1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16* 17* 18* Acknowledgement 19* 20* This implementation is inspired by several key papers: 21* [1] Glenn Reinman, Brad Calder, and Todd Austin. "[Fetch directed instruction prefetching.] 22* (https://doi.org/10.1109/MICRO.1999.809439)" 32nd Annual ACM/IEEE International Symposium on Microarchitecture 23* (MICRO). 1999. 24***************************************************************************************/ 25 26package xiangshan.frontend.icache 27 28import chisel3._ 29import chisel3.util._ 30import freechips.rocketchip.diplomacy.AddressSet 31import freechips.rocketchip.diplomacy.IdRange 32import freechips.rocketchip.diplomacy.LazyModule 33import freechips.rocketchip.diplomacy.LazyModuleImp 34import freechips.rocketchip.tilelink._ 35import freechips.rocketchip.util.BundleFieldBase 36import huancun.AliasField 37import huancun.PrefetchField 38import org.chipsalliance.cde.config.Parameters 39import utility._ 40import utility.mbist.MbistPipeline 41import utility.sram.SplittedSRAMTemplate 42import utility.sram.SRAMReadBus 43import utility.sram.SRAMTemplate 44import utility.sram.SRAMWriteBus 45import utils._ 46import xiangshan._ 47import xiangshan.cache._ 48import xiangshan.cache.mmu.TlbRequestIO 49import xiangshan.frontend._ 50 51case class ICacheParameters( 52 nSets: Int = 256, 53 nWays: Int = 4, 54 rowBits: Int = 64, 55 nTLBEntries: Int = 32, 56 tagECC: Option[String] = None, 57 dataECC: Option[String] = None, 58 replacer: Option[String] = Some("random"), 59 PortNumber: Int = 2, 60 nFetchMshr: Int = 4, 61 nPrefetchMshr: Int = 10, 62 nWayLookupSize: Int = 32, 63 DataCodeUnit: Int = 64, 64 ICacheDataBanks: Int = 8, 65 ICacheDataSRAMWidth: Int = 66, 66 // TODO: hard code, need delete 67 partWayNum: Int = 4, 68 nMMIOs: Int = 1, 69 blockBytes: Int = 64, 70 cacheCtrlAddressOpt: Option[AddressSet] = None 71) extends L1CacheParameters { 72 73 val setBytes: Int = nSets * blockBytes 74 val aliasBitsOpt: Option[Int] = Option.when(setBytes > pageSize)(log2Ceil(setBytes / pageSize)) 75 val reqFields: Seq[BundleFieldBase] = Seq( 76 PrefetchField(), 77 ReqSourceField() 78 ) ++ aliasBitsOpt.map(AliasField) 79 val echoFields: Seq[BundleFieldBase] = Nil 80 def tagCode: Code = Code.fromString(tagECC) 81 def dataCode: Code = Code.fromString(dataECC) 82 def replacement = ReplacementPolicy.fromString(replacer, nWays, nSets) 83} 84 85trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst { 86 val cacheParams: ICacheParameters = icacheParameters 87 88 def ctrlUnitParamsOpt: Option[L1ICacheCtrlParams] = OptionWrapper( 89 cacheParams.cacheCtrlAddressOpt.nonEmpty, 90 L1ICacheCtrlParams( 91 address = cacheParams.cacheCtrlAddressOpt.get, 92 regWidth = XLEN 93 ) 94 ) 95 96 def ICacheSets: Int = cacheParams.nSets 97 def ICacheWays: Int = cacheParams.nWays 98 def PortNumber: Int = cacheParams.PortNumber 99 def nFetchMshr: Int = cacheParams.nFetchMshr 100 def nPrefetchMshr: Int = cacheParams.nPrefetchMshr 101 def nWayLookupSize: Int = cacheParams.nWayLookupSize 102 def DataCodeUnit: Int = cacheParams.DataCodeUnit 103 def ICacheDataBanks: Int = cacheParams.ICacheDataBanks 104 def ICacheDataSRAMWidth: Int = cacheParams.ICacheDataSRAMWidth 105 def partWayNum: Int = cacheParams.partWayNum 106 107 def ICacheMetaBits: Int = tagBits // FIXME: unportable: maybe use somemethod to get width 108 def ICacheMetaCodeBits: Int = 1 // FIXME: unportable: maybe use cacheParams.tagCode.somemethod to get width 109 def ICacheMetaEntryBits: Int = ICacheMetaBits + ICacheMetaCodeBits 110 111 def ICacheDataBits: Int = blockBits / ICacheDataBanks 112 def ICacheDataCodeSegs: Int = 113 math.ceil(ICacheDataBits / DataCodeUnit).toInt // split data to segments for ECC checking 114 def ICacheDataCodeBits: Int = 115 ICacheDataCodeSegs * 1 // FIXME: unportable: maybe use cacheParams.dataCode.somemethod to get width 116 def ICacheDataEntryBits: Int = ICacheDataBits + ICacheDataCodeBits 117 def ICacheBankVisitNum: Int = 32 * 8 / ICacheDataBits + 1 118 def highestIdxBit: Int = log2Ceil(nSets) - 1 119 120 require((ICacheDataBanks >= 2) && isPow2(ICacheDataBanks)) 121 require(ICacheDataSRAMWidth >= ICacheDataEntryBits) 122 require(isPow2(ICacheSets), s"nSets($ICacheSets) must