1/*************************************************************************************** 2 * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3 * Copyright (c) 2020-2021 Peng Cheng Laboratory 4 * 5 * XiangShan is licensed under Mulan PSL v2. 6 * You can use this software according to the terms and conditions of the Mulan PSL v2. 7 * You may obtain a copy of Mulan PSL v2 at: 8 * http://license.coscl.org.cn/MulanPSL2 9 * 10 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11 * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12 * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13 * 14 * See the Mulan PSL v2 for more details. 15 ***************************************************************************************/ 16 17package xiangshan.frontend.icache 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.tilelink._ 24import utils._ 25import xiangshan.cache.mmu._ 26import xiangshan.frontend._ 27import xiangshan.backend.fu.{PMPReqBundle, PMPRespBundle} 28import huancun.PreferCacheKey 29import xiangshan.XSCoreParamsKey 30import xiangshan.SoftIfetchPrefetchBundle 31import utility._ 32 33abstract class IPrefetchBundle(implicit p: Parameters) extends ICacheBundle 34abstract class IPrefetchModule(implicit p: Parameters) extends ICacheModule 35 36class IPrefetchReq(implicit p: Parameters) extends IPrefetchBundle { 37 val startAddr : UInt = UInt(VAddrBits.W) 38 val nextlineStart : UInt = UInt(VAddrBits.W) 39 val ftqIdx : FtqPtr = new FtqPtr 40 val isSoftPrefetch: Bool = Bool() 41 def crossCacheline: Bool = startAddr(blockOffBits - 1) === 1.U 42 43 def fromFtqICacheInfo(info: FtqICacheInfo): IPrefetchReq = { 44 this.startAddr := info.startAddr 45 this.nextlineStart := info.nextlineStart 46 this.ftqIdx := info.ftqIdx 47 this.isSoftPrefetch := false.B 48 this 49 } 50 51 def fromSoftPrefetch(req: SoftIfetchPrefetchBundle): IPrefetchReq = { 52 this.startAddr := req.vaddr 53 this.nextlineStart := req.vaddr + (1 << blockOffBits).U 54 this.ftqIdx := DontCare 55 this.isSoftPrefetch := true.B 56 this 57 } 58} 59 60class IPrefetchIO(implicit p: Parameters) extends IPrefetchBundle { 61 // control 62 val csr_pf_enable = Input(Bool()) 63 val csr_parity_enable = Input(Bool()) 64 val flush = Input(Bool()) 65 66 val req = Flipped(Decoupled(new IPrefetchReq)) 67 val flushFromBpu = Flipped(new BpuFlushInfo) 68 val itlb = Vec(PortNumber, new TlbRequestIO) 69 val pmp = Vec(PortNumber, new ICachePMPBundle) 70 val metaRead = new ICacheMetaReqBundle 71 val MSHRReq = DecoupledIO(new ICacheMissReq) 72 val MSHRResp = Flipped(ValidIO(new ICacheMissResp)) 73 val wayLookupWrite = DecoupledIO(new WayLookupInfo) 74} 75 76class IPrefetchPipe(implicit p: Parameters) extends IPrefetchModule 77{ 78 val io: IPrefetchIO = IO(new IPrefetchIO) 79 80 val (toITLB, fromITLB) = (io.itlb.map(_.req), io.itlb.map(_.resp)) 81 val (toPMP, fromPMP) = (io.pmp.map(_.req), io.pmp.map(_.resp)) 82 val (toMeta, fromMeta) = (io.metaRead.toIMeta, io.metaRead.fromIMeta) 83 val (toMSHR, fromMSHR) = (io.MSHRReq, io.MSHRResp) 84 val toWayLookup = io.wayLookupWrite 85 86 val s0_fire, s1_fire, s2_fire = WireInit(false.B) 87 val s0_discard, s2_discard = WireInit(false.B) 88 val s0_ready, s1_ready, s2_ready = WireInit(false.B) 89 val s0_flush, s1_flush, s2_flush = WireInit(false.B) 90 val from_bpu_s0_flush, from_bpu_s1_flush = WireInit(false.B) 91 92 /** 93 ****************************************************************************** 94 * IPrefetch Stage 0 95 * - 1. receive ftq req 96 * - 2. send req to ITLB 97 * - 3. send req to Meta SRAM 98 ****************************************************************************** 99 */ 100 val s0_valid = io.req.valid 101 102 /** 103 ****************************************************************************** 104 * receive ftq req 105 ****************************************************************************** 106 */ 107 val s0_req_vaddr = VecInit(Seq(io.req.bits.startAddr, io.req.bits.nextlineStart)) 108 val s0_req_ftqIdx = io.req.bits.ftqIdx 109 val s0_isSoftPrefetch = io.req.bits.isSoftPrefetch 110 val s0_doubleline = io.req.bits.crossCacheline 111 val s0_req_vSetIdx = s0_req_vaddr.map(get_idx) 112 113 from_bpu_s0_flush := !s0_isSoftPrefetch && (io.flushFromBpu.shouldFlushByStage2(s0_req_ftqIdx) || 114 io.flushFromBpu.shouldFlushByStage3(s0_req_ftqIdx)) 115 s0_flush := io.flush || from_bpu_s0_flush || s1_flush 116 117 val s0_can_go = s1_ready && toITLB(0).ready && toITLB(1).ready && toMeta.ready 118 io.req.ready := s0_can_go 119 120 s0_fire := s0_valid && s0_can_go && !s0_flush 121 122 /** 123 ****************************************************************************** 124 * IPrefetch Stage 1 125 * - 1. Receive resp from ITLB 126 * - 2. Receive resp from IMeta and check 127 * - 3. Monitor the requests from missUnit to write to SRAM. 128 * - 4. Wirte wayLookup 129 ****************************************************************************** 130 */ 131 val s1_valid = generatePipeControl(lastFire = s0_fire, thisFire = s1_fire, thisFlush = s1_flush, lastFlush = false.B) 132 133 val s1_req_vaddr = RegEnable(s0_req_vaddr, 0.U.asTypeOf(s0_req_vaddr), s0_fire) 134 val s1_isSoftPrefetch = RegEnable(s0_isSoftPrefetch, 0.U.asTypeOf(s0_isSoftPrefetch), s0_fire) 135 val s1_doubleline = RegEnable(s0_doubleline, 0.U.asTypeOf(s0_doubleline), s0_fire) 136 val s1_req_ftqIdx = RegEnable(s0_req_ftqIdx, 0.U.asTypeOf(s0_req_ftqIdx), s0_fire) 137 val s1_req_vSetIdx = VecInit(s1_req_vaddr.map(get_idx)) 138 139 val m_idle :: m_itlbResend :: m_metaResend :: m_enqWay :: m_enterS2 :: Nil = Enum(5) 140 val state = RegInit(m_idle) 141 val next_state = WireDefault(state) 142 val s0_fire_r = RegNext(s0_fire) 143 dontTouch(state) 144 dontTouch(next_state) 145 state := next_state 146 147 /** 148 ****************************************************************************** 149 * resend itlb req if miss 150 ****************************************************************************** 151 */ 152 val s1_wait_itlb = RegInit(VecInit(Seq.fill(PortNumber)(false.B))) 153 (0 until PortNumber).foreach { i => 154 when(s1_flush) { 155 s1_wait_itlb(i) := false.B 156 }.elsewhen(RegNext(s0_fire) && fromITLB(i).bits.miss) { 157 s1_wait_itlb(i) := true.B 158 }.elsewhen(s1_wait_itlb(i) && !fromITLB(i).bits.miss) { 159 s1_wait_itlb(i) := false.B 160 } 161 } 162 val s1_need_itlb = VecInit(Seq((RegNext(s0_fire) || s1_wait_itlb(0)) && fromITLB(0).bits.miss, 163 (RegNext(s0_fire) || s1_wait_itlb(1)) && fromITLB(1).bits.miss && s1_doubleline)) 164 val tlb_valid_pulse = VecInit(Seq((RegNext(s0_fire) || s1_wait_itlb(0)) && !fromITLB(0).bits.miss, 165 (RegNext(s0_fire) || s1_wait_itlb(1)) && !fromITLB(1).bits.miss && s1_doubleline)) 166 val tlb_valid_latch = VecInit((0 until PortNumber).map(i => ValidHoldBypass(tlb_valid_pulse(i), s1_fire, flush=s1_flush))) 167 val itlb_finish = tlb_valid_latch(0) && (!s1_doubleline || tlb_valid_latch(1)) 168 169 for (i <- 0 until PortNumber) { 170 toITLB(i).valid := s1_need_itlb(i) || (s0_valid && (if(i == 0) true.B else s0_doubleline)) 171 toITLB(i).bits := DontCare 172 toITLB(i).bits.size := 3.U 173 toITLB(i).bits.vaddr := Mux(s1_need_itlb(i), s1_req_vaddr(i), s0_req_vaddr(i)) 174 toITLB(i).bits.debug.pc := Mux(s1_need_itlb(i), s1_req_vaddr(i), s0_req_vaddr(i)) 175 toITLB(i).bits.cmd := TlbCmd.exec 176 toITLB(i).bits.no_translate := false.B 177 } 178 fromITLB.foreach(_.ready := true.B) 179 io.itlb.foreach(_.req_kill := false.B) 180 181 /** 182 ****************************************************************************** 183 * Receive resp from ITLB 184 ****************************************************************************** 185 */ 186 val s1_req_paddr_wire = VecInit(fromITLB.map(_.bits.paddr(0))) 187 val s1_req_paddr_reg = VecInit((0 until PortNumber).map( i => 188 RegEnable(s1_req_paddr_wire(i), 0.U(PAddrBits.W), tlb_valid_pulse(i)) 189 )) 190 val s1_req_paddr = VecInit((0 until PortNumber).map( i => 191 Mux(tlb_valid_pulse(i), s1_req_paddr_wire(i), s1_req_paddr_reg(i)) 192 )) 193 val s1_req_gpaddr_tmp = VecInit((0 until PortNumber).map( i => 194 ResultHoldBypass(valid = tlb_valid_pulse(i), init = 0.U.asTypeOf(fromITLB(i).bits.gpaddr(0)), data = fromITLB(i).bits.gpaddr(0)) 195 )) 196 val s1_itlb_exception = VecInit((0 until PortNumber).map( i => 197 ResultHoldBypass(valid = tlb_valid_pulse(i), init = 0.U(ExceptionType.width.W), data = ExceptionType.fromTlbResp(fromITLB(i).bits)) 198 )) 199 val s1_itlb_pbmt = VecInit((0 until PortNumber).map( i => 200 ResultHoldBypass(valid = tlb_valid_pulse(i), init = 0.U.asTypeOf(fromITLB(i).bits.pbmt(0)), data = fromITLB(i).bits.pbmt(0)) 201 )) 202 val s1_itlb_exception_gpf = VecInit(s1_itlb_exception.map(_ === ExceptionType.gpf)) 203 204 /* Select gpaddr with the first gpf 205 * Note: the backend wants the base guest physical address of a fetch block 206 * for port(i), its base gpaddr is actually (gpaddr - i * blocksize) 207 * see GPAMem: https://github.com/OpenXiangShan/XiangShan/blob/344cf5d55568dd40cd658a9ee66047a505eeb504/src/main/scala/xiangshan/backend/GPAMem.scala#L33-L34 208 * see also: https://github.com/OpenXiangShan/XiangShan/blob/344cf5d55568dd40cd658a9ee66047a505eeb504/src/main/scala/xiangshan/frontend/IFU.scala#L374-L375 209 */ 210 val s1_req_gpaddr = PriorityMuxDefault( 211 s1_itlb_exception_gpf zip (0 until PortNumber).map(i => s1_req_gpaddr_tmp(i) - (i << blockOffBits).U), 212 0.U.asTypeOf(s1_req_gpaddr_tmp(0)) 213 ) 214 215 /** 216 ****************************************************************************** 217 * resend metaArray read req when itlb miss finish 218 ****************************************************************************** 