xref: /XiangShan/src/main/scala/xiangshan/frontend/icache/ICache.scala (revision dc4fac130426dbec49b49d778b9105d79b4a8eab)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16*
17*
18* Acknowledgement
19*
20* This implementation is inspired by several key papers:
21* [1] Glenn Reinman, Brad Calder, and Todd Austin. "[Fetch directed instruction prefetching.]
22* (https://doi.org/10.1109/MICRO.1999.809439)" 32nd Annual ACM/IEEE International Symposium on Microarchitecture
23* (MICRO). 1999.
24***************************************************************************************/
25
26package xiangshan.frontend.icache
27
28import chisel3._
29import chisel3.util._
30import freechips.rocketchip.diplomacy.IdRange
31import freechips.rocketchip.diplomacy.LazyModule
32import freechips.rocketchip.diplomacy.LazyModuleImp
33import freechips.rocketchip.tilelink._
34import freechips.rocketchip.util.BundleFieldBase
35import huancun.AliasField
36import huancun.PrefetchField
37import org.chipsalliance.cde.config.Parameters
38import utility._
39import xiangshan._
40import xiangshan.cache._
41import xiangshan.cache.mmu.TlbRequestIO
42import xiangshan.frontend._
43
44case class ICacheParameters(
45    nSets:               Int = 256,
46    nWays:               Int = 4,
47    rowBits:             Int = 64,
48    nTLBEntries:         Int = 32,
49    tagECC:              Option[String] = None,
50    dataECC:             Option[String] = None,
51    replacer:            Option[String] = Some("random"),
52    PortNumber:          Int = 2,
53    nFetchMshr:          Int = 4,
54    nPrefetchMshr:       Int = 10,
55    nWayLookupSize:      Int = 32,
56    DataCodeUnit:        Int = 64,
57    ICacheDataBanks:     Int = 8,
58    ICacheDataSRAMWidth: Int = 66,
59    // TODO: hard code, need delete
60    partWayNum: Int = 4,
61    nMMIOs:     Int = 1,
62    blockBytes: Int = 64
63) extends L1CacheParameters {
64
65  val setBytes:     Int         = nSets * blockBytes
66  val aliasBitsOpt: Option[Int] = Option.when(setBytes > pageSize)(log2Ceil(setBytes / pageSize))
67  val reqFields: Seq[BundleFieldBase] = Seq(
68    PrefetchField(),
69    ReqSourceField()
70  ) ++ aliasBitsOpt.map(AliasField)
71  val echoFields: Seq[BundleFieldBase] = Nil
72  def tagCode:    Code                 = Code.fromString(tagECC)
73  def dataCode:   Code                 = Code.fromString(dataECC)
74  def replacement = ReplacementPolicy.fromString(replacer, nWays, nSets)
75}
76
77trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst {
78  val cacheParams: ICacheParameters = icacheParameters
79
80  def ICacheSets:          Int = cacheParams.nSets
81  def ICacheWays:          Int = cacheParams.nWays
82  def PortNumber:          Int = cacheParams.PortNumber
83  def nFetchMshr:          Int = cacheParams.nFetchMshr
84  def nPrefetchMshr:       Int = cacheParams.nPrefetchMshr
85  def nWayLookupSize:      Int = cacheParams.nWayLookupSize
86  def DataCodeUnit:        Int = cacheParams.DataCodeUnit
87  def ICacheDataBanks:     Int = cacheParams.ICacheDataBanks
88  def ICacheDataSRAMWidth: Int = cacheParams.ICacheDataSRAMWidth
89  def partWayNum:          Int = cacheParams.partWayNum
90
91  def ICacheMetaBits:      Int = tagBits // FIXME: unportable: maybe use somemethod to get width
92  def ICacheMetaCodeBits:  Int = 1       // FIXME: unportable: maybe use cacheParams.tagCode.somemethod to get width
93  def ICacheMetaEntryBits: Int = ICacheMetaBits + ICacheMetaCodeBits
94
95  def ICacheDataBits: Int = blockBits / ICacheDataBanks
96  def ICacheDataCodeSegs: Int =
97    math.ceil(ICacheDataBits / DataCodeUnit).toInt // split data to segments for ECC checking
98  def ICacheDataCodeBits: Int =
99    ICacheDataCodeSegs * 1 // FIXME: unportable: maybe use cacheParams.dataCode.somemethod to get width
100  def ICacheDataEntryBits: Int = ICacheDataBits + ICacheDataCodeBits
101  def ICacheBankVisitNum:  Int = 32 * 8 / ICacheDataBits + 1
102  def highestIdxBit:       Int = log2Ceil(nSets) - 1
103
104  require((ICacheDataBanks >= 2) && isPow2(ICacheDataBanks))
105  require(ICacheDataSRAMWidth >= ICacheDataEntryBits)
106  require(isPow2(ICacheSets), s"nSets($ICacheSets) must be pow2")
107  require(isPow2(ICacheWays), s"nWays($ICacheWays) must be pow2")