be pow2") 123 require(isPow2(ICacheWays), s"nWays($ICacheWays) must be pow2") 124 125 def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = { 126 val valid = RegInit(false.B) 127 when(thisFlush)(valid := false.B) 128 .elsewhen(lastFire && !lastFlush)(valid := true.B) 129 .elsewhen(thisFire)(valid := false.B) 130 valid 131 } 132 133 def ResultHoldBypass[T <: Data](data: T, valid: Bool): T = 134 Mux(valid, data, RegEnable(data, valid)) 135 136 def ResultHoldBypass[T <: Data](data: T, init: T, valid: Bool): T = 137 Mux(valid, data, RegEnable(data, init, valid)) 138 139 def holdReleaseLatch(valid: Bool, release: Bool, flush: Bool): Bool = { 140 val bit = RegInit(false.B) 141 when(flush)(bit := false.B) 142 .elsewhen(valid && !release)(bit := true.B) 143 .elsewhen(release)(bit := false.B) 144 bit || valid 145 } 146 147 def blockCounter(block: Bool, flush: Bool, threshold: Int): Bool = { 148 val counter = RegInit(0.U(log2Up(threshold + 1).W)) 149 when(block)(counter := counter + 1.U) 150 when(flush)(counter := 0.U) 151 counter > threshold.U 152 } 153 154 def InitQueue[T <: Data](entry: T, size: Int): Vec[T] = 155 RegInit(VecInit(Seq.fill(size)(0.U.asTypeOf(entry.cloneType)))) 156 157 def getBankSel(blkOffset: UInt, valid: Bool = true.B): Vec[UInt] = { 158 val bankIdxLow = (Cat(0.U(1.W), blkOffset) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt 159 val bankIdxHigh = ((Cat(0.U(1.W), blkOffset) + 32.U) >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt 160 val bankSel = VecInit((0 until ICacheDataBanks * 2).map(i => (i.U >= bankIdxLow) && (i.U <= bankIdxHigh))) 161 assert( 162 !valid || PopCount(bankSel) === ICacheBankVisitNum.U, 163 "The number of bank visits must be %d, but bankSel=0x%x", 164 ICacheBankVisitNum.U, 165 bankSel.asUInt 166 ) 167 bankSel.asTypeOf(UInt((ICacheDataBanks * 2).W)).asTypeOf(Vec(2, UInt(ICacheDataBanks.W))) 168 } 169 170 def getLineSel(blkOffset: UInt): Vec[Bool] = { 171 val bankIdxLow = (blkOffset >> log2Ceil(blockBytes / ICacheDataBanks)).asUInt 172 val lineSel = VecInit((0 until ICacheDataBanks).map(i => i.U < bankIdxLow)) 173 lineSel 174 } 175 176 def getBlkAddr(addr: UInt): UInt = (addr >> blockOffBits).asUInt 177 def getPhyTagFromBlk(addr: UInt): UInt = (addr >> (pgUntagBits - blockOffBits)).asUInt 178 def getIdxFromBlk(addr: UInt): UInt = addr(idxBits - 1, 0) 179 def getPaddrFromPtag(vaddr: UInt, ptag: UInt): UInt = Cat(ptag, vaddr(pgUntagBits - 1, 0)) 180 def getPaddrFromPtag(vaddrVec: Vec[UInt], ptagVec: Vec[UInt]): Vec[UInt] = 181 VecInit((vaddrVec zip ptagVec).map { case (vaddr, ptag) => getPaddrFromPtag(vaddr, ptag) }) 182} 183 184trait HasICacheECCHelper extends HasICacheParameters { 185 def encodeMetaECC(meta: UInt, poison: Bool = false.B): UInt = { 186 require(meta.getWidth == ICacheMetaBits) 187 val code = cacheParams.tagCode.encode(meta, poison) >> ICacheMetaBits 188 code.asTypeOf(UInt(ICacheMetaCodeBits.W)) 189 } 190 191 def encodeDataECC(data: UInt, poison: Bool = false.B): UInt = { 192 require(data.getWidth == ICacheDataBits) 193 val datas = data.asTypeOf(Vec(ICacheDataCodeSegs, UInt((ICacheDataBits / ICacheDataCodeSegs).W))) 194 val codes = VecInit(datas.map(cacheParams.dataCode.encode(_, poison) >> (ICacheDataBits / ICacheDataCodeSegs))) 195 codes.asTypeOf(UInt(ICacheDataCodeBits.W)) 196 } 197} 198 199abstract class ICacheBundle(implicit p: Parameters) extends XSBundle 200 with HasICacheParameters 201 202abstract class ICacheModule(implicit p: Parameters) extends XSModule 203 with HasICacheParameters 204 205abstract class ICacheArray(implicit p: Parameters) extends XSModule 206 with HasICacheParameters 207 208class ICacheMetadata(implicit p: Parameters) extends ICacheBundle { 209 val tag: UInt = UInt(tagBits.W) 210} 211 212object ICacheMetadata { 213 def apply(tag: Bits)(implicit p: Parameters): ICacheMetadata = { 214 val meta = Wire(new ICacheMetadata) 215 meta.tag := tag 216 meta 217 } 218} 219 220class ICacheMetaArrayIO(implicit p: Parameters) extends ICacheBundle { 221 val write: DecoupledIO[ICacheMetaWriteBundle] = Flipped(DecoupledIO(new ICacheMetaWriteBundle)) 222 val read: DecoupledIO[ICacheReadBundle] = Flipped(DecoupledIO(new ICacheReadBundle)) 