219 */ 220 val s1_need_meta = ((state === m_itlbResend) && itlb_finish) || (state === m_metaResend) 221 toMeta.valid := s1_need_meta || s0_valid 222 toMeta.bits := DontCare 223 toMeta.bits.isDoubleLine := Mux(s1_need_meta, s1_doubleline, s0_doubleline) 224 225 for (i <- 0 until PortNumber) { 226 toMeta.bits.vSetIdx(i) := Mux(s1_need_meta, s1_req_vSetIdx(i), s0_req_vSetIdx(i)) 227 } 228 229 /** 230 ****************************************************************************** 231 * Receive resp from IMeta and check 232 ****************************************************************************** 233 */ 234 val s1_req_ptags = VecInit(s1_req_paddr.map(get_phy_tag)) 235 236 val s1_meta_ptags = fromMeta.tags 237 val s1_meta_valids = fromMeta.entryValid 238 239 def get_waymask(paddrs: Vec[UInt]): Vec[UInt] = { 240 val ptags = paddrs.map(get_phy_tag) 241 val tag_eq_vec = VecInit((0 until PortNumber).map( p => VecInit((0 until nWays).map( w => s1_meta_ptags(p)(w) === ptags(p))))) 242 val tag_match_vec = VecInit((0 until PortNumber).map( k => VecInit(tag_eq_vec(k).zipWithIndex.map{ case(way_tag_eq, w) => way_tag_eq && s1_meta_valids(k)(w)}))) 243 val waymasks = VecInit(tag_match_vec.map(_.asUInt)) 244 waymasks 245 } 246 247 val s1_SRAM_waymasks = VecInit((0 until PortNumber).map { port => 248 Mux(tlb_valid_pulse(port), get_waymask(s1_req_paddr_wire)(port), get_waymask(s1_req_paddr_reg)(port)) 249 }) 250 251 // select ecc code 252 /* NOTE: 253 * When ECC check fails, s1_waymasks may be corrupted, so this selected meta_codes may be wrong. 254 * However, we can guarantee that the request sent to the l2 cache and the response to the IFU are both correct, 255 * considering the probability of bit flipping abnormally is very small, consider there's up to 1 bit being wrong: 256 * 1. miss -> fake hit: The wrong bit in s1_waymasks was set to true.B, thus selects the wrong meta_codes, 257 * but we can detect this by checking whether `encodeMetaECC(req_ptags) === meta_codes`. 258 * 2. hit -> fake multi-hit: In normal situation, multi-hit never happens, so multi-hit indicates ECC failure, 259 * we can detect this by checking whether `PopCount(waymasks) <= 1.U`, 260 * and meta_codes is not important in this situation. 261 * 3. hit -> fake miss: We can't detect this, but we can (pre)fetch the correct data from L2 cache, so it's not a problem. 262 * 4. hit -> hit / miss -> miss: ECC failure happens in a irrelevant way, so we don't care about it this time. 263 */ 264 val s1_SRAM_meta_codes = VecInit((0 until PortNumber).map { port => 265 Mux1H(s1_SRAM_waymasks(port), fromMeta.codes(port)) 266 }) 267 268 /** 269 ****************************************************************************** 270 * update waymasks and meta_codes according to MSHR update data 271 ****************************************************************************** 272 */ 273 def update_meta_info(mask: UInt, vSetIdx: UInt, ptag: UInt, code: UInt): Tuple2[UInt, UInt] = { 274 require(mask.getWidth == nWays) 275 val new_mask = WireInit(mask) 276 val new_code = WireInit(code) 277 val valid = fromMSHR.valid && !fromMSHR.bits.corrupt 278 val vset_same = fromMSHR.bits.vSetIdx === vSetIdx 279 val ptag_same = getPhyTagFromBlk(fromMSHR.bits.blkPaddr) === ptag 280 val way_same = fromMSHR.bits.waymask === mask 281 when(valid && vset_same) { 282 when(ptag_same) { 283 new_mask := fromMSHR.bits.waymask 284 // also update meta_codes 285 // we have getPhyTagFromBlk(fromMSHR.bits.blkPaddr) === ptag, so we can use ptag directly for better timing 286 new_code := encodeMetaECC(ptag) 287 }.elsewhen(way_same) { 288 new_mask := 0.U 289 // we dont care about new_code, since it's not used for a missed request 290 } 291 } 292 (new_mask, new_code) 293 } 294 295 val s1_SRAM_valid = s0_fire_r || RegNext(s1_need_meta && toMeta.ready) 296 val s1_MSHR_valid = fromMSHR.valid && !fromMSHR.bits.corrupt 297 val s1_waymasks = WireInit(VecInit(Seq.fill(PortNumber)(0.U(nWays.W)))) 298 val s1_waymasks_r = RegEnable(s1_waymasks, 0.U.asTypeOf(s1_waymasks), s1_SRAM_valid || s1_MSHR_valid) 299 val s1_meta_codes = WireInit(VecInit(Seq.fill(PortNumber)(0.U(ICacheMetaCodeBits.W)))) 300 val s1_meta_codes_r = RegEnable(s1_meta_codes, 0.U.asTypeOf(s1_meta_codes), s1_SRAM_valid || s1_MSHR_valid) 301 302 // update waymasks and meta_codes 303 (0 until PortNumber).foreach{i => 304 val old_waymask = Mux(s1_SRAM_valid, s1_SRAM_waymasks(i), s1_waymasks_r(i)) 305 val old_meta_codes = Mux(s1_SRAM_valid, s1_SRAM_meta_codes(i), s1_meta_codes_r(i)) 306 val new_info = update_meta_info(old_waymask, s1_req_vSetIdx(i), s1_req_ptags(i), old_meta_codes) 307 s1_waymasks(i) := new_info._1 308 s1_meta_codes(i) := new_info._2 309 } 310 311 /** 312 ****************************************************************************** 313 * send enqueu req to WayLookup 314 ******** ********************************************************************** 315 */ 316 // Disallow enqueuing wayLookup when SRAM write occurs. 317 toWayLookup.valid := ((state === m_enqWay) || ((state === m_idle) && itlb_finish)) && 318 !s1_flush && !fromMSHR.valid && !s1_isSoftPrefetch // do not enqueue soft prefetch 319 toWayLookup.bits.vSetIdx := s1_req_vSetIdx 320 toWayLookup.bits.waymask := s1_waymasks 321 toWayLookup.bits.ptag := s1_req_ptags 322 toWayLookup.bits.gpaddr := s1_req_gpaddr 323 toWayLookup.bits.meta_codes := s1_meta_codes 324 (0 until PortNumber).foreach { i => 325 val excpValid = (if (i == 0) true.B else s1_doubleline) // exception in first line is always valid, in second line is valid iff is doubleline request 326 // Send s1_itlb_exception to WayLookup (instead of s1_exception_out) for better timing. Will check pmp again in mainPipe 327 toWayLookup.bits.itlb_exception(i) := Mux(excpValid, s1_itlb_exception(i), ExceptionType.none) 328 toWayLookup.bits.itlb_pbmt(i) := Mux(excpValid, s1_itlb_pbmt(i), Pbmt.pma) 329 } 330 331 val s1_waymasks_vec = s1_waymasks.map(_.asTypeOf(Vec(nWays, Bool()))) 332 when(toWayLookup.fire) { 333 assert(PopCount(s1_waymasks_vec(0)) <= 1.U && (PopCount(s1_waymasks_vec(1)) <= 1.U || !s1_doubleline), 334 "Multiple hit in main pipe, port0:is=%d,ptag=0x%x,vidx=0x%x,vaddr=0x%x port1:is=%d,ptag=0x%x,vidx=0x%x,vaddr=0x%x ", 335 PopCount(s1_waymasks_vec(0)) > 1.U, s1_req_ptags(0), get_idx(s1_req_vaddr(0)), s1_req_vaddr(0), 336 PopCount(s1_waymasks_vec(1)) > 1.U && s1_doubleline, s1_req_ptags(1), get_idx(s1_req_vaddr(1)), s1_req_vaddr(1)) 