1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import chisel3._ 21import chisel3.util._ 22import org.chipsalliance.cde.config.Parameters 23import utility._ 24import utility.ChiselDB 25import xiangshan._ 26import xiangshan.backend.GPAMemEntry 27import xiangshan.cache.mmu._ 28import xiangshan.frontend.icache._ 29 30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { 31 def mmioBusWidth = 64 32 def mmioBusBytes = mmioBusWidth / 8 33 def maxInstrLen = 32 34} 35 36trait HasIFUConst extends HasXSParameter { 37 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = 38 Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 39 def fetchQueueSize = 2 40 41 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { 42 val byteOffset = pc - start 43 (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) 44 } 45} 46 47class IfuToFtqIO(implicit p: Parameters) extends XSBundle { 48 val pdWb = Valid(new PredecodeWritebackBundle) 49} 50 51class IfuToBackendIO(implicit p: Parameters) extends XSBundle { 52 // write to backend gpaddr mem 53 val gpaddrMem_wen = Output(Bool()) 54 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 55 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 56 // TODO: avoid cross page entry in Ftq 57 val gpaddrMem_wdata = Output(new GPAMemEntry) 58} 59 60class FtqInterface(implicit p: Parameters) extends XSBundle { 61 val fromFtq = Flipped(new FtqToIfuIO) 62 val toFtq = new IfuToFtqIO 63} 64 65class UncacheInterface(implicit p: Parameters) extends XSBundle { 66 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 67 val toUncache = DecoupledIO(new InsUncacheReq) 68} 69 70class NewIFUIO(implicit p: Parameters) extends XSBundle { 71 val ftqInter = new FtqInterface 72 val icacheInter = Flipped(new IFUICacheIO) 73 val icacheStop = Output(Bool()) 74 val icachePerfInfo = Input(new ICachePerfInfo) 75 val toIbuffer = Decoupled(new FetchToIBuffer) 76 val toBackend = new IfuToBackendIO 77 val uncacheInter = new UncacheInterface 78 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 79 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 80 val iTLBInter = new TlbRequestIO 81 val pmp = new ICachePMPBundle 82 val mmioCommitRead = new mmioCommitRead 83 val csr_fsIsOff = Input(Bool()) 84} 85 86// record the situation in which fallThruAddr falls into 87// the middle of an RVI inst 88class LastHalfInfo(implicit p: Parameters) extends XSBundle { 89 val valid = Bool() 90 val middlePC = UInt(VAddrBits.W) 91 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 92} 93 94class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 95 val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 96 val frontendTrigger = new FrontendTdataDistributeIO 97 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 98} 99 100class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 101 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 102 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 103 val target = UInt(VAddrBits.W) 104 val instrRange = Vec(PredictWidth, Bool()) 105 val instrValid = Vec(PredictWidth, Bool()) 106 val pds = Vec(PredictWidth, new PreDecodeInfo) 107 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 108 val fire_in = Bool() 109} 110 111class FetchToIBufferDB extends Bundle { 112 val start_addr = UInt(39.W) 113 val instr_count = UInt(32.W) 114 val exception = Bool() 115 val is_cache_hit = Bool() 116} 117 118class IfuWbToFtqDB extends Bundle { 119 val start_addr = UInt(39.W) 120 val is_miss_pred = Bool() 121 val miss_pred_offset = UInt(32.W) 122 val checkJalFault = Bool() 123 val checkRetFault = Bool() 124 val checkTargetFault = Bool() 125 val checkNotCFIFault = Bool() 126 val checkInvalidTaken = Bool() 127} 128 129class NewIFU(implicit p: Parameters) extends XSModule 130 with HasICacheParameters 131 with HasXSParameter 132 with HasIFUConst 133 with HasPdConst 134 with HasCircularQueuePtrHelper 135 with HasPerfEvents 136 with HasTlbConst { 137 val io = IO(new NewIFUIO) 138 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 139 val fromICache = io.icacheInter.resp 140 val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) 141 142 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 143 144 def numOfStage = 3 145 // equal lower_result overflow bit 146 def PcCutPoint = (VAddrBits / 4) - 1 147 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = 148 Mux( 149 low(PcCutPoint), 150 Cat(high1, low(PcCutPoint - 1, 0)), 151 Cat(high, low(PcCutPoint - 1, 0)) 152 ) 153 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 154 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 155 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 156 // bubble events in IFU, only happen in stage 1 157 val icacheMissBubble = Wire(Bool()) 158 val itlbMissBubble = Wire(Bool()) 159 160 // only driven by clock, not valid-ready 161 topdown_stages(0) := fromFtq.req.bits.topdown_info 162 for (i <- 1 until numOfStage) { 163 topdown_stages(i) := topdown_stages(i - 1) 164 } 165 when(icacheMissBubble) { 166 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 167 } 168 when(itlbMissBubble) { 169 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 170 } 171 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 172 