223 val readResp: ICacheMetaRespBundle = Output(new ICacheMetaRespBundle) 224 val flush: Vec[Valid[ICacheMetaFlushBundle]] = Vec(PortNumber, Flipped(ValidIO(new ICacheMetaFlushBundle))) 225 val flushAll: Bool = Input(Bool()) 226} 227 228class ICacheMetaArray(implicit p: Parameters) extends ICacheArray with HasICacheECCHelper { 229 class ICacheMetaEntry(implicit p: Parameters) extends ICacheBundle { 230 val meta: ICacheMetadata = new ICacheMetadata 231 val code: UInt = UInt(ICacheMetaCodeBits.W) 232 } 233 234 private object ICacheMetaEntry { 235 def apply(meta: ICacheMetadata, poison: Bool)(implicit p: Parameters): ICacheMetaEntry = { 236 val entry = Wire(new ICacheMetaEntry) 237 entry.meta := meta 238 entry.code := encodeMetaECC(meta.asUInt, poison) 239 entry 240 } 241 } 242 243 // sanity check 244 require(ICacheMetaEntryBits == (new ICacheMetaEntry).getWidth) 245 246 val io: ICacheMetaArrayIO = IO(new ICacheMetaArrayIO) 247 248 private val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) 249 private val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) 250 private val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine 251 private val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine 252 253 private val port_0_read_0_reg = RegEnable(port_0_read_0, 0.U.asTypeOf(port_0_read_0), io.read.fire) 254 private val port_0_read_1_reg = RegEnable(port_0_read_1, 0.U.asTypeOf(port_0_read_1), io.read.fire) 255 private val port_1_read_1_reg = RegEnable(port_1_read_1, 0.U.asTypeOf(port_1_read_1), io.read.fire) 256 private val port_1_read_0_reg = RegEnable(port_1_read_0, 0.U.asTypeOf(port_1_read_0), io.read.fire) 257 258 private val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) 259 private val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) 260 261 private val write_bank_0 = io.write.valid && !io.write.bits.bankIdx 262 private val write_bank_1 = io.write.valid && io.write.bits.bankIdx 263 264 private val write_meta_bits = ICacheMetaEntry( 265 meta = ICacheMetadata( 266 tag = io.write.bits.phyTag 267 ), 268 poison = io.write.bits.poison 269 ) 270 271 private val tagArrays = (0 until PortNumber) map { bank => 272 val tagArray = Module(new SplittedSRAMTemplate( 273 new ICacheMetaEntry(), 274 set = nSets / PortNumber, 275 way = nWays, 276 waySplit = 2, 277 dataSplit = 1, 278 shouldReset = true, 279 holdRead = true, 280 singlePort = true, 281 withClockGate = true, 282 hasMbist = hasMbist 283 )) 284 285 // meta connection 286 if (bank == 0) { 287 tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0 288 tagArray.io.r.req.bits.apply(setIdx = bank_0_idx(highestIdxBit, 1)) 289 tagArray.io.w.req.valid := write_bank_0 290 tagArray.io.w.req.bits.apply( 291 data = write_meta_bits, 292 setIdx = io.write.bits.virIdx(highestIdxBit, 1), 293 waymask = io.write.bits.waymask 294 ) 295 } else { 296 tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1 297 tagArray.io.r.req.bits.apply(setIdx = bank_1_idx(highestIdxBit, 1)) 298 tagArray.io.w.req.valid := write_bank_1 299 tagArray.io.w.req.bits.apply( 300 data = write_meta_bits, 301 setIdx = io.write.bits.virIdx(highestIdxBit, 1), 302 waymask = io.write.bits.waymask 303 ) 304 } 305 306 tagArray 307 } 308 private val mbistPl = MbistPipeline.PlaceMbistPipeline(1, "MbistPipeIcacheTag", hasMbist) 309 310 private val read_set_idx_next = RegEnable(io.read.bits.vSetIdx, 0.U.asTypeOf(io.read.bits.vSetIdx), io.read.fire) 311 private val valid_array = RegInit(VecInit(Seq.fill(nWays)(0.U(nSets.W)))) 312 private val valid_metas = Wire(Vec(PortNumber, Vec(nWays, Bool()))) 313 // valid read 314 (0 until PortNumber).foreach(i => 315 (0 until nWays).foreach(way => 316 valid_metas(i)(way) := valid_array(way)(read_set_idx_next(i)) 317 ) 318 ) 319 io.readResp.entryValid := valid_metas 320 321 io.read.ready := !io.write.valid && !io.flush.map(_.valid).reduce(_ || _) && !io.flushAll && 322 tagArrays.map(_.io.r.req.ready).reduce(_ && _) 323 324 // valid write 325 private val way_num = OHToUInt(io.write.bits.waymask) 326 when(io.write.valid) { 327 valid_array(way_num) := valid_array(way_num).bitSet(io.write.bits.virIdx, true.B) 328 } 329 330 XSPerfAccumulate("meta_refill_num", io.write.valid) 331 332 io.readResp.metas <> DontCare 333 io.readResp.codes <> DontCare 334 private val readMetaEntries = tagArrays.map(port => port.io.r.resp.asTypeOf(Vec(nWays, new ICacheMetaEntry()))) 335 private val readMetas = readMetaEntries.map(_.map(_.meta)) 336 private val readCodes = readMetaEntries.map(_.map(_.code)) 337 338 // TEST: force ECC to fail by setting readCodes to 0 339 if (ICacheForceMetaECCError) { 340 readCodes.foreach(_.foreach(_ := 0.U)) 341 } 342 343 when(port_0_read_0_reg) { 344 io.readResp.metas(0) := readMetas(0) 345 io.readResp.codes(0) := readCodes(0) 346 }.elsewhen(port_0_read_1_reg) { 347 io.readResp.metas(0) := readMetas(1) 348 io.readResp.codes(0) := readCodes(1) 349 } 350 351 when(port_1_read_0_reg) { 352 io.readResp.metas(1) := readMetas(0) 353 io.readResp.codes(1) := readCodes(0) 354 }.elsewhen(port_1_read_1_reg) { 355 io.readResp.metas(1) := readMetas(1) 356 io.readResp.codes(1) := readCodes(1) 357 } 358 359 io.write.ready := true.B // TODO : has bug ? should be !io.cacheOp.req.valid 360 361 /* 362 * flush logic 363 */ 364 // flush standalone set (e.g. flushed by mainPipe before doing re-fetch) 365 when(io.flush.map(_.valid).reduce(_ || _)) { 366 (0 until nWays).foreach { w => 367 valid_array(w) := (0 until PortNumber).map { i => 368 Mux( 369 // check if set `virIdx` in way `w` is requested to be flushed by port `i` 370 io.flush(i).valid && io.flush(i).bits.waymask(w), 371 valid_array(w).bitSet(io.flush(i).bits.virIdx, false.B), 372 valid_array(w) 373 ) 374 }.reduce(_ & _) 375 } 376 } 377 378 // flush all (e.g. fence.i) 379 when(io.flushAll) { 380 (0 until nWays).foreach(w => valid_array(w) := 0.U) 381 } 382 383 // PERF: flush counter 384 XSPerfAccumulate("flush", io.flush.map(_.valid).reduce(_ || _)) 385 XSPerfAccumulate("flush_all", io.flushAll) 386} 387 388class ICacheDataArrayIO(implicit p: Parameters) extends ICacheBundle { 389 val write: DecoupledIO[ICacheDataWriteBundle] = Flipped(DecoupledIO(new ICacheDataWriteBundle)) 390 val read: Vec[DecoupledIO[ICacheReadBundle]] = Flipped(Vec(partWayNum, DecoupledIO(new ICacheReadBundle))) 391 val readResp: ICacheDataRespBundle = Output(new ICacheDataRespBundle) 392} 393 394class ICacheDataArray(implicit p: Parameters) extends ICacheArray with HasICacheECCHelper { 395 class ICacheDataEntry(implicit p: Parameters) extends ICacheBundle { 396 val data: UInt = UInt(ICacheDataBits.W) 397 val code: UInt = UInt(ICacheDataCodeBits.W) 398 } 399 400 private object ICacheDataEntry { 401 def apply(data: UInt, poison: Bool)(implicit p: Parameters): ICacheDataEntry = { 402 val entry = Wire(new ICacheDataEntry) 403 entry.data := data 404 entry.code := encodeDataECC(data, poison) 405 entry 406 } 407 } 408 409 val io: ICacheDataArrayIO = IO(new ICacheDataArrayIO) 410 411 /** 412 ****************************************************************************** 413 * data array 414 ****************************************************************************** 415 */ 416 private val writeDatas = io.write.bits.data.asTypeOf(Vec(ICacheDataBanks, UInt(ICacheDataBits.W))) 417 private val writeEntries = writeDatas.map(ICacheDataEntry(_, io.write.bits.poison).asUInt) 418 419 // io.read() are copies to control fan-out, we can simply use .head here 420 private val bankSel = getBankSel(io.read.head.bits.blkOffset, io.read.head.valid) 421 private val lineSel = getLineSel(io.read.head.bits.blkOffset) 422 private val waymasks = io.read.head.bits.waymask 423 private val masks = Wire(Vec(nWays, Vec(ICacheDataBanks, Bool()))) 424 (0 until nWays).foreach { way => 425 (0 until ICacheDataBanks).foreach { bank => 426 masks(way)(bank) := Mux( 427 lineSel(bank), 428 waymasks(1)(way) && bankSel(1)(bank).asBool, 429 waymasks(0)(way) && bankSel(0)(bank).asBool 430 ) 431 } 432 } 433 434 private val dataArrays = (0 until nWays).map { way => 435 val banks = (0 until ICacheDataBanks).map { bank => 436 val sramBank = Module(new SRAMTemplateWithFixedWidth( 437 UInt(ICacheDataEntryBits.W), 438 set = nSets, 439 width = ICacheDataSRAMWidth, 440 shouldReset = true, 441 holdRead = true, 442 singlePort = true, 443 withClockGate = false, // enable signal timing is bad, no gating here 444 hasMbist = hasMbist 445 )) 446 447 // read 448 