337 } 338 339 /** 340 ****************************************************************************** 341 * PMP check 342 ****************************************************************************** 343 */ 344 toPMP.zipWithIndex.foreach { case (p, i) => 345 // if itlb has exception, paddr can be invalid, therefore pmp check can be skipped 346 p.valid := s1_valid // && s1_itlb_exception === ExceptionType.none 347 p.bits.addr := s1_req_paddr(i) 348 p.bits.size := 3.U // TODO 349 p.bits.cmd := TlbCmd.exec 350 } 351 val s1_pmp_exception = VecInit(fromPMP.map(ExceptionType.fromPMPResp)) 352 val s1_pmp_mmio = VecInit(fromPMP.map(_.mmio)) 353 354 // merge s1 itlb/pmp exceptions, itlb has the highest priority, pmp next 355 // for timing consideration, meta_corrupt is not merged, and it will NOT cancel prefetch 356 val s1_exception_out = ExceptionType.merge( 357 s1_itlb_exception, 358 s1_pmp_exception 359 ) 360 361 // merge pmp mmio and itlb pbmt 362 val s1_mmio = VecInit((s1_pmp_mmio zip s1_itlb_pbmt).map{ case (mmio, pbmt) => 363 mmio || Pbmt.isUncache(pbmt) 364 }) 365 366 /** 367 ****************************************************************************** 368 * state machine 369 ******** ********************************************************************** 370 */ 371 372 switch(state) { 373 is(m_idle) { 374 when(s1_valid) { 375 when(!itlb_finish) { 376 next_state := m_itlbResend 377 }.elsewhen(!toWayLookup.fire) { // itlb_finish 378 next_state := m_enqWay 379 }.elsewhen(!s2_ready) { // itlb_finish && toWayLookup.fire 380 next_state := m_enterS2 381 } // .otherwise { next_state := m_idle } 382 } // .otherwise { next_state := m_idle } // !s1_valid 383 } 384 is(m_itlbResend) { 385 when(itlb_finish) { 386 when(!toMeta.ready) { 387 next_state := m_metaResend 388 }.otherwise { // toMeta.ready 389 next_state := m_enqWay 390 } 391 } // .otherwise { next_state := m_itlbResend } // !itlb_finish 392 } 393 is(m_metaResend) { 394 when(toMeta.ready) { 395 next_state := m_enqWay 396 } // .otherwise { next_state := m_metaResend } // !toMeta.ready 397 } 398 is(m_enqWay) { 399 when(toWayLookup.fire || s1_isSoftPrefetch) { 400 when (!s2_ready) { 401 next_state := m_enterS2 402 }.otherwise { // s2_ready 403 next_state := m_idle 404 } 405 } // .otherwise { next_state := m_enqWay } 406 } 407 is(m_enterS2) { 408 when(s2_ready) { 409 next_state := m_idle 410 } 411 } 412 } 413 414 when(s1_flush) { 415 next_state := m_idle 416 } 417 418 /** Stage 1 control */ 419 from_bpu_s1_flush := s1_valid && !s1_isSoftPrefetch && io.flushFromBpu.shouldFlushByStage3(s1_req_ftqIdx) 420 s1_flush := io.flush || from_bpu_s1_flush 421 422 s1_ready := next_state === m_idle 423 s1_fire := (next_state === m_idle) && s1_valid && !s1_flush // used to clear s1_valid & itlb_valid_latch 424 val s1_real_fire = s1_fire && io.csr_pf_enable // real "s1 fire" that s1 enters s2 425 426 /** 427 ****************************************************************************** 428 * IPrefetch Stage 2 429 * - 1. Monitor the requests from missUnit to write to SRAM. 430 * - 2. send req to missUnit 431 ****************************************************************************** 432 */ 433 val s2_valid = generatePipeControl(lastFire = s1_real_fire, thisFire = s2_fire, thisFlush = s2_flush, lastFlush = false.B) 434 435 val s2_req_vaddr = RegEnable(s1_req_vaddr, 0.U.asTypeOf(s1_req_vaddr), s1_real_fire) 436 val s2_isSoftPrefetch = RegEnable(s1_isSoftPrefetch, 0.U.asTypeOf(s1_isSoftPrefetch), s1_real_fire) 437 val s2_doubleline = RegEnable(s1_doubleline, 0.U.asTypeOf(s1_doubleline), s1_real_fire) 438 val s2_req_paddr = RegEnable(s1_req_paddr, 0.U.asTypeOf(s1_req_paddr), s1_real_fire) 439 val s2_exception = RegEnable(s1_exception_out, 0.U.asTypeOf(s1_exception_out), s1_real_fire) // includes itlb/pmp exception 440// val s2_exception_in = RegEnable(s1_exception_out, 0.U.asTypeOf(s1_exception_out), s1_real_fire) // disabled for timing consideration 441 val s2_mmio = RegEnable(s1_mmio, 0.U.asTypeOf(s1_mmio), s1_real_fire) 442 val s2_waymasks = RegEnable(s1_waymasks, 0.U.asTypeOf(s1_waymasks), s1_real_fire) 443// val s2_meta_codes = RegEnable(s1_meta_codes, 0.U.asTypeOf(s1_meta_codes), s1_real_fire) // disabled for timing consideration 444 445 val s2_req_vSetIdx = s2_req_vaddr.map(get_idx) 446 val s2_req_ptags = s2_req_paddr.map(get_phy_tag) 447 448 // disabled for timing consideration 449// // do metaArray ECC check 450// val s2_meta_corrupt = VecInit((s2_req_ptags zip s2_meta_codes zip s2_waymasks).map{ case ((meta, code), waymask) => 451// val hit_num = PopCount(waymask) 452// // NOTE: if not hit, encodeMetaECC(meta) =/= code can also be true, but we don't care about it 453// (encodeMetaECC(meta) =/= code && hit_num === 1.U) || // hit one way, but parity code does not match, ECC failure 454// hit_num > 1.U // hit multi way, must be a ECC failure 455// }) 456// 457// // generate exception 458// val s2_meta_exception = VecInit(s2_meta_corrupt.map(ExceptionType.fromECC(io.csr_parity_enable, _))) 459// 460// // merge meta exception and itlb/pmp exception 461// val s2_exception = ExceptionType.merge(s2_exception_in, s2_meta_exception) 462 463 /** 464 ****************************************************************************** 465 * Monitor the requests from missUnit to write to SRAM 466 ****************************************************************************** 467 */ 468 469 /* NOTE: If fromMSHR.bits.corrupt, we should set s2_MSHR_hits to false.B, and send prefetch requests again. 470 * This is the opposite of how mainPipe handles fromMSHR.bits.corrupt, 471 * in which we should set s2_MSHR_hits to true.B, and send error to ifu. 472 */ 473 val s2_MSHR_match = VecInit((0 until PortNumber).map(i => 474 (s2_req_vSetIdx(i) === fromMSHR.bits.vSetIdx) && 475 (s2_req_ptags(i) === getPhyTagFromBlk(fromMSHR.bits.blkPaddr)) && 476 s2_valid && fromMSHR.valid && !fromMSHR.bits.corrupt 477 )) 478 val s2_MSHR_hits = (0 until PortNumber).map(i => ValidHoldBypass(s2_MSHR_match(i), s2_fire || s2_flush)) 479 480 val s2_SRAM_hits = s2_waymasks.map(_.orR) 481 val s2_hits = VecInit((0 until PortNumber).map(i => s2_MSHR_hits(i) || s2_SRAM_hits(i))) 482 483 /* s2_exception includes itlb pf/gpf/af, pmp af and meta corruption (af), neither of which should be prefetched 484 * mmio should not be prefetched 485 * also, if previous has exception, latter port should also not be prefetched 486 */ 487 val s2_miss = VecInit((0 until PortNumber).map { i => 488 !s2_hits(i) && (if (i==0) true.B else s2_doubleline) && 489 s2_exception.take(i+1).map(_ === ExceptionType.none).reduce(_&&_) && 490 s2_mmio.take(i+1).map(!