1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.backend.rob.RobLsqIO 26import xiangshan.cache._ 27import xiangshan.frontend.FtqPtr 28import xiangshan.ExceptionNO._ 29 30class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 31 p => p(XSCoreParamsKey).LoadQueueSize 32){ 33} 34 35object LqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 37 val ptr = Wire(new LqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44trait HasLoadHelper { this: XSModule => 45 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 46 val fpWen = uop.ctrl.fpWen 47 LookupTree(uop.ctrl.fuOpType, List( 48 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 49 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 50 /* 51 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 52 Any operation that writes a narrower result to an f register must write 53 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 54 */ 55 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 56 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 57 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 58 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 59 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 60 )) 61 } 62} 63 64class LqEnqIO(implicit p: Parameters) extends XSBundle { 65 val canAccept = Output(Bool()) 66 val sqCanAccept = Input(Bool()) 67 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 68 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 69 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 70} 71 72class LqTriggerIO(implicit p: Parameters) extends XSBundle { 73 val hitLoadAddrTriggerHitVec = Input(Vec(3, Bool())) 74 val lqLoadAddrTriggerHitVec = Output(Vec(3, Bool())) 75} 76 77// Load Queue 78class LoadQueue(implicit p: Parameters) extends XSModule 79 with HasDCacheParameters 80 with HasCircularQueuePtrHelper 81 with HasLoadHelper 82 with HasPerfEvents 83{ 84 val io = IO(new Bundle() { 85 val enq = new LqEnqIO 86 val brqRedirect = Flipped(ValidIO(new Redirect)) 87 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 88 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 89 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 90 val delayedLoadError = Vec(LoadPipelineWidth, Input(Bool())) 91 val dcacheRequireReplay = Vec(LoadPipelineWidth, Input(Bool())) 92 val ldout = Vec(LoadPipelineWidth, DecoupledIO(new ExuOutput)) // writeback int load 93 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 94 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 95 val rob = Flipped(new RobLsqIO) 96 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 97 val refill = Flipped(ValidIO(new Refill)) 98 val release = Flipped(ValidIO(new Release)) 99 val uncache = new UncacheWordIO 100 val exceptionAddr = new ExceptionAddrIO 101 val lqFull = Output(Bool()) 102 val lqCancelCnt = Output(UInt(log2Up(LoadQueueSize + 1).W)) 103 val trigger = Vec(LoadPipelineWidth, new LqTriggerIO) 104 }) 105 106 println("LoadQueue: size:" + LoadQueueSize) 107 108 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 109 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 110 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 111 dataModule.io := DontCare 112 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = LoadPipelineWidth + 1, numWrite = LoadPipelineWidth)) 113 vaddrModule.io := DontCare 114 val vaddrTriggerResultModule = Module(new SyncDataModuleTemplate(Vec(3, Bool()), LoadQueueSize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth)) 115 vaddrTriggerResultModule.io := DontCare 116 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 117 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 118 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 119 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 120 val error = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been corrupted 121 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 122 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 123 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 124 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 125 126 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 127 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 128 129 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 130 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 131 val deqPtrExtNext = Wire(new LqPtr) 132 133 val enqPtr = enqPtrExt(0).value 134 val deqPtr = deqPtrExt.value 135 136 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 137 val allowEnqueue = validCount <= (LoadQueueSize - LoadPipelineWidth).U 138 139 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 140 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 141 142 val commitCount = RegNext(io.rob.lcommit) 143 144 val release1cycle = io.release 145 val release2cycle = RegNext(io.release) 146 val release2cycle_dup_lsu = RegNext(io.release) 147 148 /** 149 * Enqueue at dispatch 150 * 151 