sramBank.io.r.req.valid := io.read(bank % 4).valid && masks(way)(bank) 449 sramBank.io.r.req.bits.apply(setIdx = 450 Mux(lineSel(bank), io.read(bank % 4).bits.vSetIdx(1), io.read(bank % 4).bits.vSetIdx(0)) 451 ) 452 // write 453 sramBank.io.w.req.valid := io.write.valid && io.write.bits.waymask(way).asBool 454 sramBank.io.w.req.bits.apply( 455 data = writeEntries(bank), 456 setIdx = io.write.bits.virIdx, 457 // waymask is invalid when way of SRAMTemplate <= 1 458 waymask = 0.U 459 ) 460 sramBank 461 } 462 MbistPipeline.PlaceMbistPipeline(1, s"MbistPipeIcacheDataWay${way}", hasMbist) 463 banks 464 } 465 466 /** 467 ****************************************************************************** 468 * read logic 469 ****************************************************************************** 470 */ 471 private val masksReg = RegEnable(masks, 0.U.asTypeOf(masks), io.read(0).valid) 472 private val readDataWithCode = (0 until ICacheDataBanks).map { bank => 473 Mux1H(VecInit(masksReg.map(_(bank))).asTypeOf(UInt(nWays.W)), dataArrays.map(_(bank).io.r.resp.asUInt)) 474 } 475 private val readEntries = readDataWithCode.map(_.asTypeOf(new ICacheDataEntry())) 476 private val readDatas = VecInit(readEntries.map(_.data)) 477 private val readCodes = VecInit(readEntries.map(_.code)) 478 479 // TEST: force ECC to fail by setting readCodes to 0 480 if (ICacheForceDataECCError) { 481 readCodes.foreach(_ := 0.U) 482 } 483 484 /** 485 ****************************************************************************** 486 * IO 487 ****************************************************************************** 488 */ 489 io.readResp.datas := readDatas 490 io.readResp.codes := readCodes 491 io.write.ready := true.B 492 io.read.foreach(_.ready := !io.write.valid) 493} 494 495class ICacheReplacerIO(implicit p: Parameters) extends ICacheBundle { 496 val touch: Vec[Valid[ReplacerTouch]] = Vec(PortNumber, Flipped(ValidIO(new ReplacerTouch))) 497 val victim: ReplacerVictim = Flipped(new ReplacerVictim) 498} 499 500class ICacheReplacer(implicit p: Parameters) extends ICacheModule { 501 val io: ICacheReplacerIO = IO(new ICacheReplacerIO) 502 503 private val replacers = 504 Seq.fill(PortNumber)(ReplacementPolicy.fromString(cacheParams.replacer, nWays, nSets / PortNumber)) 505 506 // touch 507 private val touch_sets = Seq.fill(PortNumber)(Wire(Vec(PortNumber, UInt(log2Ceil(nSets / PortNumber).W)))) 508 private val touch_ways = Seq.fill(PortNumber)(Wire(Vec(PortNumber, Valid(UInt(wayBits.W))))) 509 (0 until PortNumber).foreach { i => 510 touch_sets(i)(0) := Mux( 511 io.touch(i).bits.vSetIdx(0), 512 io.touch(1).bits.vSetIdx(highestIdxBit, 1), 513 io.touch(0).bits.vSetIdx(highestIdxBit, 1) 514 ) 515 touch_ways(i)(0).bits := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).bits.way, io.touch(0).bits.way) 516 touch_ways(i)(0).valid := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).valid, io.touch(0).valid) 517 } 518 519 // victim 520 io.victim.way := Mux( 521 io.victim.vSetIdx.bits(0), 522 replacers(1).way(io.victim.vSetIdx.bits(highestIdxBit, 1)), 523 replacers(0).way(io.victim.vSetIdx.bits(highestIdxBit, 1)) 524 ) 525 526 // touch the victim in next cycle 527 private val victim_vSetIdx_reg = 528 RegEnable(io.victim.vSetIdx.bits, 0.U.asTypeOf(io.victim.vSetIdx.bits), io.victim.vSetIdx.valid) 529 private val victim_way_reg = RegEnable(io.victim.way, 0.U.asTypeOf(io.victim.way), io.victim.vSetIdx.valid) 530 (0 until PortNumber).foreach { i => 531 touch_sets(i)(1) := victim_vSetIdx_reg(highestIdxBit, 1) 532 touch_ways(i)(1).bits := victim_way_reg 533 touch_ways(i)(1).valid := RegNext(io.victim.vSetIdx.valid) && (victim_vSetIdx_reg(0) === i.U) 534 } 535 536 ((replacers zip touch_sets) zip touch_ways).foreach { case ((r, s), w) => r.access(s, w) } 537} 538 539class ICacheIO(implicit p: Parameters) extends ICacheBundle { 540 val hartId: UInt = Input(UInt(hartIdLen.W)) 541 // FTQ 542 val fetch: ICacheMainPipeBundle = new ICacheMainPipeBundle 543 val ftqPrefetch: FtqToPrefetchIO = Flipped(new FtqToPrefetchIO) 544 // memblock 545 val softPrefetch: Vec[Valid[SoftIfetchPrefetchBundle]] = 546 Vec(backendParams.LduCnt, Flipped(Valid(new SoftIfetchPrefetchBundle))) 547 // IFU 548 val stop: Bool = Input(Bool()) 549 val toIFU: Bool = Output(Bool()) 550 // PMP: mainPipe & prefetchPipe need PortNumber each 551 val pmp: Vec[ICachePMPBundle] = Vec(2 * PortNumber, new ICachePMPBundle) 552 // iTLB 553 val itlb: Vec[TlbRequestIO] = Vec(PortNumber, new TlbRequestIO) 554 val itlbFlushPipe: Bool = Bool() 555 // backend/BEU 556 val error: Valid[L1CacheErrorInfo] = ValidIO(new L1CacheErrorInfo) 557 // backend/CSR 558 val csr_pf_enable: Bool = Input(Bool()) 559 // flush 560 val fencei: Bool = Input(Bool()) 561 val flush: Bool = Input(Bool()) 562 563 // perf 564 val perfInfo: ICachePerfInfo = Output(new ICachePerfInfo) 565} 566 567class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters { 568 override def shouldBeInlined: Boolean = false 569 570 val clientParameters: TLMasterPortParameters = TLMasterPortParameters.v1( 571 Seq(TLMasterParameters.v1( 572 name = "icache", 573 sourceId = IdRange(0, cacheParams.nFetchMshr + cacheParams.nPrefetchMshr + 1) 574 )), 575 requestFields = cacheParams.reqFields, 576 echoFields = cacheParams.echoFields 577 ) 578 579 val clientNode: TLClientNode = TLClientNode(Seq(clientParameters)) 580 581 val ctrlUnitOpt: Option[ICacheCtrlUnit] = ctrlUnitParamsOpt.map(params => LazyModule(new ICacheCtrlUnit(params))) 582 583 lazy val module: ICacheImp = new ICacheImp(this) 584} 585 586class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters with HasPerfEvents { 587 val io: ICacheIO = IO(new ICacheIO) 588 589 println("ICache:") 590 println(" TagECC: " + cacheParams.tagECC) 591 println(" DataECC: " + cacheParams.dataECC) 592 println(" ICacheSets: " + cacheParams.nSets) 593 println(" ICacheWays: " + cacheParams.nWays) 594 println(" PortNumber: " + cacheParams.PortNumber) 595 println(" nFetchMshr: " + cacheParams.nFetchMshr) 596 println(" nPrefetchMshr: " + cacheParams.nPrefetchMshr) 597 println(" nWayLookupSize: " + cacheParams.nWayLookupSize) 598 println(" DataCodeUnit: " + cacheParams.DataCodeUnit) 599 println(" ICacheDataBanks: " + cacheParams.ICacheDataBanks) 600 println(" ICacheDataSRAMWidth: " + cacheParams.ICacheDataSRAMWidth) 601 602 val (bus, edge) = outer.clientNode.out.head 603 604 private val metaArray = Module(new ICacheMetaArray) 605 private val dataArray = Module(new ICacheDataArray) 606 private val mainPipe = Module(new ICacheMainPipe) 607 private val missUnit = Module(new ICacheMissUnit(edge)) 608 private val replacer = Module(new ICacheReplacer) 609 private val prefetcher = Module(new IPrefetchPipe) 610 private val wayLookup = Module(new WayLookup) 611 612 private val ecc_enable = if (outer.ctrlUnitOpt.nonEmpty) outer.ctrlUnitOpt.get.module.io.ecc_enable else true.B 613 614 // dataArray io 615 if (outer.ctrlUnitOpt.nonEmpty) { 616 val ctrlUnit = outer.ctrlUnitOpt.get.module 617 when(ctrlUnit.io.injecting) { 618 dataArray.io.write <> ctrlUnit.io.dataWrite 619 missUnit.io.data_write.ready := false.B 620 }.otherwise { 621 ctrlUnit.io.dataWrite.ready := false.B 622 dataArray.io.write <> missUnit.io.data_write 623 } 624 } else { 625 dataArray.io.write <> missUnit.io.data_write 626 } 627 dataArray.io.read <> mainPipe.io.dataArray.toIData 628 mainPipe.io.dataArray.fromIData := dataArray.io.readResp 629 630 // metaArray io 631 metaArray.io.flushAll := io.fencei 632 metaArray.io.flush <> mainPipe.io.metaArrayFlush 633 if (outer.ctrlUnitOpt.nonEmpty) { 634 val ctrlUnit = outer.ctrlUnitOpt.get.module 635 when(ctrlUnit.io.injecting) { 636 metaArray.io.write <> ctrlUnit.io.metaWrite 637 metaArray.io.read <> ctrlUnit.io.metaRead 638 missUnit.io.meta_write.ready := false.B 639 prefetcher.io.metaRead.toIMeta.ready := false.B 640 }.otherwise { 641 ctrlUnit.io.metaWrite.ready := false.B 642 ctrlUnit.io.metaRead.ready := false.B 643 metaArray.io.write <> missUnit.io.meta_write 644 metaArray.io.read <> prefetcher.io.metaRead.toIMeta 645 } 646 ctrlUnit.io.metaReadResp := metaArray.io.readResp 647 } else { 648 metaArray.io.write <> missUnit.io.meta_write 649 metaArray.io.read <> prefetcher.io.metaRead.toIMeta 650 } 651 prefetcher.io.metaRead.fromIMeta := metaArray.io.readResp 652 653 prefetcher.io.flush := io.flush 654 prefetcher.io.csr_pf_enable := io.csr_pf_enable 655 prefetcher.io.ecc_enable := ecc_enable 656 prefetcher.io.MSHRResp := missUnit.io.fetch_resp 657 prefetcher.io.flushFromBpu := io.ftqPrefetch.flushFromBpu 658 // cache softPrefetch 659 private val softPrefetchValid = RegInit(false.B) 660 private val softPrefetch = RegInit(0.U.asTypeOf(new IPrefetchReq)) 661 /* FIXME: 662 * If there is already a pending softPrefetch request, it will be overwritten. 