108
109  def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = {
110    val valid = RegInit(false.B)
111    when(thisFlush)(valid := false.B)
112      .elsewhen(lastFire && !lastFlush)(valid := true.B)
113      .elsewhen(thisFire)(valid := false.B)
114    valid
115  }
116
117  def ResultHoldBypass[T <: Data](data: T, valid: Bool): T =
118    Mux(valid, data, RegEnable(data, valid))
119
120  def ResultHoldBypass[T <: Data](data: T, init: T, valid: Bool): T =
121    Mux(valid, data, RegEnable(data, init, valid))
122
123  def holdReleaseLatch(valid: Bool, release: Bool, flush: Bool): Bool = {
124    val bit = RegInit(false.B)
125    when(flush)(bit := false.B)
126      .elsewhen(valid && !release)(bit := true.B)
127      .elsewhen(release)(bit := false.B)
128    bit || valid
129  }
130
131  def blockCounter(block: Bool, flush: Bool, threshold: Int): Bool = {
132    val counter = RegInit(0.U(log2Up(threshold + 1).W))
133    when(block)(counter := counter + 1.U)
134    when(flush)(counter := 0.U)
135    counter > threshold.U
136  }
137
138  def InitQueue[T <: Data](entry: T, size: Int): Vec[T] =
139    RegInit(VecInit(Seq.fill(size)(0.U.asTypeOf(entry.cloneType))))
140
141  def encodeMetaECC(meta: UInt): UInt = {
142    require(meta.getWidth == ICacheMetaBits)
143    val code = cacheParams.tagCode.encode(meta) >> ICacheMetaBits
144    code.asTypeOf(UInt(ICacheMetaCodeBits.W))
145  }
146
147  def encodeDataECC(data: UInt): UInt = {
148    require(data.getWidth == ICacheDataBits)
149    val datas = data.asTypeOf(Vec(ICacheDataCodeSegs, UInt((ICacheDataBits / ICacheDataCodeSegs).W)))
150    val codes = VecInit(datas.map(cacheParams.dataCode.encode(_) >> (ICacheDataBits / ICacheDataCodeSegs)))
151    codes.asTypeOf(UInt(ICacheDataCodeBits.W))
152  }
153
154  def getBankSel(blkOffset: UInt, valid: Bool = true.B): Vec[UInt] = {
155    val bankIdxLow  = (Cat(0.U(1.W), blkOffset) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt
156    val bankIdxHigh = ((Cat(0.U(1.W), blkOffset) + 32.U) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt
157    val bankSel     = VecInit((0 until ICacheDataBanks * 2).map(i => (i.U >= bankIdxLow) && (i.U <= bankIdxHigh)))
158    assert(
159      !valid || PopCount(bankSel) === ICacheBankVisitNum.U,
160      "The number of bank visits must be %d, but bankSel=0x%x",
161      ICacheBankVisitNum.U,
162      bankSel.asUInt
163    )
164    bankSel.asTypeOf(UInt((ICacheDataBanks * 2).W)).asTypeOf(Vec(2, UInt(ICacheDataBanks.W)))
165  }
166
167  def getLineSel(blkOffset: UInt): Vec[Bool] = {
168    val bankIdxLow = (blkOffset >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt
169    val lineSel    = VecInit((0 until ICacheDataBanks).map(i => i.U < bankIdxLow))
170    lineSel
171  }
172
173  def getBlkAddr(addr:        UInt): UInt = (addr >> blockOffBits).asUInt
174  def getPhyTagFromBlk(addr:  UInt): UInt = (addr >> (pgUntagBits - blockOffBits)).asUInt
175  def getIdxFromBlk(addr:     UInt): UInt = addr(idxBits - 1, 0)
176  def getPaddrFromPtag(vaddr: UInt, ptag: UInt): UInt = Cat(ptag, vaddr(pgUntagBits - 1, 0))
177  def getPaddrFromPtag(vaddrVec: Vec[UInt], ptagVec: Vec[UInt]): Vec[UInt] =
178    VecInit((vaddrVec zip ptagVec).map { case (vaddr, ptag) => getPaddrFromPtag(vaddr, ptag) })
179}
180
181abstract class ICacheBundle(implicit p: Parameters) extends XSBundle
182    with HasICacheParameters
183
184abstract class ICacheModule(implicit p: Parameters) extends XSModule
185    with HasICacheParameters
186
187abstract class ICacheArray(implicit p: Parameters) extends XSModule
188    with HasICacheParameters
189
190class ICacheMetadata(implicit p: Parameters) extends ICacheBundle {
191  val tag: UInt = UInt(tagBits.W)
192}
193
194object ICacheMetadata {
195  def apply(tag: Bits)(implicit p: Parameters): ICacheMetadata = {
196    val meta = Wire(new ICacheMetadata)
197    meta.tag := tag
198    meta
199  }
200}
201
202class ICacheMetaArrayIO(implicit p: Parameters) extends ICacheBundle {
203  val write:    DecoupledIO[ICacheMetaWriteBundle] = Flipped(DecoupledIO(new ICacheMetaWriteBundle))
204  val read:     DecoupledIO[ICacheReadBundle]      = Flipped(DecoupledIO(new ICacheReadBundle))