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 152 */ 153 io.enq.canAccept := allowEnqueue 154 155 val canEnqueue = io.enq.req.map(_.valid) 156 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 157 for (i <- 0 until io.enq.req.length) { 158 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 159 val lqIdx = enqPtrExt(offset) 160 val index = io.enq.req(i).bits.lqIdx.value 161 when (canEnqueue(i) && !enqCancel(i)) { 162 uop(index).robIdx := io.enq.req(i).bits.robIdx 163 allocated(index) := true.B 164 datavalid(index) := false.B 165 writebacked(index) := false.B 166 released(index) := false.B 167 miss(index) := false.B 168 pending(index) := false.B 169 error(index) := false.B 170 XSError(!io.enq.canAccept || !io.enq.sqCanAccept, s"must accept $i\n") 171 XSError(index =/= lqIdx.value, s"must be the same entry $i\n") 172 } 173 io.enq.resp(i) := lqIdx 174 } 175 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 176 177 /** 178 * Writeback load from load units 179 * 180 * Most load instructions writeback to regfile at the same time. 181 * However, 182 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 183 * (2) For an mmio instruction without exceptions, it does not write back. 184 * The mmio instruction will be sent to lower level when it reaches ROB's head. 185 * After uncache response, it will write back through arbiter with loadUnit. 186 * (3) For cache misses, it is marked miss and sent to dcache later. 187 * After cache refills, it will write back through arbiter with loadUnit. 188 */ 189 for (i <- 0 until LoadPipelineWidth) { 190 dataModule.io.wb.wen(i) := false.B 191 vaddrTriggerResultModule.io.wen(i) := false.B 192 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 193 194 // most lq status need to be updated immediately after load writeback to lq 195 when(io.loadIn(i).fire()) { 196 when(io.loadIn(i).bits.miss) { 197 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 198 io.loadIn(i).bits.uop.lqIdx.asUInt, 199 io.loadIn(i).bits.uop.cf.pc, 200 io.loadIn(i).bits.vaddr, 201 io.loadIn(i).bits.paddr, 202 io.loadIn(i).bits.data, 203 io.loadIn(i).bits.mask, 204 io.loadIn(i).bits.forwardData.asUInt, 205 io.loadIn(i).bits.forwardMask.asUInt, 206 io.loadIn(i).bits.mmio 207 ) 208 }.otherwise { 209 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 210 io.loadIn(i).bits.uop.lqIdx.asUInt, 211 io.loadIn(i).bits.uop.cf.pc, 212 io.loadIn(i).bits.vaddr, 213 io.loadIn(i).bits.paddr, 214 io.loadIn(i).bits.data, 215 io.loadIn(i).bits.mask, 216 io.loadIn(i).bits.forwardData.asUInt, 217 io.loadIn(i).bits.forwardMask.asUInt, 218 io.loadIn(i).bits.mmio 219 )} 220 if(EnableFastForward){ 221 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 222 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 223 !io.dcacheRequireReplay(i) // do not writeback if that inst will be resend from rs 224 } else { 225 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 226 !io.loadIn(i).bits.mmio // mmio data is not valid until we finished uncache access 227 } 228 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 229 230 val loadWbData = Wire(new LQDataEntry) 231 loadWbData.paddr := io.loadIn(i).bits.paddr 232 loadWbData.mask := io.loadIn(i).bits.mask 233 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 234 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 235 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 236 dataModule.io.wb.wen(i) := true.B 237 238 vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 239 vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 240 vaddrTriggerResultModule.io.wen(i) := true.B 241 242 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 243 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 244 245 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 246 if(EnableFastForward){ 247 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.dcacheRequireReplay(i) 248 } else { 249 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) 250 } 251 pending(loadWbIndex) := io.loadIn(i).bits.mmio 252 released(loadWbIndex) := release2cycle.valid && 253 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) || 254 release1cycle.valid && 255 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release1cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) 256 // dirty code for load instr 257 uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest 258 uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf 259 uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl 260 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 261 } 262 263 // vaddrModule write is delayed, as vaddrModule will not be read right after write 264 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 265 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 266 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 267 } 268 269 when(io.refill.valid) { 270 XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) 271 } 