1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.rocket.RVCDecoder 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utility.ChiselDB 26import utils._ 27import xiangshan._ 28import xiangshan.backend.GPAMemEntry 29import xiangshan.backend.fu.PMPReqBundle 30import xiangshan.backend.fu.PMPRespBundle 31import xiangshan.cache.mmu._ 32import xiangshan.frontend.icache._ 33 34trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { 35 def mmioBusWidth = 64 36 def mmioBusBytes = mmioBusWidth / 8 37 def maxInstrLen = 32 38} 39 40trait HasIFUConst extends HasXSParameter { 41 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = 42 Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 43 def fetchQueueSize = 2 44 45 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { 46 val byteOffset = pc - start 47 (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) 48 } 49} 50 51class IfuToFtqIO(implicit p: Parameters) extends XSBundle { 52 val pdWb = Valid(new PredecodeWritebackBundle) 53} 54 55class IfuToBackendIO(implicit p: Parameters) extends XSBundle { 56 // write to backend gpaddr mem 57 val gpaddrMem_wen = Output(Bool()) 58 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 59 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 60 // TODO: avoid cross page entry in Ftq 61 val gpaddrMem_wdata = Output(new GPAMemEntry) 62} 63 64class FtqInterface(implicit p: Parameters) extends XSBundle { 65 val fromFtq = Flipped(new FtqToIfuIO) 66 val toFtq = new IfuToFtqIO 67} 68 69class UncacheInterface(implicit p: Parameters) extends XSBundle { 70 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 71 val toUncache = DecoupledIO(new InsUncacheReq) 72} 73 74class NewIFUIO(implicit p: Parameters) extends XSBundle { 75 val ftqInter = new FtqInterface 76 val icacheInter = Flipped(new IFUICacheIO) 77 val icacheStop = Output(Bool()) 78 val icachePerfInfo = Input(new ICachePerfInfo) 79 val toIbuffer = Decoupled(new FetchToIBuffer) 80 val toBackend = new IfuToBackendIO 81 val uncacheInter = new UncacheInterface 82 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 83 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 84 val iTLBInter = new TlbRequestIO 85 val pmp = new ICachePMPBundle 86 val mmioCommitRead = new mmioCommitRead 87} 88 89// record the situation in which fallThruAddr falls into 90// the middle of an RVI inst 91class LastHalfInfo(implicit p: Parameters) extends XSBundle { 92 val valid = Bool() 93 val middlePC = UInt(VAddrBits.W) 94 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 95} 96 97class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 98 val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 99 val frontendTrigger = new FrontendTdataDistributeIO 100 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 101} 102 103class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 104 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 105 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 106 val target = UInt(VAddrBits.W) 107 val instrRange = Vec(PredictWidth, Bool()) 108 val instrValid = Vec(PredictWidth, Bool()) 109 val pds = Vec(PredictWidth, new PreDecodeInfo) 110 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 111 val fire_in = Bool() 112} 113 114class FetchToIBufferDB extends Bundle { 115 val start_addr = UInt(39.W) 116 val instr_count = UInt(32.W) 117 val exception = Bool() 118 val is_cache_hit = Bool() 119} 120 121class IfuWbToFtqDB extends Bundle { 122 val start_addr = UInt(39.W) 123 val is_miss_pred = Bool() 124 val miss_pred_offset = UInt(32.W) 125 val checkJalFault = Bool() 126 val checkRetFault = Bool() 127 val checkTargetFault = Bool() 128 val checkNotCFIFault = Bool() 129 val checkInvalidTaken = Bool() 130} 131 132class NewIFU(implicit p: Parameters) extends XSModule 133 with HasICacheParameters 134 with HasXSParameter 135 with HasIFUConst 136 with HasPdConst 137 with HasCircularQueuePtrHelper 138 with HasPerfEvents 139 with HasTlbConst { 140 val io = IO(new NewIFUIO) 141 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 142 val fromICache = io.icacheInter.resp 143 val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) 144 145 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 146 147 def numOfStage = 3 148 // equal lower_result overflow bit 149 def PcCutPoint = (VAddrBits / 4) - 1 150 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = 151 Mux( 152 low(PcCutPoint), 153 Cat(high1, low(PcCutPoint - 1, 0)), 154 Cat(high, low(PcCutPoint - 1, 0)) 155 ) 156 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 157 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 158 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 159 // bubble events in IFU, only happen in stage 1 160 val icacheMissBubble = Wire(Bool()) 161 val itlbMissBubble = Wire(Bool()) 162 163 // only driven by clock, not valid-ready 164 topdown_stages(0) := fromFtq.req.bits.topdown_info 165 for (i <- 1 until numOfStage) { 166 topdown_stages(i) := topdown_stages(i - 1) 167 } 168 when(icacheMissBubble) { 169 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 170 } 171 when(itlbMissBubble) { 172 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 173 } 174 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 175 when(fromFtq.topdown_redirect.valid) { 176 // only redirect from backend, IFU redirect itself is handled elsewhere 177 when(fromFtq.topdown_redirect.bits.debugIsCtrl) { 178 /* 179 for (i <- 0 until numOfStage) { 180 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 181 } 182 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 183 */ 184 when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 185 for (i <- 0 until numOfStage) { 186 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 187 } 188 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 189 }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { 190 for (i <- 0 until numOfStage) { 191 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 192 } 193 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 194 }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { 195 for (i <- 0 until numOfStage) { 196 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 197 } 198 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 199 }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 200 for (i <- 0 until numOfStage) { 201 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 202 } 203 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 204 }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { 205 for (i <- 0 until numOfStage) { 206 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 207 } 208 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 209 } 210 }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { 211 for (i <- 0 until numOfStage) { 212 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 213 } 214 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 215 }.otherwise { 216 for (i <- 0 until numOfStage) { 217 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 218 } 219 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 220 } 221 } 222 223 class TlbExept(implicit p: Parameters) extends XSBundle { 224 val pageFault = Bool() 225 val accessFault = Bool() 226 val mmio = Bool() 227 } 228 229 val preDecoder = Module(new PreDecode) 230 231 val predChecker = Module(new PredChecker) 232 val frontendTrigger = Module(new FrontendTrigger) 233 val (checkerIn, checkerOutStage1, checkerOutStage2) = 234 (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) 235 236 /** 237 ****************************************************************************** 238 * IFU Stage 0 239 * - send cacheline fetch request to ICacheMainPipe 240 ****************************************************************************** 241 */ 242 243 val f0_valid = fromFtq.req.valid 244 val f0_ftq_req = fromFtq.req.bits 245 val f0_doubleLine = fromFtq.req.bits.crossCacheline 246 val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) 247 val f0_fire = fromFtq.req.fire 248 249 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 250 val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B) 251 252 from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 253 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 254 255 val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) 256 val f3_wb_not_flush = WireInit(false.B) 257 258 backend_redirect := fromFtq.redirect.valid 259 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 260 f2_flush := backend_redirect || mmio_redirect || wb_redirect 261 f1_flush := f2_flush || from_bpu_f1_flush 262 f0_flush := f1_flush || from_bpu_f0_flush 263 264 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 265 266 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 267 268 when(wb_redirect) { 269 when(f3_wb_not_flush) { 270 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 271 } 272 for (i <- 0 until numOfStage - 1) { 273 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 274 } 275 } 276 277 /** <PERF> f0 fetch bubble */ 278 279 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) 280 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 281 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 282 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 283 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) 284 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) 285 XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush) 286 XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush) 287 288 /** 289 ****************************************************************************** 290 * IFU Stage 1 291 * - calculate pc/half_pc/cut_ptr for every instruction 292 ****************************************************************************** 293 */ 294 295 val f1_valid = RegInit(false.B) 296 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 297 // val f1_situation = RegEnable(f0_situation, f0_fire) 298 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 299 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 300 val f1_fire = f1_valid && f2_ready 301 302 f1_ready := f1_fire || !f1_valid 303 304 from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid 305 // from_bpu_f1_flush := false.B 306 307 when(f1_flush)(f1_valid := false.B) 308 .