205  val readResp: ICacheMetaRespBundle               = Output(new ICacheMetaRespBundle)
206  val flush:    Vec[Valid[ICacheMetaFlushBundle]]  = Vec(PortNumber, Flipped(ValidIO(new ICacheMetaFlushBundle)))
207  val flushAll: Bool                               = Input(Bool())
208}
209
210class ICacheMetaArray(implicit p: Parameters) extends ICacheArray {
211  class ICacheMetaEntry(implicit p: Parameters) extends ICacheBundle {
212    val meta: ICacheMetadata = new ICacheMetadata
213    val code: UInt           = UInt(ICacheMetaCodeBits.W)
214  }
215
216  private object ICacheMetaEntry {
217    def apply(meta: ICacheMetadata)(implicit p: Parameters): ICacheMetaEntry = {
218      val entry = Wire(new ICacheMetaEntry)
219      entry.meta := meta
220      entry.code := encodeMetaECC(meta.asUInt)
221      entry
222    }
223  }
224
225  // sanity check
226  require(ICacheMetaEntryBits == (new ICacheMetaEntry).getWidth)
227
228  val io: ICacheMetaArrayIO = IO(new ICacheMetaArrayIO)
229
230  private val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0)
231  private val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0)
232  private val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine
233  private val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine
234
235  private val port_0_read_0_reg = RegEnable(port_0_read_0, 0.U.asTypeOf(port_0_read_0), io.read.fire)
236  private val port_0_read_1_reg = RegEnable(port_0_read_1, 0.U.asTypeOf(port_0_read_1), io.read.fire)
237  private val port_1_read_1_reg = RegEnable(port_1_read_1, 0.U.asTypeOf(port_1_read_1), io.read.fire)
238  private val port_1_read_0_reg = RegEnable(port_1_read_0, 0.U.asTypeOf(port_1_read_0), io.read.fire)
239
240  private val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1))
241  private val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1))
242
243  private val write_bank_0 = io.write.valid && !io.write.bits.bankIdx
244  private val write_bank_1 = io.write.valid && io.write.bits.bankIdx
245
246  private val write_meta_bits = ICacheMetaEntry(meta =
247    ICacheMetadata(
248      tag = io.write.bits.phyTag
249    )
250  )
251
252  private val tagArrays = (0 until PortNumber) map { bank =>
253    val tagArray = Module(new SRAMTemplate(
254      new ICacheMetaEntry(),
255      set = nSets / PortNumber,
256      way = nWays,
257      shouldReset = true,
258      holdRead = true,
259      singlePort = true,
260      withClockGate = true
261    ))
262
263    // meta connection
264    if (bank == 0) {
265      tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0
266      tagArray.io.r.req.bits.apply(setIdx = bank_0_idx(highestIdxBit, 1))
267      tagArray.io.w.req.valid := write_bank_0
268      tagArray.io.w.req.bits.apply(
269        data = write_meta_bits,
270        setIdx = io.write.bits.virIdx(highestIdxBit, 1),
271        waymask = io.write.bits.waymask
272      )
273    } else {
274      tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1
275      tagArray.io.r.req.bits.apply(setIdx = bank_1_idx(highestIdxBit, 1))
276      tagArray.io.w.req.valid := write_bank_1
277      tagArray.io.w.req.bits.apply(
278        data = write_meta_bits,
279        setIdx = io.write.bits.virIdx(highestIdxBit, 1),
280        waymask = io.write.bits.waymask
281      )
282    }
283
284    tagArray
285  }
286
287  private val read_set_idx_next = RegEnable(io.read.bits.vSetIdx, 0.U.asTypeOf(io.read.bits.vSetIdx), io.read.fire)
288  private val valid_array       = RegInit(VecInit(Seq.fill(nWays)(0.U(nSets.W))))
289  private val valid_metas       = Wire(Vec(PortNumber, Vec(nWays, Bool())))
290  // valid read
291  (0 until PortNumber).foreach(i =>
292    (0 until nWays).foreach(way =>
293      valid_metas(i)(way) := valid_array(way)(read_set_idx_next(i))
294    )
295  )
296  io.readResp.entryValid := valid_metas
297
298  io.read.ready := !io.write.valid && !io.flush.map(_.valid).reduce(_ || _) && !io.flushAll &&
299    tagArrays.map(_.io.r.req.ready).reduce(_ && _)
300
301  // valid write
302  private val way_num = OHToUInt(io.write.bits.waymask)
303  when(io.write.valid) {
304    valid_array(way_num) := valid_array(way_num).bitSet(io.write.bits.virIdx, true.B)
305  }
306
307  XSPerfAccumulate("meta_refill_num", io.write.valid)