272 273 // Refill 64 bit in a cycle 274 // Refill data comes back from io.dcache.resp 275 dataModule.io.refill.valid := io.refill.valid 276 dataModule.io.refill.paddr := io.refill.bits.addr 277 dataModule.io.refill.data := io.refill.bits.data 278 279 val dcacheRequireReplay = WireInit(VecInit((0 until LoadPipelineWidth).map(i =>{ 280 RegNext(io.loadIn(i).fire()) && RegNext(io.dcacheRequireReplay(i)) 281 }))) 282 dontTouch(dcacheRequireReplay) 283 284 (0 until LoadQueueSize).map(i => { 285 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 286 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 287 datavalid(i) := true.B 288 miss(i) := false.B 289 when(!dcacheRequireReplay.asUInt.orR){ 290 refilling(i) := true.B 291 } 292 when(io.refill.bits.error) { 293 error(i) := true.B 294 } 295 } 296 }) 297 298 for (i <- 0 until LoadPipelineWidth) { 299 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 300 val lastCycleLoadWbIndex = RegNext(loadWbIndex) 301 // update miss state in load s3 302 if(!EnableFastForward){ 303 // dcacheRequireReplay will be used to update lq flag 1 cycle after for better timing 304 // 305 // io.dcacheRequireReplay comes from dcache miss req reject, which is quite slow to generate 306 when(dcacheRequireReplay(i) && !refill_addr_hit(RegNext(io.loadIn(i).bits.paddr), io.refill.bits.addr)) { 307 // do not writeback if that inst will be resend from rs 308 // rob writeback will not be triggered by a refill before inst replay 309 miss(lastCycleLoadWbIndex) := false.B // disable refill listening 310 datavalid(lastCycleLoadWbIndex) := false.B // disable refill listening 311 assert(!datavalid(lastCycleLoadWbIndex)) 312 } 313 } 314 // update load error state in load s3 315 when(RegNext(io.loadIn(i).fire()) && io.delayedLoadError(i)){ 316 uop(lastCycleLoadWbIndex).cf.exceptionVec(loadAccessFault) := true.B 317 } 318 } 319 320 321 // Writeback up to 2 missed load insts to CDB 322 // 323 // Pick 2 missed load (data refilled), write them back to cdb 324 // 2 refilled load will be selected from even/odd entry, separately 325 326 // Stage 0 327 // Generate writeback indexes 328 329 def getRemBits(input: UInt)(rem: Int): UInt = { 330 VecInit((0 until LoadQueueSize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt 331 } 332 333 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 334 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 335 336 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 337 // allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 338 allocated(i) && !writebacked(i) && datavalid(i) // query refilling will cause bad timing 339 })).asUInt() // use uint instead vec to reduce verilog lines 340 val remDeqMask = Seq.tabulate(LoadPipelineWidth)(getRemBits(deqMask)(_)) 341 // generate lastCycleSelect mask 342 val remFireMask = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(UIntToOH(loadWbSel(rem)))(rem)) 343 // generate real select vec 344 def toVec(a: UInt): Vec[Bool] = { 345 VecInit(a.asBools) 346 } 347 val loadRemSelVecFire = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadWbSelVec)(rem) & ~remFireMask(rem)) 348 val loadRemSelVecNotFire = Seq.tabulate(LoadPipelineWidth)(getRemBits(loadWbSelVec)(_)) 349 val loadRemSel = Seq.tabulate(LoadPipelineWidth)(rem => Mux( 350 io.ldout(rem).fire(), 351 getFirstOne(toVec(loadRemSelVecFire(rem)), remDeqMask(rem)), 352 getFirstOne(toVec(loadRemSelVecNotFire(rem)), remDeqMask(rem)) 353 )) 354 355 356 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 357 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 358 (0 until LoadPipelineWidth).foreach(index => { 359 loadWbSelGen(index) := ( 360 if (LoadPipelineWidth > 1) Cat(loadRemSel(index), index.U(log2Ceil(LoadPipelineWidth).W)) 361 else loadRemSel(index) 362 ) 363 loadWbSelVGen(index) := Mux(io.ldout(index).fire, loadRemSelVecFire(index).asUInt.orR, loadRemSelVecNotFire(index).asUInt.orR) 364 }) 365 366 (0 until LoadPipelineWidth).map(i => { 367 loadWbSel(i) := RegNext(loadWbSelGen(i)) 368 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 369 when(io.ldout(i).fire()){ 370 // Mark them as writebacked, so they will not be selected in the next cycle 371 writebacked(loadWbSel(i)) := true.B 372 } 373 }) 374 375 // Stage 1 376 // Use indexes generated in cycle 0 to read data 377 // writeback data to cdb 378 (0 until LoadPipelineWidth).map(i => { 379 // data select 380 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 381 val rdata = dataModule.io.wb.rdata(i).data 382 val seluop = uop(loadWbSel(i)) 383 val func = seluop.ctrl.fuOpType 384 val raddr = dataModule.io.wb.rdata(i).paddr 385 val rdataSel = LookupTree(raddr(2, 0), List( 386 "b000".U -> rdata(63, 0), 387 "b001".U -> rdata(63, 8), 388 "b010".U -> rdata(63, 16), 389 "b011".U -> rdata(63, 24), 390 "b100".U -> rdata(63, 32), 391 "b101".U -> rdata(63, 40), 392 "b110".U -> rdata(63, 48), 393 "b111".U -> rdata(63, 56) 394 )) 395 