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) 309 .elsewhen(f1_fire)(f1_valid := false.B) 310 311 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) 312 val f1_pc_high_plus1 = f1_pc_high + 1.U 313 314 /** 315 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 316 * code of original logic, this code has been deprecated 317 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 318 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 319 */ 320 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => 321 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U 322 )) // cat with overflow bit 323 324 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 325 326 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => 327 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U 328 )) // cat with overflow bit 329 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 330 331 if (env.FPGAPlatform) { 332 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 333 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) 334 335 XSError( 336 f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 337 "f1_half_snpc adder cut fail" 338 ) 339 XSError( 340 f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 341 "f1_half_snpc adder cut fail" 342 ) 343 } 344 345 val f1_cut_ptr = if (HasCExtension) 346 VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) 347 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) 348 349 /** 350 ****************************************************************************** 351 * IFU Stage 2 352 * - icache response data (latched for pipeline stop) 353 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 354 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 355 * - cut data from cachlines to packet instruction code 356 * - instruction predecode and RVC expand 357 ****************************************************************************** 358 */ 359 360 val icacheRespAllValid = WireInit(false.B) 361 362 val f2_valid = RegInit(false.B) 363 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 364 // val f2_situation = RegEnable(f1_situation, f1_fire) 365 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 366 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 367 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 368 369 f2_ready := f2_fire || !f2_valid 370 // TODO: addr compare may be timing critical 371 val f2_icache_all_resp_wire = 372 fromICache(0).valid && (fromICache(0).bits.vaddr === f2_ftq_req.startAddr) && ((fromICache(1).valid && (fromICache( 373 1 374 ).bits.vaddr === f2_ftq_req.nextlineStart)) || !f2_doubleLine) 375 val f2_icache_all_resp_reg = RegInit(false.B) 376 377 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 378 379 icacheMissBubble := io.icacheInter.topdownIcacheMiss 380 itlbMissBubble := io.icacheInter.topdownItlbMiss 381 382 io.icacheStop := !f3_ready 383 384 when(f2_flush)(f2_icache_all_resp_reg := false.B) 385 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) 386 .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) 387 388 when(f2_flush)(f2_valid := false.B) 389 .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) 390 .elsewhen(f2_fire)(f2_valid := false.B) 391 392 val f2_exception = VecInit((0 until PortNumber).map(i => fromICache(i).bits.exception)) 393 val f2_except_fromBackend = fromICache(0).bits.exceptionFromBackend 394 // paddr and gpaddr of [startAddr, nextLineAddr] 395 val f2_paddrs = VecInit((0 until PortNumber).map(i => fromICache(i).bits.paddr)) 396 val f2_gpaddr = fromICache(0).bits.gpaddr 397 val f2_isForVSnonLeafPTE = fromICache(0).bits.isForVSnonLeafPTE 398 399 // FIXME: what if port 0 is not mmio, but port 1 is? 400 // cancel mmio fetch if exception occurs 401 val f2_mmio = f2_exception(0) === ExceptionType.none && ( 402 fromICache(0).bits.pmp_mmio || 403 // currently, we do not distinguish between Pbmt.nc and Pbmt.io 404 // anyway, they are both non-cacheable, and should be handled with mmio fsm and sent to Uncache module 405 Pbmt.isUncache(fromICache(0).bits.itlb_pbmt) 406 ) 407 408 /** 409 * reduce the number of registers, origin code 410 * f2_pc = RegEnable(f1_pc, f1_fire) 411 */ 412 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 413 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 414 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 415 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 416 417 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 418 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 419 420 def isNextLine(pc: UInt, startAddr: UInt) = 421 startAddr(blockOffBits) ^ pc(blockOffBits) 422 423 def isLastInLine(pc: UInt) = 424 pc(blockOffBits - 1, 0) === "b111110".U 425 426 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) 427 val f2_jump_range = 428 Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 429 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( 430 f2_ftq_req.nextStartAddr, 431 f2_ftq_req.startAddr 432 ) 433 val f2_instr_range = f2_jump_range & f2_ftr_range 434 val f2_exception_vec = VecInit((0 until PredictWidth).map(i => 435 MuxCase( 436 ExceptionType.none, 437 Seq( 438 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 439 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 440 ) 441 ) 442 )) 443 val f2_perf_info = io.icachePerfInfo 444 445 def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { 446 require(HasCExtension) 447 // if(HasCExtension){ 448 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 449 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector 450 (0 until PredictWidth + 1).foreach(i => 451 result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 452 ) 453 result 454 // } else { 455 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 456 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 457 // (0 until PredictWidth).foreach( i => 458 // result(i) := dataVec(cutPtr(i)) 459 // ) 460 // result 461 // } 462 } 463 464 val f2_cache_response_data = fromICache.map(_.bits.data) 