308
309  io.readResp.metas <> DontCare
310  io.readResp.codes <> DontCare
311  private val readMetaEntries = tagArrays.map(port => port.io.r.resp.asTypeOf(Vec(nWays, new ICacheMetaEntry())))
312  private val readMetas       = readMetaEntries.map(_.map(_.meta))
313  private val readCodes       = readMetaEntries.map(_.map(_.code))
314
315  // TEST: force ECC to fail by setting readCodes to 0
316  if (ICacheForceMetaECCError) {
317    readCodes.foreach(_.foreach(_ := 0.U))
318  }
319
320  when(port_0_read_0_reg) {
321    io.readResp.metas(0) := readMetas(0)
322    io.readResp.codes(0) := readCodes(0)
323  }.elsewhen(port_0_read_1_reg) {
324    io.readResp.metas(0) := readMetas(1)
325    io.readResp.codes(0) := readCodes(1)
326  }
327
328  when(port_1_read_0_reg) {
329    io.readResp.metas(1) := readMetas(0)
330    io.readResp.codes(1) := readCodes(0)
331  }.elsewhen(port_1_read_1_reg) {
332    io.readResp.metas(1) := readMetas(1)
333    io.readResp.codes(1) := readCodes(1)
334  }
335
336  io.write.ready := true.B // TODO : has bug ? should be !io.cacheOp.req.valid
337
338  /*
339   * flush logic
340   */
341  // flush standalone set (e.g. flushed by mainPipe before doing re-fetch)
342  when(io.flush.map(_.valid).reduce(_ || _)) {
343    (0 until nWays).foreach { w =>
344      valid_array(w) := (0 until PortNumber).map { i =>
345        Mux(
346          // check if set `virIdx` in way `w` is requested to be flushed by port `i`
347          io.flush(i).valid && io.flush(i).bits.waymask(w),
348          valid_array(w).bitSet(io.flush(i).bits.virIdx, false.B),
349          valid_array(w)
350        )
351      }.reduce(_ & _)
352    }
353  }
354
355  // flush all (e.g. fence.i)
356  when(io.flushAll) {
357    (0 until nWays).foreach(w => valid_array(w) := 0.U)
358  }
359
360  // PERF: flush counter
361  XSPerfAccumulate("flush", io.flush.map(_.valid).reduce(_ || _))
362  XSPerfAccumulate("flush_all", io.flushAll)
363}
364
365class ICacheDataArrayIO(implicit p: Parameters) extends ICacheBundle {
366  val write:    DecoupledIO[ICacheDataWriteBundle] = Flipped(DecoupledIO(new ICacheDataWriteBundle))
367  val read:     Vec[DecoupledIO[ICacheReadBundle]] = Flipped(Vec(partWayNum, DecoupledIO(new ICacheReadBundle)))
368  val readResp: ICacheDataRespBundle               = Output(new ICacheDataRespBundle)
369}
370
371class ICacheDataArray(implicit p: Parameters) extends ICacheArray {
372  class ICacheDataEntry(implicit p: Parameters) extends ICacheBundle {
373    val data: UInt = UInt(ICacheDataBits.W)
374    val code: UInt = UInt(ICacheDataCodeBits.W)
375  }
376
377  private object ICacheDataEntry {
378    def apply(data: UInt)(implicit p: Parameters): ICacheDataEntry = {
379      val entry = Wire(new ICacheDataEntry)
380      entry.data := data
381      entry.code := encodeDataECC(data)
382      entry
383    }
384  }
385
386  val io: ICacheDataArrayIO = IO(new ICacheDataArrayIO)
387
388  /**
389    ******************************************************************************
390    * data array
391    ******************************************************************************
392    */
393  private val writeDatas   = io.write.bits.data.asTypeOf(Vec(ICacheDataBanks, UInt(ICacheDataBits.W)))
394  private val writeEntries = writeDatas.map(ICacheDataEntry(_).asUInt)
395
396  // io.read() are copies to control fan-out, we can simply use .head here
397  private val bankSel  = getBankSel(io.read.head.bits.blkOffset, io.read.head.valid)
398  private val lineSel  = getLineSel(io.read.head.bits.blkOffset)
399  private val waymasks = io.read.head.bits.waymask
400  private val masks    = Wire(Vec(nWays, Vec(ICacheDataBanks, Bool())))
401  (0 until nWays).foreach { way =>
402    (0 until ICacheDataBanks).foreach { bank =>
403      masks(way)(bank) := Mux(
404        lineSel(bank),
405        waymasks(1)(way) && bankSel(1)(bank).asBool,
406        waymasks(0)(way) && bankSel(0)(bank).asBool
407      )
408    }
409  }
410
411  private val dataArrays = (0 until nWays).map { way =>
412    (0 until ICacheDataBanks).map { bank =>
413      val sramBank = Module(new SRAMTemplateWithFixedWidth(
414        UInt(ICacheDataEntryBits.W),
415        set = nSets,