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 396 397 // writeback missed int/fp load 398 // 399 // Int load writeback will finish (if not blocked) in one cycle 400 io.ldout(i).bits.uop := seluop 401 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 402 io.ldout(i).bits.data := rdataPartialLoad 403 io.ldout(i).bits.redirectValid := false.B 404 io.ldout(i).bits.redirect := DontCare 405 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 406 io.ldout(i).bits.debug.isPerfCnt := false.B 407 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 408 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 409 io.ldout(i).bits.fflags := DontCare 410 io.ldout(i).valid := loadWbSelV(i) 411 412 when(io.ldout(i).fire()) { 413 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 414 io.ldout(i).bits.uop.robIdx.asUInt, 415 io.ldout(i).bits.uop.lqIdx.asUInt, 416 io.ldout(i).bits.uop.cf.pc, 417 debug_mmio(loadWbSel(i)) 418 ) 419 } 420 421 }) 422 423 /** 424 * Load commits 425 * 426 * When load commited, mark it as !allocated and move deqPtrExt forward. 427 */ 428 (0 until CommitWidth).map(i => { 429 when(commitCount > i.U){ 430 allocated((deqPtrExt+i.U).value) := false.B 431 XSError(!allocated((deqPtrExt+i.U).value), s"why commit invalid entry $i?\n") 432 } 433 }) 434 435 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 436 val length = mask.length 437 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 438 val highBitsUint = Cat(highBits.reverse) 439 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 440 } 441 442 def getOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 443 assert(valid.length == bits.length) 444 assert(isPow2(valid.length)) 445 if (valid.length == 1) { 446 (valid, bits) 447 } else if (valid.length == 2) { 448 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 449 for (i <- res.indices) { 450 res(i).valid := valid(i) 451 res(i).bits := bits(i) 452 } 453 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 454 (Seq(oldest.valid), Seq(oldest.bits)) 455 } else { 456 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 457 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 458 getOldest(left._1 ++ right._1, left._2 ++ right._2) 459 } 460 } 461 462 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 463 assert(valid.length == uop.length) 464 val length = valid.length 465 (0 until length).map(i => { 466 (0 until length).map(j => { 467 Mux(valid(i) && valid(j), 468 isAfter(uop(i).robIdx, uop(j).robIdx), 469 Mux(!valid(i), true.B, false.B)) 470 }) 471 }) 472 } 473 474 /** 475 * Store-Load Memory violation detection 476 * 477 * When store writes back, it searches LoadQueue for younger load instructions 478 * with the same load physical address. They loaded wrong data and need re-execution. 479 * 480 * Cycle 0: Store Writeback 481 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 482 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 483 * Cycle 1: Redirect Generation 484 * There're three possible types of violations, up to 6 possible redirect requests. 485 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 486 * Cycle 2: Redirect Fire 487 * Choose the oldest load (part 2). (3 -> 1) 488 * Prepare redirect request according to the detected violation. 489 * Fire redirect request (if valid) 490 */ 491 492 // stage 0: lq l1 wb l1 wb lq 493 // | | | | | | (paddr match) 494 // stage 1: lq l1 wb l1 wb lq 495 // | | | | | | 496 // | |------------| | 497 // | | | 498 // stage 2: lq l1wb lq 499 // | | | 500 // -------------------- 501 // | 502 // rollback req 503 io.load_s1 := DontCare 504 def detectRollback(i: Int) = { 505 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 506 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 507 val xorMask = lqIdxMask ^ enqMask 508 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 509 val stToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 510 511 // check if load already in lq needs to be rolledback 512 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 513 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 514 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 515 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 516 allocated(j) && stToEnqPtrMask(j) && (datavalid(j) || miss(j)) 517 }))) 518 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 519 addrMaskMatch(j) && entryNeedCheck(j) 520 })) 521 val lqViolation = lqViolationVec.asUInt().orR() 522 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 523 val lqViolationUop = uop(lqViolationIndex) 524 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 525 // lqViolationUop.lqIdx.value := lqViolationIndex 526 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 527 528 // when l/s writeback to rob together, check if rollback is needed 529 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 530 io.loadIn(j).valid && 531 isAfter(io.loadIn(j).bits.uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 