465 val f2_data_2_cacheline = Cat(f2_cache_response_data(0), f2_cache_response_data(0)) 466 467 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 468 469 /** predecode (include RVC expander) */ 470 // preDecoderRegIn.data := f2_reg_cut_data 471 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 472 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 473 // preDecoderRegIn.pc := f2_pc 474 475 val preDecoderIn = preDecoder.io.in 476 preDecoderIn.valid := f2_valid 477 preDecoderIn.bits.data := f2_cut_data 478 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 479 preDecoderIn.bits.pc := f2_pc 480 val preDecoderOut = preDecoder.io.out 481 482 // val f2_expd_instr = preDecoderOut.expInstr 483 val f2_instr = preDecoderOut.instr 484 val f2_pd = preDecoderOut.pd 485 val f2_jump_offset = preDecoderOut.jumpOffset 486 val f2_hasHalfValid = preDecoderOut.hasHalfValid 487 /* if there is a cross-page RVI instruction, and the former page has no exception, 488 * whether it has exception is actually depends on the latter page 489 */ 490 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => 491 Mux( 492 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && f2_exception(0) === ExceptionType.none, 493 f2_exception(1), 494 ExceptionType.none 495 ) 496 }) 497 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) 498 499 /** 500 ****************************************************************************** 501 * IFU Stage 3 502 * - handle MMIO instruciton 503 * -send request to Uncache fetch Unit 504 * -every packet include 1 MMIO instruction 505 * -MMIO instructions will stop fetch pipeline until commiting from RoB 506 * -flush to snpc (send ifu_redirect to Ftq) 507 * - Ibuffer enqueue 508 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 509 * - handle last half RVI instruction 510 ****************************************************************************** 511 */ 512 513 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 514 515 val f3_valid = RegInit(false.B) 516 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 517 // val f3_situation = RegEnable(f2_situation, f2_fire) 518 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 519 val f3_fire = io.toIbuffer.fire 520 521 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 522 523 val f3_exception = RegEnable(f2_exception, f2_fire) 524 val f3_mmio = RegEnable(f2_mmio, f2_fire) 525 val f3_except_fromBackend = RegEnable(f2_except_fromBackend, f2_fire) 526 527 val f3_instr = RegEnable(f2_instr, f2_fire) 528 529 expanders.zipWithIndex.foreach { case (expander, i) => 530 expander.io.in := f3_instr(i) 531 } 532 // Use expanded instruction only when input is legal. 533 // Otherwise use origin illegal RVC instruction. 534 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 535 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 536 }) 537 val f3_ill = VecInit(expanders.map(_.io.ill)) 538 539 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 540 val f3_pd = WireInit(f3_pd_wire) 541 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 542 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 543 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 544 545 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 546 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 547 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 548 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 549 550 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 551 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 552 // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 553 554 /** 555 *********************************************************************** 556 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 557 *********************************************************************** 558 */ 559 val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) 560 for (i <- 0 until PredictWidth) { 561 if (i == (PredictWidth - 2)) { 562 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 563 } else if (i == (PredictWidth - 1)) { 564 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 565 } else { 566 f3_half_snpc(i) := f3_pc(i + 2) 567 } 568 } 569 570 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 571 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 572 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 573 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 574 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 575 val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) 576 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 577 578 // Expand 1 bit to prevent overflow when assert 579 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 580 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 581 // brType, isCall and isRet generation is delayed to f3 stage 582 val f3Predecoder = Module(new F3Predecoder) 583 584 f3Predecoder.io.in.instr := f3_instr 585 586 f3_pd.zipWithIndex.map { case (pd, i) => 587 pd.brType := f3Predecoder.io.out.pd(i).brType 588 pd.isCall := f3Predecoder.io.out.pd(i).isCall 589 pd.isRet := f3Predecoder.io.out.pd(i).isRet 590 } 591 592 val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) 593 XSError(f3_valid && f3PdDiff, "f3 pd diff") 594 595 when(f3_valid && !f3_ftq_req.ftqOffset.valid) { 596 assert( 597 f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, 598 s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" 