416        width = ICacheDataSRAMWidth,
417        shouldReset = true,
418        holdRead = true,
419        singlePort = true,
420        withClockGate = true
421      ))
422
423      // read
424      sramBank.io.r.req.valid := io.read(bank % 4).valid && masks(way)(bank)
425      sramBank.io.r.req.bits.apply(setIdx =
426        Mux(lineSel(bank), io.read(bank % 4).bits.vSetIdx(1), io.read(bank % 4).bits.vSetIdx(0))
427      )
428      // write
429      sramBank.io.w.req.valid := io.write.valid && io.write.bits.waymask(way).asBool
430      sramBank.io.w.req.bits.apply(
431        data = writeEntries(bank),
432        setIdx = io.write.bits.virIdx,
433        // waymask is invalid when way of SRAMTemplate <= 1
434        waymask = 0.U
435      )
436      sramBank
437    }
438  }
439
440  /**
441    ******************************************************************************
442    * read logic
443    ******************************************************************************
444    */
445  private val masksReg = RegEnable(masks, 0.U.asTypeOf(masks), io.read(0).valid)
446  private val readDataWithCode = (0 until ICacheDataBanks).map { bank =>
447    Mux1H(VecInit(masksReg.map(_(bank))).asTypeOf(UInt(nWays.W)), dataArrays.map(_(bank).io.r.resp.asUInt))
448  }
449  private val readEntries = readDataWithCode.map(_.asTypeOf(new ICacheDataEntry()))
450  private val readDatas   = VecInit(readEntries.map(_.data))
451  private val readCodes   = VecInit(readEntries.map(_.code))
452
453  // TEST: force ECC to fail by setting readCodes to 0
454  if (ICacheForceDataECCError) {
455    readCodes.foreach(_ := 0.U)
456  }
457
458  /**
459    ******************************************************************************
460    * IO
461    ******************************************************************************
462    */
463  io.readResp.datas := readDatas
464  io.readResp.codes := readCodes
465  io.write.ready    := true.B
466  io.read.foreach(_.ready := !io.write.valid)
467}
468
469class ICacheReplacerIO(implicit p: Parameters) extends ICacheBundle {
470  val touch:  Vec[Valid[ReplacerTouch]] = Vec(PortNumber, Flipped(ValidIO(new ReplacerTouch)))
471  val victim: ReplacerVictim            = Flipped(new ReplacerVictim)
472}
473
474class ICacheReplacer(implicit p: Parameters) extends ICacheModule {
475  val io: ICacheReplacerIO = IO(new ICacheReplacerIO)
476
477  private val replacers =
478    Seq.fill(PortNumber)(ReplacementPolicy.fromString(cacheParams.replacer, nWays, nSets / PortNumber))
479
480  // touch
481  private val touch_sets = Seq.fill(PortNumber)(Wire(Vec(PortNumber, UInt(log2Ceil(nSets / PortNumber).W))))
482  private val touch_ways = Seq.fill(PortNumber)(Wire(Vec(PortNumber, Valid(UInt(wayBits.W)))))
483  (0 until PortNumber).foreach { i =>
484    touch_sets(i)(0) := Mux(
485      io.touch(i).bits.vSetIdx(0),
486      io.touch(1).bits.vSetIdx(highestIdxBit, 1),
487      io.touch(0).bits.vSetIdx(highestIdxBit, 1)
488    )
489    touch_ways(i)(0).bits  := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).bits.way, io.touch(0).bits.way)
490    touch_ways(i)(0).valid := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).valid, io.touch(0).valid)
491  }
492
493  // victim
494  io.victim.way := Mux(
495    io.victim.vSetIdx.bits(0),
496    replacers(1).way(io.victim.vSetIdx.bits(highestIdxBit, 1)),
497    replacers(0).way(io.victim.vSetIdx.bits(highestIdxBit, 1))
498  )
499
500  // touch the victim in next cycle
501  private val victim_vSetIdx_reg =
502    RegEnable(io.victim.vSetIdx.bits, 0.U.asTypeOf(io.victim.vSetIdx.bits), io.victim.vSetIdx.valid)
503  private val victim_way_reg = RegEnable(io.victim.way, 0.U.asTypeOf(io.victim.way), io.victim.vSetIdx.valid)
504  (0 until PortNumber).foreach { i =>
505    touch_sets(i)(1)       := victim_vSetIdx_reg(highestIdxBit, 1)
506    touch_ways(i)(1).bits  := victim_way_reg
507    touch_ways(i)(1).valid := RegNext(io.victim.vSetIdx.valid) && (victim_vSetIdx_reg(0) === i.U)
508  }
509
510  ((replacers zip touch_sets) zip touch_ways).foreach { case ((r, s), w) => r.access(s, w) }
511}
512
513class ICacheIO(implicit p: Parameters) extends ICacheBundle {
514  val hartId: UInt = Input(UInt(hartIdLen.W))
515  // FTQ