663 * Also, if there are multiple softPrefetch requests in the same cycle, only the first one will be accepted. 664 * We should implement a softPrefetchQueue (like ibuffer, multi-in, single-out) to solve this. 665 * However, the impact on performance still needs to be assessed. 666 * Considering that the frequency of prefetch.i may not be high, let's start with a temporary dummy solution. 667 */ 668 when(io.softPrefetch.map(_.valid).reduce(_ || _)) { 669 softPrefetchValid := true.B 670 softPrefetch.fromSoftPrefetch(MuxCase( 671 0.U.asTypeOf(new SoftIfetchPrefetchBundle), 672 io.softPrefetch.map(req => req.valid -> req.bits) 673 )) 674 }.elsewhen(prefetcher.io.req.fire) { 675 softPrefetchValid := false.B 676 } 677 // pass ftqPrefetch 678 private val ftqPrefetch = WireInit(0.U.asTypeOf(new IPrefetchReq)) 679 ftqPrefetch.fromFtqICacheInfo(io.ftqPrefetch.req.bits) 680 // software prefetch has higher priority 681 prefetcher.io.req.valid := softPrefetchValid || io.ftqPrefetch.req.valid 682 prefetcher.io.req.bits := Mux(softPrefetchValid, softPrefetch, ftqPrefetch) 683 prefetcher.io.req.bits.backendException := io.ftqPrefetch.backendException 684 io.ftqPrefetch.req.ready := prefetcher.io.req.ready && !softPrefetchValid 685 686 missUnit.io.hartId := io.hartId 687 missUnit.io.fencei := io.fencei 688 missUnit.io.flush := io.flush 689 missUnit.io.fetch_req <> mainPipe.io.mshr.req 690 missUnit.io.prefetch_req <> prefetcher.io.MSHRReq 691 missUnit.io.mem_grant.valid := false.B 692 missUnit.io.mem_grant.bits := DontCare 693 missUnit.io.mem_grant <> bus.d 694 695 mainPipe.io.flush := io.flush 696 mainPipe.io.respStall := io.stop 697 mainPipe.io.ecc_enable := ecc_enable 698 mainPipe.io.hartId := io.hartId 699 mainPipe.io.mshr.resp := missUnit.io.fetch_resp 700 mainPipe.io.fetch.req <> io.fetch.req 701 mainPipe.io.wayLookupRead <> wayLookup.io.read 702 703 wayLookup.io.flush := io.flush 704 wayLookup.io.write <> prefetcher.io.wayLookupWrite 705 wayLookup.io.update := missUnit.io.fetch_resp 706 707 replacer.io.touch <> mainPipe.io.touch 708 replacer.io.victim <> missUnit.io.victim 709 710 io.pmp(0) <> mainPipe.io.pmp(0) 711 io.pmp(1) <> mainPipe.io.pmp(1) 712 io.pmp(2) <> prefetcher.io.pmp(0) 713 io.pmp(3) <> prefetcher.io.pmp(1) 714 715 io.itlb(0) <> prefetcher.io.itlb(0) 716 io.itlb(1) <> prefetcher.io.itlb(1) 717 io.itlbFlushPipe := prefetcher.io.itlbFlushPipe 718 719 // notify IFU that Icache pipeline is available 720 io.toIFU := mainPipe.io.fetch.req.ready 721 io.perfInfo := mainPipe.io.perfInfo 722 723 io.fetch.resp <> mainPipe.io.fetch.resp 724 io.fetch.topdownIcacheMiss := mainPipe.io.fetch.topdownIcacheMiss 725 io.fetch.topdownItlbMiss := mainPipe.io.fetch.topdownItlbMiss 726 727 bus.b.ready := false.B 728 bus.c.valid := false.B 729 bus.c.bits := DontCare 730 bus.e.valid := false.B 731 bus.e.bits := DontCare 732 733 bus.a <> missUnit.io.mem_acquire 734 735 // Parity error port 736 private val errors = mainPipe.io.errors 737 private val errors_valid = errors.map(e => e.valid).reduce(_ | _) 738 io.error.bits <> RegEnable( 739 PriorityMux(errors.map(e => e.valid -> e.bits)), 740 0.U.asTypeOf(errors(0).bits), 741 errors_valid 742 ) 743 io.error.valid := RegNext(errors_valid, false.B) 744 745 XSPerfAccumulate( 746 "softPrefetch_drop_not_ready", 747 io.softPrefetch.map(_.valid).reduce(_ || _) && softPrefetchValid && !prefetcher.io.req.fire 748 ) 749 XSPerfAccumulate("softPrefetch_drop_multi_req", PopCount(io.softPrefetch.map(_.valid)) > 1.U) 750 XSPerfAccumulate("softPrefetch_block_ftq", softPrefetchValid && io.ftqPrefetch.req.valid) 751 752 val perfEvents: Seq[(String, Bool)] = Seq( 753 ("icache_miss_cnt ", false.B), 754 ("icache_miss_penalty", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true)) 755 ) 756 generatePerfEvent() 757} 758 759//class ICachePartWayReadBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) 