599 ) 600 } 601 602 /*** MMIO State Machine***/ 603 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 604 val mmio_is_RVC = RegInit(false.B) 605 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 606 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 607 val mmio_resend_gpaddr = RegInit(0.U(GPAddrBits.W)) 608 val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) 609 610 // last instuction finish 611 val is_first_instr = RegInit(true.B) 612 613 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 614 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 615 616 val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = 617 Enum(11) 618 val mmio_state = RegInit(m_idle) 619 620 val f3_req_is_mmio = f3_mmio && f3_valid 621 val mmio_commit = VecInit(io.rob_commits.map { commit => 622 commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U 623 }).asUInt.orR 624 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 625 626 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 627 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 628 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 629 630 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 631 fromFtqRedirectReg.bits := RegEnable( 632 fromFtq.redirect.bits, 633 0.U.asTypeOf(fromFtq.redirect.bits), 634 fromFtq.redirect.valid 635 ) 636 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 637 val mmioF3Flush = RegNext(f3_flush, init = false.B) 638 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 639 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 640 641 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 642 643 /** 644 ********************************************************************************** 645 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 646 * This is the exception when the first instruction is an MMIO instruction. 647 ********************************************************************************** 648 */ 649 when(is_first_instr && f3_fire) { 650 is_first_instr := false.B 651 } 652 653 when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) 654 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) 655 .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) 656 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) 657 .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) 658 659 val f3_mmio_use_seq_pc = RegInit(false.B) 660 661 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) 662 val redirect_mmio_req = 663 fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 664 665 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) 666 .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) 667 668 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 669 670 // mmio state machine 671 switch(mmio_state) { 672 is(m_idle) { 673 when(f3_req_is_mmio) { 674 mmio_state := m_waitLastCmt 675 } 676 } 677 678 is(m_waitLastCmt) { 679 when(is_first_instr) { 680 mmio_state := m_sendReq 681 }.otherwise { 682 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 683 } 684 } 685 686 is(m_sendReq) { 687 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 688 } 689 690 is(m_waitResp) { 691 when(fromUncache.fire) { 692 val isRVC = fromUncache.bits.data(1, 0) =/= 3.U 693 val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U 694 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 695 mmio_is_RVC := isRVC 696 f3_mmio_data(0) := fromUncache.bits.data(15, 0) 697 f3_mmio_data(1) := fromUncache.bits.data(31, 16) 698 } 699 } 700 701 is(m_sendTLB) { 702 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 703 } 704 705 is(m_tlbResp) { 706 when(io.iTLBInter.resp.fire) { 707 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 708 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 709 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 710 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 711 mmio_state := Mux(tlb_exception === ExceptionType.none, m_sendPMP, m_waitCommit) 712 // also save itlb response 713 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 714 mmio_resend_exception := tlb_exception 715 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 716 mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) 717 } 718 } 719 720 is(m_sendPMP) { 721 // if pmp re-check does not respond mmio, must be access fault 722 val pmp_exception = Mux(io.pmp.resp.mmio, ExceptionType.fromPMPResp(io.pmp.resp), ExceptionType.af) 723 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 724 mmio_state := Mux(pmp_exception === ExceptionType.none, m_resendReq, m_waitCommit) 725 // also save pmp response 726 mmio_resend_exception := pmp_exception 727 } 728 729 is(m_resendReq) { 730 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 731 } 732 733 is(m_waitResendResp) { 734 when(fromUncache.fire) { 735 mmio_state := m_waitCommit 736 f3_mmio_data(1) := fromUncache.bits.data(15, 0) 737 } 738 } 739 740 is(m_waitCommit) { 741 mmio_state := Mux(mmio_commit, m_commited, m_waitCommit) 742 } 743 744 // normal mmio instruction 745 is(m_commited) { 746 mmio_state := m_idle 747 mmio_is_RVC := false.B 748 mmio_resend_addr := 0.U 749 mmio_resend_exception := ExceptionType.none 750 mmio_resend_gpaddr := 0.U 751 mmio_resend_isForVSnonLeafPTE := false.B 752 } 753 } 754 755 // Exception or flush by older branch prediction 756 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 757 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 