516  val fetch:       ICacheMainPipeBundle = new ICacheMainPipeBundle
517  val ftqPrefetch: FtqToPrefetchIO      = Flipped(new FtqToPrefetchIO)
518  // memblock
519  val softPrefetch: Vec[Valid[SoftIfetchPrefetchBundle]] =
520    Vec(backendParams.LduCnt, Flipped(Valid(new SoftIfetchPrefetchBundle)))
521  // IFU
522  val stop:  Bool = Input(Bool())
523  val toIFU: Bool = Output(Bool())
524  // PMP: mainPipe & prefetchPipe need PortNumber each
525  val pmp: Vec[ICachePMPBundle] = Vec(2 * PortNumber, new ICachePMPBundle)
526  // iTLB
527  val itlb: Vec[TlbRequestIO] = Vec(PortNumber, new TlbRequestIO)
528  // backend/BEU
529  val error: Valid[L1CacheErrorInfo] = ValidIO(new L1CacheErrorInfo)
530  // backend/CSR
531  val csr_pf_enable:     Bool = Input(Bool())
532  val csr_parity_enable: Bool = Input(Bool())
533  // flush
534  val fencei: Bool = Input(Bool())
535  val flush:  Bool = Input(Bool())
536
537  // perf
538  val perfInfo: ICachePerfInfo = Output(new ICachePerfInfo)
539}
540
541class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters {
542  override def shouldBeInlined: Boolean = false
543
544  val clientParameters: TLMasterPortParameters = TLMasterPortParameters.v1(
545    Seq(TLMasterParameters.v1(
546      name = "icache",
547      sourceId = IdRange(0, cacheParams.nFetchMshr + cacheParams.nPrefetchMshr + 1)
548    )),
549    requestFields = cacheParams.reqFields,
550    echoFields = cacheParams.echoFields
551  )
552
553  val clientNode: TLClientNode = TLClientNode(Seq(clientParameters))
554
555  lazy val module: ICacheImp = new ICacheImp(this)
556}
557
558class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters with HasPerfEvents {
559  val io: ICacheIO = IO(new ICacheIO)
560
561  println("ICache:")
562  println("  TagECC: " + cacheParams.tagECC)
563  println("  DataECC: " + cacheParams.dataECC)
564  println("  ICacheSets: " + cacheParams.nSets)
565  println("  ICacheWays: " + cacheParams.nWays)
566  println("  PortNumber: " + cacheParams.PortNumber)
567  println("  nFetchMshr: " + cacheParams.nFetchMshr)
568  println("  nPrefetchMshr: " + cacheParams.nPrefetchMshr)
569  println("  nWayLookupSize: " + cacheParams.nWayLookupSize)
570  println("  DataCodeUnit: " + cacheParams.DataCodeUnit)
571  println("  ICacheDataBanks: " + cacheParams.ICacheDataBanks)
572  println("  ICacheDataSRAMWidth: " + cacheParams.ICacheDataSRAMWidth)
573
574  val (bus, edge) = outer.clientNode.out.head
575
576  private val metaArray  = Module(new ICacheMetaArray)
577  private val dataArray  = Module(new ICacheDataArray)
578  private val mainPipe   = Module(new ICacheMainPipe)
579  private val missUnit   = Module(new ICacheMissUnit(edge))
580  private val replacer   = Module(new ICacheReplacer)
581  private val prefetcher = Module(new IPrefetchPipe)
582  private val wayLookup  = Module(new WayLookup)
583
584  dataArray.io.write <> missUnit.io.data_write
585  dataArray.io.read <> mainPipe.io.dataArray.toIData
586  dataArray.io.readResp <> mainPipe.io.dataArray.fromIData
587
588  metaArray.io.flushAll := io.fencei
589  metaArray.io.flush <> mainPipe.io.metaArrayFlush
590  metaArray.io.write <> missUnit.io.meta_write
591  metaArray.io.read <> prefetcher.io.metaRead.toIMeta
592  metaArray.io.readResp <> prefetcher.io.metaRead.fromIMeta
593
594  prefetcher.io.flush             := io.flush
595  prefetcher.io.csr_pf_enable     := io.csr_pf_enable
596  prefetcher.io.csr_parity_enable := io.csr_parity_enable
597  prefetcher.io.MSHRResp          := missUnit.io.fetch_resp
598  prefetcher.io.flushFromBpu      := io.ftqPrefetch.flushFromBpu
599  // cache softPrefetch
600  private val softPrefetchValid = RegInit(false.B)
601  private val softPrefetch      = RegInit(0.U.asTypeOf(new IPrefetchReq))
602  /* FIXME:
603   * If there is already a pending softPrefetch request, it will be overwritten.
604   * Also, if there are multiple softPrefetch requests in the same cycle, only the first one will be accepted.
605   * We should implement a softPrefetchQueue (like ibuffer, multi-in, single-out) to solve this.
606   * However, the impact on performance still needs to be assessed.
607   * Considering that the frequency of prefetch.i may not be high, let's start with a temporary dummy solution.