_).reduce(_&&_) 491 }) 492 493 /** 494 ****************************************************************************** 495 * send req to missUnit 496 ****************************************************************************** 497 */ 498 val toMSHRArbiter = Module(new Arbiter(new ICacheMissReq, PortNumber)) 499 500 // To avoid sending duplicate requests. 501 val has_send = RegInit(VecInit(Seq.fill(PortNumber)(false.B))) 502 (0 until PortNumber).foreach{ i => 503 when(s1_real_fire) { 504 has_send(i) := false.B 505 }.elsewhen(toMSHRArbiter.io.in(i).fire) { 506 has_send(i) := true.B 507 } 508 } 509 510 (0 until PortNumber).map{ i => 511 toMSHRArbiter.io.in(i).valid := s2_valid && s2_miss(i) && !has_send(i) 512 toMSHRArbiter.io.in(i).bits.blkPaddr := getBlkAddr(s2_req_paddr(i)) 513 toMSHRArbiter.io.in(i).bits.vSetIdx := s2_req_vSetIdx(i) 514 } 515 516 toMSHR <> toMSHRArbiter.io.out 517 518 s2_flush := io.flush 519 520 val s2_finish = (0 until PortNumber).map(i => has_send(i) || !s2_miss(i) || toMSHRArbiter.io.in(i).fire).reduce(_&&_) 521 s2_ready := s2_finish || !s2_valid 522 s2_fire := s2_valid && s2_finish && !s2_flush 523 524 /** PerfAccumulate */ 525 // the number of bpu flush 526 XSPerfAccumulate("bpu_s0_flush", from_bpu_s0_flush) 527 XSPerfAccumulate("bpu_s1_flush", from_bpu_s1_flush) 528 // the number of prefetch request received from ftq or backend (software prefetch) 529// XSPerfAccumulate("prefetch_req_receive", io.req.fire) 530 XSPerfAccumulate("prefetch_req_receive_hw", io.req.fire && !io.req.bits.isSoftPrefetch) 531 XSPerfAccumulate("prefetch_req_receive_sw", io.req.fire && io.req.bits.isSoftPrefetch) 532 // the number of prefetch request sent to missUnit 533// XSPerfAccumulate("prefetch_req_send", toMSHR.fire) 534 XSPerfAccumulate("prefetch_req_send_hw", toMSHR.fire && !s2_isSoftPrefetch) 535 XSPerfAccumulate("prefetch_req_send_sw", toMSHR.fire && s2_isSoftPrefetch) 536 XSPerfAccumulate("to_missUnit_stall", toMSHR.valid && !toMSHR.ready) 537 /** 538 * Count the number of requests that are filtered for various reasons. 539 * The number of prefetch discard in Performance Accumulator may be 540 * a littel larger the number of really discarded. Because there can 541 * be multiple reasons for a canceled request at the same time. 542 */ 543 // discard prefetch request by flush 544 // XSPerfAccumulate("fdip_prefetch_discard_by_tlb_except", p1_discard && p1_tlb_except) 545 // // discard prefetch request by hit icache SRAM 546 // XSPerfAccumulate("fdip_prefetch_discard_by_hit_cache", p2_discard && p1_meta_hit) 547 // // discard prefetch request by hit wirte SRAM 548 // XSPerfAccumulate("fdip_prefetch_discard_by_p1_monoitor", p1_discard && p1_monitor_hit) 549 // // discard prefetch request by pmp except or mmio 550 // XSPerfAccumulate("fdip_prefetch_discard_by_pmp", p2_discard && p2_pmp_except) 551 // // discard prefetch request by hit mainPipe info 552 // // XSPerfAccumulate("fdip_prefetch_discard_by_mainPipe", p2_discard && p2_mainPipe_hit) 553}