532 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 533 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 534 }))) 535 val wbViolation = wbViolationVec.asUInt().orR() && RegNext(io.storeIn(i).valid && !io.storeIn(i).bits.miss) 536 val wbViolationUop = getOldest(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits))))._2(0).uop 537 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 538 539 // check if rollback is needed for load in l1 540 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 541 io.load_s1(j).valid && // L1 valid 542 isAfter(io.load_s1(j).uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 543 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 544 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 545 }))) 546 val l1Violation = l1ViolationVec.asUInt().orR() && RegNext(io.storeIn(i).valid && !io.storeIn(i).bits.miss) 547 val load_s1 = Wire(Vec(LoadPipelineWidth, new XSBundleWithMicroOp)) 548 (0 until LoadPipelineWidth).foreach(i => load_s1(i).uop := io.load_s1(i).uop) 549 val l1ViolationUop = getOldest(l1ViolationVec, RegNext(load_s1))._2(0).uop 550 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 551 552 XSDebug( 553 l1Violation, 554 "need rollback (l1 load) pc %x robidx %d target %x\n", 555 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, l1ViolationUop.robIdx.asUInt 556 ) 557 XSDebug( 558 lqViolation, 559 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 560 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 561 ) 562 XSDebug( 563 wbViolation, 564 "need rollback (ld/st wb together) pc %x robidx %d target %x\n", 565 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, wbViolationUop.robIdx.asUInt 566 ) 567 568 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 569 } 570 571 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 572 Mux( 573 a.valid, 574 Mux( 575 b.valid, 576 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 577 a // sel a 578 ), 579 b // sel b 580 ) 581 } 582 val lastCycleRedirect = RegNext(io.brqRedirect) 583 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 584 585 // S2: select rollback (part1) and generate rollback request 586 // rollback check 587 // Wb/L1 rollback seq check is done in s2 588 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 589 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 590 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 591 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 592 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 593 // store ftq index for store set update 594 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 595 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 596 for (i <- 0 until StorePipelineWidth) { 597 val detectedRollback = detectRollback(i) 598 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 599 rollbackLq(i).bits.uop := detectedRollback._1._2 600 rollbackLq(i).bits.flag := i.U 601 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 602 rollbackWb(i).bits.uop := detectedRollback._2._2 603 rollbackWb(i).bits.flag := i.U 604 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 605 rollbackL1(i).bits.uop := detectedRollback._3._2 606 rollbackL1(i).bits.flag := i.U 607 rollbackL1Wb(2*i) := rollbackL1(i) 608 rollbackL1Wb(2*i+1) := rollbackWb(i) 609 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 610 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 611 } 612 613 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 614 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 615 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 616 val rollbackLqVReg = rollbackLq.map(x => RegNext(x.valid)) 617 val rollbackLqReg = rollbackLq.map(x => RegEnable(x.bits, x.valid)) 618 619 // S3: select rollback (part2), generate rollback request, then fire rollback request 620 // Note that we use robIdx - 1.U to flush the load instruction itself. 621 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 622 623 val rollbackValidVec = rollbackL1WbVReg +: rollbackLqVReg 624 val rollbackUopExtVec = rollbackL1WbReg +: rollbackLqReg 625 626 // select uop in parallel 627 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 628 val lqs = getOldest(rollbackLqVReg, rollbackLqReg) 629 val rollbackUopExt = getOldest(lqs._1 :+ rollbackL1WbVReg, lqs._2 :+ rollbackL1WbReg)._2(0) 630 val stFtqIdxS3 = RegNext(stFtqIdxS2) 631 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 632 val rollbackUop = rollbackUopExt.uop 633 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 634 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 635 636 // check if rollback request is still valid in parallel 637 val rollbackValidVecChecked = Wire(Vec(LoadPipelineWidth + 1, Bool())) 638 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 639 rollbackValidVecChecked(idx) := v && 640 (!lastCycleRedirect.valid || isBefore(uop.robIdx, lastCycleRedirect.bits.robIdx)) && 641 (!lastlastCycleRedirect.valid || isBefore(uop.robIdx, lastlastCycleRedirect.bits.robIdx)) 642 } 643 644 io.rollback.bits.robIdx := rollbackUop.robIdx 645 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 646 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 647 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 648 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 649 io.rollback.bits.level := RedirectLevel.flush 650 io.rollback.bits.interrupt := DontCare 651 io.rollback.bits.cfiUpdate := DontCare 652 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 653 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 654 // io.rollback.bits.pc := DontCare 655 656 io.rollback.valid := rollbackValidVecChecked.asUInt.orR 657 658 when(io.rollback.valid) { 659 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 660 } 661 662 /** 663 * Load-Load Memory violation detection 664 * 665 * When load arrives load_s1, it searches LoadQueue for younger load instructions 666 * with the same load physical address. If younger load has been released (or observed), 667 * the younger load needs to be re-execed. 668 * 669 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 670 * the two loads will be replayed if the older load becomes the head of rob. 671 * 672 * When dcache releases a line, mark all writebacked entrys in load queue with 673 * the same line paddr as released. 674 */ 675 676 // Load-Load Memory violation query 677 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 678 (0 until LoadPipelineWidth).map(i => { 679 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 680 io.loadViolationQuery(i).req.ready := true.B 681 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 682 // Generate real violation mask 683 // Note that we use UIntToMask.rightmask here 684 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 685 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 686 val xorMask = lqIdxMask ^ enqMask 687 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === enqPtrExt(0).flag 688 val ldToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 689 val ldld_violation_mask_gen_1 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 690 ldToEnqPtrMask(j) && // the load is younger than current load 691 allocated(j) && // entry is valid 692 released(j) && // cacheline is released 693 (datavalid(j) || miss(j)) // paddr is valid 694 }))) 695 val ldld_violation_mask_gen_2 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 696 dataModule.io.release_violation(i).match_mask(j)// addr match 697 // addr match result is slow to generate, we RegNext() it 698 }))) 699 val ldld_violation_mask = RegNext(ldld_violation_mask_gen_1).asUInt & RegNext(ldld_violation_mask_gen_2).asUInt 700 dontTouch(ldld_violation_mask) 701 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 702 io.loadViolationQuery(i).resp.bits.have_violation := ldld_violation_mask.orR 703 }) 704 705 // "released" flag update 706 // 707 // When io.release.valid (release1cycle.valid), it uses the last ld-ld paddr cam port to 708 // update release flag in 1 cycle 709 710 when(release1cycle.valid){ 711 // Take over ld-ld paddr cam port 712 dataModule.io.release_violation.takeRight(1)(0).paddr := release1cycle.bits.paddr 713 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 714 } 715 716 when(release2cycle.valid){ 717 // If a load comes in that cycle, we can not judge if it has ld-ld violation 718 // We replay that load inst from RS 719 io.loadViolationQuery.map(i => i.req.ready := 720 // use lsu side release2cycle_dup_lsu paddr for better timing 721 !i.req.bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle_dup_lsu.bits.paddr(PAddrBits-1, DCacheLineOffset) 722 ) 723 // io.loadViolationQuery.map(i => i.req.ready := false.B) // For better timing 724 } 725 726 (0 until LoadQueueSize).map(i => { 727 when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && 728 allocated(i) && 729 datavalid(i) && 730 release1cycle.valid 731 )){ 732 // Note: if a load has missed in dcache and is waiting for refill in load queue, 733 // its released flag still needs to be set as true if addr matches. 734 released(i) := true.B 735 } 736 }) 737 738 /** 739 * Memory mapped IO / other uncached operations 740 * 741 * States: 742 * (1) writeback from store units: mark as pending 743 * (2) when they reach ROB's head, they can be sent to uncache channel 744 * (3) response from uncache channel: mark as datavalid 745 * (4) writeback to ROB (and other units): mark as writebacked 746 * (5) ROB commits the instruction: same as normal instructions 747 */ 748 //(2) when they reach ROB's head, they can be sent to uncache channel 749 val lqTailMmioPending = WireInit(pending(deqPtr)) 750 val lqTailAllocated = WireInit(allocated(deqPtr)) 751 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 752 val uncacheState = RegInit(s_idle) 753 switch(uncacheState) { 754 is(s_idle) { 755 