608   */
609  when(io.softPrefetch.map(_.valid).reduce(_ || _)) {
610    softPrefetchValid := true.B
611    softPrefetch.fromSoftPrefetch(MuxCase(
612      0.U.asTypeOf(new SoftIfetchPrefetchBundle),
613      io.softPrefetch.map(req => req.valid -> req.bits)
614    ))
615  }.elsewhen(prefetcher.io.req.fire) {
616    softPrefetchValid := false.B
617  }
618  // pass ftqPrefetch
619  private val ftqPrefetch = WireInit(0.U.asTypeOf(new IPrefetchReq))
620  ftqPrefetch.fromFtqICacheInfo(io.ftqPrefetch.req.bits)
621  // software prefetch has higher priority
622  prefetcher.io.req.valid                 := softPrefetchValid || io.ftqPrefetch.req.valid
623  prefetcher.io.req.bits                  := Mux(softPrefetchValid, softPrefetch, ftqPrefetch)
624  prefetcher.io.req.bits.backendException := io.ftqPrefetch.backendException
625  io.ftqPrefetch.req.ready                := prefetcher.io.req.ready && !softPrefetchValid
626
627  missUnit.io.hartId := io.hartId
628  missUnit.io.fencei := io.fencei
629  missUnit.io.flush  := io.flush
630  missUnit.io.fetch_req <> mainPipe.io.mshr.req
631  missUnit.io.prefetch_req <> prefetcher.io.MSHRReq
632  missUnit.io.mem_grant.valid := false.B
633  missUnit.io.mem_grant.bits  := DontCare
634  missUnit.io.mem_grant <> bus.d
635
636  mainPipe.io.flush             := io.flush
637  mainPipe.io.respStall         := io.stop
638  mainPipe.io.csr_parity_enable := io.csr_parity_enable
639  mainPipe.io.hartId            := io.hartId
640  mainPipe.io.mshr.resp         := missUnit.io.fetch_resp
641  mainPipe.io.fetch.req <> io.fetch.req
642  mainPipe.io.wayLookupRead <> wayLookup.io.read
643
644  wayLookup.io.flush := io.flush
645  wayLookup.io.write <> prefetcher.io.wayLookupWrite
646  wayLookup.io.update := missUnit.io.fetch_resp
647
648  replacer.io.touch <> mainPipe.io.touch
649  replacer.io.victim <> missUnit.io.victim
650
651  io.pmp(0) <> mainPipe.io.pmp(0)
652  io.pmp(1) <> mainPipe.io.pmp(1)
653  io.pmp(2) <> prefetcher.io.pmp(0)
654  io.pmp(3) <> prefetcher.io.pmp(1)
655
656  io.itlb(0) <> prefetcher.io.itlb(0)
657  io.itlb(1) <> prefetcher.io.itlb(1)
658
659  // notify IFU that Icache pipeline is available
660  io.toIFU    := mainPipe.io.fetch.req.ready
661  io.perfInfo := mainPipe.io.perfInfo
662
663  io.fetch.resp <> mainPipe.io.fetch.resp
664  io.fetch.topdownIcacheMiss := mainPipe.io.fetch.topdownIcacheMiss
665  io.fetch.topdownItlbMiss   := mainPipe.io.fetch.topdownItlbMiss
666
667  bus.b.ready := false.B
668  bus.c.valid := false.B
669  bus.c.bits  := DontCare
670  bus.e.valid := false.B
671  bus.e.bits  := DontCare
672
673  bus.a <> missUnit.io.mem_acquire
674
675  // Parity error port
676  private val errors       = mainPipe.io.errors
677  private val errors_valid = errors.map(e => e.valid).reduce(_ | _)
678  io.error.bits <> RegEnable(
679    PriorityMux(errors.map(e => e.valid -> e.bits)),
680    0.U.asTypeOf(errors(0).bits),
681    errors_valid
682  )
683  io.error.valid := RegNext(errors_valid, false.B)
684
685  XSPerfAccumulate(
686    "softPrefetch_drop_not_ready",
687    io.softPrefetch.map(_.valid).reduce(_ || _) && softPrefetchValid && !prefetcher.io.req.fire
688  )
689  XSPerfAccumulate("softPrefetch_drop_multi_req", PopCount(io.softPrefetch.map(_.valid)) > 1.U)
690  XSPerfAccumulate("softPrefetch_block_ftq", softPrefetchValid && io.ftqPrefetch.req.valid)
691
692  val perfEvents: Seq[(String, Bool)] = Seq(
693    ("icache_miss_cnt  ", false.B),
694    ("icache_miss_penalty", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true))
695  )
696  generatePerfEvent()
697}
698
699//class ICachePartWayReadBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters)
700//    extends ICacheBundle {
701//  val req = Flipped(Vec(
702//    PortNumber,
703//    Decoupled(new Bundle {
704//      val ridx = UInt((log2Ceil(nSets) - 1).W)
705//    })
706//  ))
707//  val resp = Output(new Bundle {
708//    val rdata = Vec(PortNumber, Vec(pWay, gen))
709//  })
710//}
711
712//class ICacheWriteBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters)
713//    extends ICacheBundle {