760// extends ICacheBundle { 761// val req = Flipped(Vec( 762// PortNumber, 763// Decoupled(new Bundle { 764// val ridx = UInt((log2Ceil(nSets) - 1).W) 765// }) 766// )) 767// val resp = Output(new Bundle { 768// val rdata = Vec(PortNumber, Vec(pWay, gen)) 769// }) 770//} 771 772//class ICacheWriteBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) 773// extends ICacheBundle { 774// val wdata = gen 775// val widx = UInt((log2Ceil(nSets) - 1).W) 776// val wbankidx = Bool() 777// val wmask = Vec(pWay, Bool()) 778//} 779 780//class ICachePartWayArray[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheArray { 781// 782// // including part way data 783// val io = IO { 784// new Bundle { 785// val read = new ICachePartWayReadBundle(gen, pWay) 786// val write = Flipped(ValidIO(new ICacheWriteBundle(gen, pWay))) 787// } 788// } 789// 790// io.read.req.map(_.ready := !io.write.valid) 791// 792// val srams = (0 until PortNumber) map { bank => 793// val sramBank = Module(new SRAMTemplate( 794// gen, 795// set = nSets / 2, 796// way = pWay, 797// shouldReset = true, 798// holdRead = true, 799// singlePort = true, 800// withClockGate = true 801// )) 802// 803// sramBank.io.r.req.valid := io.read.req(bank).valid 804// sramBank.io.r.req.bits.apply(setIdx = io.read.req(bank).bits.ridx) 805// 806// if (bank == 0) sramBank.io.w.req.valid := io.write.valid && !io.write.bits.wbankidx 807// else sramBank.io.w.req.valid := io.write.valid && io.write.bits.wbankidx 808// sramBank.io.w.req.bits.apply( 809// data = io.write.bits.wdata, 810// setIdx = io.write.bits.widx, 811// waymask = io.write.bits.wmask.asUInt 812// ) 813// 814// sramBank 815// } 816// 817// io.read.req.map(_.ready := !io.write.valid && srams.map(_.io.r.req.ready).reduce(_ && _)) 818// 819// io.read.resp.rdata := VecInit(srams.map(bank => bank.io.r.resp.asTypeOf(Vec(pWay, gen)))) 820// 821//} 822 823class SRAMTemplateWithFixedWidthIO[T <: Data](gen: T, set: Int, way: Int) extends Bundle { 824 val r: SRAMReadBus[T] = Flipped(new SRAMReadBus(gen, set, way)) 825 val w: SRAMWriteBus[T] = Flipped(new SRAMWriteBus(gen, set, way)) 826} 827 828// Automatically partition the SRAM based on the width of the data and the desired width. 829// final SRAM width = width * way 830class SRAMTemplateWithFixedWidth[T <: Data]( 831 gen: T, 832 set: Int, 833 width: Int, 834 way: Int = 1, 835 shouldReset: Boolean = false, 836 holdRead: Boolean = false, 837 singlePort: Boolean = false, 838 bypassWrite: Boolean = false, 839 withClockGate: Boolean = false, 840 hasMbist: Boolean = false 841) extends Module { 842 843 private val dataBits = gen.getWidth 844 private val bankNum = math.ceil(dataBits.toDouble / width.toDouble).toInt 845 private val totalBits = bankNum * width 846 847 val io: SRAMTemplateWithFixedWidthIO[T] = IO(new SRAMTemplateWithFixedWidthIO(gen, set, way)) 848 849 private val wordType = UInt(width.W) 850 private val writeDatas = (0 until bankNum).map { bank => 851 VecInit((0 until way).map { i => 852 io.w.req.bits.data(i).asTypeOf(UInt(totalBits.W)).asTypeOf(Vec(bankNum, wordType))(bank) 853 }) 854 } 855 856 private val srams = (0 until bankNum) map { bank => 857 val sramBank = Module(new SRAMTemplate( 858 wordType, 859 set = set, 860 way = way, 861 shouldReset = shouldReset, 862 holdRead = holdRead, 863 singlePort = singlePort, 864 bypassWrite = bypassWrite, 865 withClockGate = withClockGate, 866 hasMbist = hasMbist 867 )) 868 // read req 869 sramBank.io.r.req.valid := io.r.req.valid 870 sramBank.io.r.req.bits.setIdx := io.r.req.bits.setIdx 871 872 // write req 873 sramBank.io.w.req.valid := io.w.req.valid 874 sramBank.io.w.req.bits.setIdx := io.w.req.bits.setIdx 875 sramBank.io.w.req.bits.data := writeDatas(bank) 876 sramBank.io.w.req.bits.waymask.foreach(_ := io.w.req.bits.waymask.get) 877 878 sramBank 879 } 880 881 io.r.req.ready := !io.w.req.valid 882 (0 until way).foreach { i => 883 io.r.resp.data(i) := VecInit((0 until bankNum).map(bank => 884 srams(bank).io.r.resp.data(i) 885 )).asTypeOf(UInt(totalBits.W))(dataBits - 1, 0).asTypeOf(gen.cloneType) 886 } 887 888 io.r.req.ready := srams.head.io.r.req.ready 889 io.w.req.ready := srams.head.io.w.req.ready 890} 891