758 mmio_state := m_idle 759 mmio_is_RVC := false.B 760 mmio_resend_addr := 0.U 761 mmio_resend_exception := ExceptionType.none 762 mmio_resend_gpaddr := 0.U 763 mmio_resend_isForVSnonLeafPTE := false.B 764 f3_mmio_data.map(_ := 0.U) 765 } 766 767 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 768 toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) 769 fromUncache.ready := true.B 770 771 // send itlb request in m_sendTLB state 772 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 773 io.iTLBInter.req.bits.size := 3.U 774 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 775 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 776 io.iTLBInter.req.bits.cmd := TlbCmd.exec 777 io.iTLBInter.req.bits.isPrefetch := false.B 778 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 779 io.iTLBInter.req.bits.no_translate := false.B 780 io.iTLBInter.req.bits.fullva := 0.U 781 io.iTLBInter.req.bits.checkfullva := false.B 782 io.iTLBInter.req.bits.hyperinst := DontCare 783 io.iTLBInter.req.bits.hlvx := DontCare 784 io.iTLBInter.req.bits.memidx := DontCare 785 io.iTLBInter.req.bits.debug.robIdx := DontCare 786 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 787 io.iTLBInter.req.bits.pmp_addr := DontCare 788 // whats the difference between req_kill and req.bits.kill? 789 io.iTLBInter.req_kill := false.B 790 // wait for itlb response in m_tlbResp state 791 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 792 793 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 794 io.pmp.req.bits.addr := mmio_resend_addr 795 io.pmp.req.bits.size := 3.U 796 io.pmp.req.bits.cmd := TlbCmd.exec 797 798 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 799 800 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 801 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) 802 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 803 804 /*** prediction result check ***/ 805 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 806 checkerIn.jumpOffset := f3_jump_offset 807 checkerIn.target := f3_ftq_req.nextStartAddr 808 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 809 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 810 checkerIn.pds := f3_pd 811 checkerIn.pc := f3_pc 812 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 813 814 /*** handle half RVI in the last 2 Bytes ***/ 815 816 def hasLastHalf(idx: UInt) = 817 // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 818 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( 819 idx 820 ) && !f3_req_is_mmio 821 822 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 823 824 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 825 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 826 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 827 828 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt 829 val f3_lastHalf_disable = RegInit(false.B) 830 831 when(f3_flush || (f3_fire && f3_lastHalf_disable)) { 832 f3_lastHalf_disable := false.B 833 } 834 835 when(f3_flush) { 836 f3_lastHalf.valid := false.B 837 }.elsewhen(f3_fire) { 838 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 839 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 840 } 841 842 f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) 843 844 /*** frontend Trigger ***/ 845 frontendTrigger.io.pds := f3_pd 846 frontendTrigger.io.pc := f3_pc 847 frontendTrigger.io.data := f3_cut_data 848 849 frontendTrigger.io.frontendTrigger := io.frontendTrigger 850 851 val f3_triggered = frontendTrigger.io.triggered 852 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 853 854 /*** send to Ibuffer ***/ 855 io.toIbuffer.valid := f3_toIbuffer_valid 856 io.toIbuffer.bits.instrs := f3_expd_instr 857 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 858 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 859 io.toIbuffer.bits.pd := f3_pd 860 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 861 io.toIbuffer.bits.pc := f3_pc 862 // Find last using PriorityMux 863 io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools 864 io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => 865 a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio 866 } 867 io.toIbuffer.bits.foldpc := f3_foldpc 868 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 869 // exceptionFromBackend only needs to be set for the first instruction. 870 // Other instructions in the same block may have pf or af set, 871 // which is a side effect of the first instruction and actually not necessary. 872 io.toIbuffer.bits.exceptionFromBackend := (0 until PredictWidth).map { 873 case 0 => f3_except_fromBackend 874 case _ => false.B 875 } 876 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(_ =/= ExceptionType.none) 877 io.toIbuffer.bits.illegalInstr := f3_ill 878 io.toIbuffer.bits.triggered := f3_triggered 879 880 when(f3_lastHalf.valid) { 881 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 882 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 883 } 884 885 /** to backend */ 886 // f3_gpaddr is valid iff gpf is detected 887 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 888 f3_req_is_mmio, 889 mmio_resend_exception === ExceptionType.gpf, 890 f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) 891 ) 892 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 893 io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 894 io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( 895 f3_req_is_mmio, 896 mmio_resend_isForVSnonLeafPTE, 897 f3_isForVSnonLeafPTE 898 ) 899 900 // Write back to Ftq 901 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 902 val finishFetchMaskReg = RegNext(f3_cache_fetch) 903 904 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 905 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 906 f3_mmio_missOffset.valid := f3_req_is_mmio 907 f3_mmio_missOffset.bits := 0.U 908 909 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 910 // When backend redirect, mmio_state reset after 1 cycle. 