when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) { 756 uncacheState := s_req 757 } 758 } 759 is(s_req) { 760 when(io.uncache.req.fire()) { 761 uncacheState := s_resp 762 } 763 } 764 is(s_resp) { 765 when(io.uncache.resp.fire()) { 766 uncacheState := s_wait 767 } 768 } 769 is(s_wait) { 770 when(RegNext(io.rob.commit)) { 771 uncacheState := s_idle // ready for next mmio 772 } 773 } 774 } 775 io.uncache.req.valid := uncacheState === s_req 776 777 dataModule.io.uncache.raddr := deqPtrExtNext.value 778 779 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 780 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 781 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 782 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 783 784 io.uncache.req.bits.id := DontCare 785 io.uncache.req.bits.instrtype := DontCare 786 787 io.uncache.resp.ready := true.B 788 789 when (io.uncache.req.fire()) { 790 pending(deqPtr) := false.B 791 792 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 793 uop(deqPtr).cf.pc, 794 io.uncache.req.bits.addr, 795 io.uncache.req.bits.data, 796 io.uncache.req.bits.cmd, 797 io.uncache.req.bits.mask 798 ) 799 } 800 801 // (3) response from uncache channel: mark as datavalid 802 dataModule.io.uncache.wen := false.B 803 when(io.uncache.resp.fire()){ 804 datavalid(deqPtr) := true.B 805 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 806 dataModule.io.uncache.wen := true.B 807 808 XSDebug("uncache resp: data %x\n", io.refill.bits.data) 809 } 810 811 // Read vaddr for mem exception 812 // no inst will be commited 1 cycle before tval update 813 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 814 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 815 816 // Read vaddr for debug 817 (0 until LoadPipelineWidth).map(i => { 818 vaddrModule.io.raddr(i+1) := loadWbSel(i) 819 }) 820 821 (0 until LoadPipelineWidth).map(i => { 822 vaddrTriggerResultModule.io.raddr(i) := loadWbSelGen(i) 823 io.trigger(i).lqLoadAddrTriggerHitVec := Mux( 824 loadWbSelV(i), 825 vaddrTriggerResultModule.io.rdata(i), 826 VecInit(Seq.fill(3)(false.B)) 827 ) 828 }) 829 830 // misprediction recovery / exception redirect 831 // invalidate lq term using robIdx 832 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 833 for (i <- 0 until LoadQueueSize) { 834 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 835 when (needCancel(i)) { 836 allocated(i) := false.B 837 } 838 } 839 840 /** 841 * update pointers 842 */ 843 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 844 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 845 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 846 when (lastCycleRedirect.valid) { 847 // we recover the pointers in the next cycle after redirect 848 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 849 }.otherwise { 850 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 851 } 852 853 deqPtrExtNext := deqPtrExt + commitCount 854 deqPtrExt := deqPtrExtNext 855 856 io.lqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 857 858 /** 859 * misc 860 */ 861 // perf counter 862 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 863 io.lqFull := !allowEnqueue 864 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 865 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 866 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 867 XSPerfAccumulate("refill", io.refill.valid) 868 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 869 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 870 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 871 872 val perfValidCount = RegNext(validCount) 873 874 val perfEvents = Seq( 875 ("rollback ", io.rollback.valid), 876 ("mmioCycle ", uncacheState =/= s_idle), 877 ("mmio_Cnt ", io.uncache.req.fire()), 878 ("refill ", io.refill.valid), 879 ("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))), 880 ("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))), 881 ("ltq_1_4_valid ", (perfValidCount < (LoadQueueSize.U/4.U))), 882 ("ltq_2_4_valid ", (perfValidCount > (LoadQueueSize.U/4.U)) & (perfValidCount <= (LoadQueueSize.U/2.U))), 883 ("ltq_3_4_valid ", (perfValidCount > (LoadQueueSize.U/2.U)) & (perfValidCount <= (LoadQueueSize.U*3.U/4.U))), 884 ("ltq_4_4_valid ", (perfValidCount > (LoadQueueSize.U*3.U/4.U))) 885 ) 886 generatePerfEvent() 887 888 // debug info 889 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 890 891 def PrintFlag(flag: Bool, name: String): Unit = { 892 when(flag) { 893 XSDebug(false, true.B, name) 894 }.otherwise { 895 XSDebug(false, true.B, " ") 896 } 897 } 898 899 for (i <- 0 until LoadQueueSize) { 900 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 901 PrintFlag(allocated(i), "a") 902 PrintFlag(allocated(i) && datavalid(i), "v") 903 PrintFlag(allocated(i) && writebacked(i), "w") 904 PrintFlag(allocated(i) && miss(i), "m") 905 PrintFlag(allocated(i) && pending(i), "p") 906 XSDebug(false, true.B, "\n") 907 } 908 909} 910