714//  val wdata    = gen
715//  val widx     = UInt((log2Ceil(nSets) - 1).W)
716//  val wbankidx = Bool()
717//  val wmask    = Vec(pWay, Bool())
718//}
719
720//class ICachePartWayArray[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheArray {
721//
722//  // including part way data
723//  val io = IO {
724//    new Bundle {
725//      val read  = new ICachePartWayReadBundle(gen, pWay)
726//      val write = Flipped(ValidIO(new ICacheWriteBundle(gen, pWay)))
727//    }
728//  }
729//
730//  io.read.req.map(_.ready := !io.write.valid)
731//
732//  val srams = (0 until PortNumber) map { bank =>
733//    val sramBank = Module(new SRAMTemplate(
734//      gen,
735//      set = nSets / 2,
736//      way = pWay,
737//      shouldReset = true,
738//      holdRead = true,
739//      singlePort = true,
740//      withClockGate = true
741//    ))
742//
743//    sramBank.io.r.req.valid := io.read.req(bank).valid
744//    sramBank.io.r.req.bits.apply(setIdx = io.read.req(bank).bits.ridx)
745//
746//    if (bank == 0) sramBank.io.w.req.valid := io.write.valid && !io.write.bits.wbankidx
747//    else sramBank.io.w.req.valid           := io.write.valid && io.write.bits.wbankidx
748//    sramBank.io.w.req.bits.apply(
749//      data = io.write.bits.wdata,
750//      setIdx = io.write.bits.widx,
751//      waymask = io.write.bits.wmask.asUInt
752//    )
753//
754//    sramBank
755//  }
756//
757//  io.read.req.map(_.ready := !io.write.valid && srams.map(_.io.r.req.ready).reduce(_ && _))
758//
759//  io.read.resp.rdata := VecInit(srams.map(bank => bank.io.r.resp.asTypeOf(Vec(pWay, gen))))
760//
761//}
762
763class SRAMTemplateWithFixedWidthIO[T <: Data](gen: T, set: Int, way: Int) extends Bundle {
764  val r: SRAMReadBus[T]  = Flipped(new SRAMReadBus(gen, set, way))
765  val w: SRAMWriteBus[T] = Flipped(new SRAMWriteBus(gen, set, way))
766}
767
768// Automatically partition the SRAM based on the width of the data and the desired width.
769// final SRAM width = width * way
770class SRAMTemplateWithFixedWidth[T <: Data](
771    gen:           T,
772    set:           Int,
773    width:         Int,
774    way:           Int = 1,
775    shouldReset:   Boolean = false,
776    holdRead:      Boolean = false,
777    singlePort:    Boolean = false,
778    bypassWrite:   Boolean = false,
779    withClockGate: Boolean = false
780) extends Module {
781
782  private val dataBits  = gen.getWidth
783  private val bankNum   = math.ceil(dataBits.toDouble / width.toDouble).toInt
784  private val totalBits = bankNum * width
785
786  val io: SRAMTemplateWithFixedWidthIO[T] = IO(new SRAMTemplateWithFixedWidthIO(gen, set, way))
787
788  private val wordType = UInt(width.W)
789  private val writeDatas = (0 until bankNum).map { bank =>
790    VecInit((0 until way).map { i =>
791      io.w.req.bits.data(i).asTypeOf(UInt(totalBits.W)).asTypeOf(Vec(bankNum, wordType))(bank)
792    })
793  }
794
795  private val srams = (0 until bankNum) map { bank =>
796    val sramBank = Module(new SRAMTemplate(
797      wordType,
798      set = set,
799      way = way,
800      shouldReset = shouldReset,
801      holdRead = holdRead,
802      singlePort = singlePort,
803      bypassWrite = bypassWrite,
804      withClockGate = withClockGate
805    ))
806    // read req
807    sramBank.io.r.req.valid       := io.r.req.valid
808    sramBank.io.r.req.bits.setIdx := io.r.req.bits.setIdx
809
810    // write req
811    sramBank.io.w.req.valid       := io.w.req.valid
812    sramBank.io.w.req.bits.setIdx := io.w.req.bits.setIdx
813    sramBank.io.w.req.bits.data   := writeDatas(bank)
814    sramBank.io.w.req.bits.waymask.foreach(_ := io.w.req.bits.waymask.get)
815
816    sramBank
817  }
818
819  io.r.req.ready := !io.w.req.valid
820  (0 until way).foreach { i =>
821    io.r.resp.data(i) := VecInit((0 until bankNum).map(bank =>
822      srams(bank).io.r.resp.data(i)
823    )).asTypeOf(UInt(totalBits.W))(dataBits - 1, 0).asTypeOf(gen.cloneType)
824  }
825
826  io.r.req.ready := srams.head.io.r.req.ready
827  io.w.req.ready := srams.head.io.w.req.ready
828}
829