911 // In this case, mask .valid to avoid overriding backend redirect 912 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 913 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 914 mmioFlushWb.bits.pc := f3_pc 915 mmioFlushWb.bits.pd := f3_pd 916 mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } 917 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 918 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 919 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 920 mmioFlushWb.bits.cfiOffset := DontCare 921 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) 922 mmioFlushWb.bits.jalTarget := DontCare 923 mmioFlushWb.bits.instrRange := f3_mmio_range 924 925 val mmioRVCExpander = Module(new RVCExpander) 926 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 927 928 /** external predecode for MMIO instruction */ 929 when(f3_req_is_mmio) { 930 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 931 val currentIsRVC = isRVC(inst) 932 933 val brType :: isCall :: isRet :: Nil = brInfo(inst) 934 val jalOffset = jal_offset(inst, currentIsRVC) 935 val brOffset = br_offset(inst, currentIsRVC) 936 937 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 938 939 io.toIbuffer.bits.pd(0).valid := true.B 940 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 941 io.toIbuffer.bits.pd(0).brType := brType 942 io.toIbuffer.bits.pd(0).isCall := isCall 943 io.toIbuffer.bits.pd(0).isRet := isRet 944 945 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 946 io.toIbuffer.bits.crossPageIPFFix(0) := mmio_resend_exception =/= ExceptionType.none 947 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 948 949 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 950 951 mmioFlushWb.bits.pd(0).valid := true.B 952 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 953 mmioFlushWb.bits.pd(0).brType := brType 954 mmioFlushWb.bits.pd(0).isCall := isCall 955 mmioFlushWb.bits.pd(0).isRet := isRet 956 } 957 958 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 959 960 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) 961 962 /** 963 ****************************************************************************** 964 * IFU Write Back Stage 965 * - write back predecode information to Ftq to update 966 * - redirect if found fault prediction 967 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 968 ****************************************************************************** 969 */ 970 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 971 val wb_valid = RegNext(wb_enable, init = false.B) 972 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 973 974 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 975 val wb_check_result_stage2 = checkerOutStage2 976 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 977 978 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 979 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 980 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 981 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 982 983 // val wb_pc = RegEnable(f3_pc, wb_enable) 984 val wb_pd = RegEnable(f3_pd, wb_enable) 985 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 986 987 /* false hit lastHalf */ 988 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 989 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 990 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 991 992 val wb_half_flush = wb_false_lastHalf 993 val wb_half_target = wb_false_target 994 995 /* false oversize */ 996 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC 997 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 998 val lastTaken = wb_check_result_stage1.fixedTaken.last 999 1000 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 1001 1002 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 1003 * we set a flag to notify f3 that the last half flag need not to be set. 1004 */ 1005 // f3_fire is after wb_valid 1006 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1007 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( 1008 f3_fire, 1009 init = false.B 1010 ) && !f3_flush) { 1011 f3_lastHalf_disable := true.B 1012 } 1013 1014 // wb_valid and f3_fire are in same cycle 1015 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1016 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { 1017 f3_lastHalf.valid := false.B 1018 } 1019 1020 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 1021 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => 1022 v && pd.isJal 1023 })) 1024 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1025 checkFlushWb.valid := wb_valid 1026 checkFlushWb.bits.pc := wb_pc 1027 checkFlushWb.bits.pd := wb_pd 1028 checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } 1029 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 1030 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 1031 