdate := DontCare 525 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 526 // io.rollback.bits.pc := DontCare 527 528 io.rollback.valid := rollbackValidVecChecked.asUInt.orR && !lastCycleFlush && !lastlastCycleFlush 529 530 when(io.rollback.valid) { 531 // XSDebug("Mem rollback: pc %x roqidx %d\n", io.rollback.bits.cfi, io.rollback.bits.roqIdx.asUInt) 532 } 533 534 /** 535 * Memory mapped IO / other uncached operations 536 * 537 * States: 538 * (1) writeback from store units: mark as pending 539 * (2) when they reach ROB's head, they can be sent to uncache channel 540 * (3) response from uncache channel: mark as datavalid 541 * (4) writeback to ROB (and other units): mark as writebacked 542 * (5) ROB commits the instruction: same as normal instructions 543 */ 544 //(2) when they reach ROB's head, they can be sent to uncache channel 545 val lqTailMmioPending = WireInit(pending(deqPtr)) 546 val lqTailAllocated = WireInit(allocated(deqPtr)) 547 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 548 val uncacheState = RegInit(s_idle) 549 switch(uncacheState) { 550 is(s_idle) { 551 when(io.roq.pendingld && lqTailMmioPending && lqTailAllocated) { 552 uncacheState := s_req 553 } 554 } 555 is(s_req) { 556 when(io.uncache.req.fire()) { 557 uncacheState := s_resp 558 } 559 } 560 is(s_resp) { 561 when(io.uncache.resp.fire()) { 562 uncacheState := s_wait 563 } 564 } 565 is(s_wait) { 566 when(io.roq.commit) { 567 uncacheState := s_idle // ready for next mmio 568 } 569 } 570 } 571 io.uncache.req.valid := uncacheState === s_req 572 573 dataModule.io.uncache.raddr := deqPtrExtNext.value 574 575 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 576 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 577 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 578 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 579 580 io.uncache.req.bits.id := DontCare 581 582 io.uncache.resp.ready := true.B 583 584 when (io.uncache.req.fire()) { 585 pending(deqPtr) := false.B 586 587 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 588 uop(deqPtr).cf.pc, 589 io.uncache.req.bits.addr, 590 io.uncache.req.bits.data, 591 io.uncache.req.bits.cmd, 592 io.uncache.req.bits.mask 593 ) 594 } 595 596 // (3) response from uncache channel: mark as datavalid 597 dataModule.io.uncache.wen := false.B 598 when(io.uncache.resp.fire()){ 599 datavalid(deqPtr) := true.B 600 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 601 dataModule.io.uncache.wen := true.B 602 603 XSDebug("uncache resp: data %x\n", io.dcache.bits.data) 604 } 605 606 // Read vaddr for mem exception 607 // Note that both io.roq.lcommit and RegNext(io.roq.lcommit) should be take into consideration 608 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount + io.roq.lcommit).value 609 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 610 611 // misprediction recovery / exception redirect 612 // invalidate lq term using robIdx 613 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 614 for (i <- 0 until LoadQueueSize) { 615 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) 616 when (needCancel(i)) { 617 allocated(i) := false.B 618 } 619 } 620 621 /** 622 * update pointers 623 */ 624 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 625 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 626 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 627 when (lastCycleRedirect.valid || lastCycleFlush) { 628 // we recover the pointers in the next cycle after redirect 629 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 630 }.otherwise { 631 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 632 } 633 634 deqPtrExtNext := deqPtrExt + commitCount 635 deqPtrExt := deqPtrExtNext 636 637 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 638 639 allowEnqueue := validCount + enqNumber <= (LoadQueueSize - RenameWidth).U 640 641 // perf counter 642 XSPerf("lqRollback", io.rollback.valid, acc = true) // rollback redirect generated 643 XSPerf("lqFull", !allowEnqueue, acc = true) 644 XSPerf("lqMmioCycle", uncacheState =/= s_idle, acc = true) // lq is busy dealing with uncache req 645 XSPerf("lqMmioCnt", io.uncache.req.fire(), acc = true) 646 XSPerf("lqRefill", io.dcache.valid, acc = true) 647 XSPerf("lqWriteback", PopCount(VecInit(io.ldout.map(i => i.fire()))), acc = true) 648 XSPerf("lqWbBlocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready))), acc = true) 649 650 // debug info 651 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 652 653 def PrintFlag(flag: Bool, name: String): Unit = { 654 when(flag) { 655 XSDebug(false, true.B, name) 656 }.otherwise { 657 XSDebug(false, true.B, " ") 658 } 659 } 660 661 for (i <- 0 until LoadQueueSize) { 662 if (i % 4 == 0) XSDebug("") 663 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 664 PrintFlag(allocated(i), "a") 665 PrintFlag(allocated(i) && datavalid(i), "v") 666 PrintFlag(allocated(i) && writebacked(i), "w") 667 PrintFlag(allocated(i) && miss(i), "m") 668 // PrintFlag(allocated(i) && listening(i), "l") 669 PrintFlag(allocated(i) && pending(i), "p") 670 XSDebug(false, true.B, " ") 671 if (i % 4 == 3 || i == LoadQueueSize - 1) XSDebug(false, true.B, "\n") 672 } 673 674} 675