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 1032 checkFlushWb.bits.misOffset.bits := Mux( 1033 wb_half_flush, 1034 wb_lastIdx, 1035 ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1036 ) 1037 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 1038 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 1039 checkFlushWb.bits.target := Mux( 1040 wb_half_flush, 1041 wb_half_target, 1042 wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) 1043 ) 1044 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 1045 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 1046 1047 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 1048 1049 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 1050 1051 /*write back flush type*/ 1052 val checkFaultType = wb_check_result_stage2.faultType 1053 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) 1054 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) 1055 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) 1056 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) 1057 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) 1058 1059 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) 1060 XSPerfAccumulate("predecode_flush_retFault", checkRetFault) 1061 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) 1062 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) 1063 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) 1064 1065 when(checkRetFault) { 1066 XSDebug( 1067 "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1068 wb_ftq_req.startAddr, 1069 wb_ftq_req.nextStartAddr, 1070 wb_ftq_req.ftqOffset.valid, 1071 wb_ftq_req.ftqOffset.bits 1072 ) 1073 } 1074 1075 /** performance counter */ 1076 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1077 val f3_req_0 = io.toIbuffer.fire 1078 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1079 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1080 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1081 val f3_hit = f3_perf_info.hit 1082 val perfEvents = Seq( 1083 ("frontendFlush ", wb_redirect), 1084 ("ifu_req ", io.toIbuffer.fire), 1085 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), 1086 ("ifu_req_cacheline_0 ", f3_req_0), 1087 ("ifu_req_cacheline_1 ", f3_req_1), 1088 ("ifu_req_cacheline_0_hit ", f3_hit_1), 1089 ("ifu_req_cacheline_1_hit ", f3_hit_1), 1090 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), 1091 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), 1092 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), 1093 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), 1094 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), 1095 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1096 ) 1097 generatePerfEvent() 1098 1099 XSPerfAccumulate("ifu_req", io.toIbuffer.fire) 1100 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) 1101 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) 1102 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) 1103 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) 1104 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) 1105 XSPerfAccumulate("frontendFlush", wb_redirect) 1106 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) 1107 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) 1108 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) 1109 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) 1110 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) 1111 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1112 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) 1113 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1114 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) 1115 XSPerfHistogram( 1116 "ifu2ibuffer_validCnt", 1117 PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), 1118 io.toIbuffer.fire, 1119 0, 1120 PredictWidth + 1, 1121 1 1122 ) 1123 1124 val hartId = p(XSCoreParamsKey).HartId 1125 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1126 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1127 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1128 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1129 1130 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1131 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1132 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1133 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1134 fetchIBufferDumpData.is_cache_hit := f3_hit 1135 1136 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1137 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1138 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1139 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1140 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1141 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1142 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1143 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1144 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1145 1146 fetchToIBufferTable.log( 1147 data = fetchIBufferDumpData, 1148 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1149 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1150 clock = clock, 1151 reset = reset 1152 ) 1153 ifuWbToFtqTable.log( 1154 data = ifuWbToFtqDumpData, 1155 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1156 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1157 clock = clock, 1158 reset = reset 1159 ) 1160 1161} 1162