when(fromFtq.topdown_redirect.valid) { 173 // only redirect from backend, IFU redirect itself is handled elsewhere 174 when(fromFtq.topdown_redirect.bits.debugIsCtrl) { 175 /* 176 for (i <- 0 until numOfStage) { 177 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 178 } 179 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 180 */ 181 when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 182 for (i <- 0 until numOfStage) { 183 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 184 } 185 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 186 }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { 187 for (i <- 0 until numOfStage) { 188 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 189 } 190 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 191 }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { 192 for (i <- 0 until numOfStage) { 193 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 194 } 195 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 196 }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 197 for (i <- 0 until numOfStage) { 198 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 199 } 200 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 201 }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { 202 for (i <- 0 until numOfStage) { 203 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 204 } 205 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 206 } 207 }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { 208 for (i <- 0 until numOfStage) { 209 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 210 } 211 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 212 }.otherwise { 213 for (i <- 0 until numOfStage) { 214 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 215 } 216 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 217 } 218 } 219 220 class TlbExept(implicit p: Parameters) extends XSBundle { 221 val pageFault = Bool() 222 val accessFault = Bool() 223 val mmio = Bool() 224 } 225 226 val preDecoder = Module(new PreDecode) 227 228 val predChecker = Module(new PredChecker) 229 val frontendTrigger = Module(new FrontendTrigger) 230 val (checkerIn, checkerOutStage1, checkerOutStage2) = 231 (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) 232 233 /** 234 ****************************************************************************** 235 * IFU Stage 0 236 * - send cacheline fetch request to ICacheMainPipe 237 ****************************************************************************** 238 */ 239 240 val f0_valid = fromFtq.req.valid 241 val f0_ftq_req = fromFtq.req.bits 242 val f0_doubleLine = fromFtq.req.bits.crossCacheline 243 val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) 244 val f0_fire = fromFtq.req.fire 245 246 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 247 val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B) 248 249 from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 250 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 251 252 val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) 253 val f3_wb_not_flush = WireInit(false.B) 254 255 backend_redirect := fromFtq.redirect.valid 256 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 257 f2_flush := backend_redirect || mmio_redirect || wb_redirect 258 f1_flush := f2_flush || from_bpu_f1_flush 259 f0_flush := f1_flush || from_bpu_f0_flush 260 261 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 262 263 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 264 265 when(wb_redirect) { 266 when(f3_wb_not_flush) { 267 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 268 } 269 for (i <- 0 until numOfStage - 1) { 270 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 271 } 272 } 273 274 /** <PERF> f0 fetch bubble */ 275 276 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) 277 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 278 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 279 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 280 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) 281 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) 282 XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush) 283 XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush) 284 285 /** 286 ****************************************************************************** 287 * IFU Stage 1 288 * - calculate pc/half_pc/cut_ptr for every instruction 289 ****************************************************************************** 290 */ 291 292 val f1_valid = RegInit(false.B) 293 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 294 // val f1_situation = RegEnable(f0_situation, f0_fire) 295 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 296 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 297 val f1_fire = f1_valid && f2_ready 298 299 f1_ready := f1_fire || !f1_valid 300 301 from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid 302 // from_bpu_f1_flush := false.B 303 304 when(f1_flush)(f1_valid := false.B) 305 .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) 306 .elsewhen(f1_fire)(f1_valid := false.B) 307 308 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) 309 val f1_pc_high_plus1 = f1_pc_high + 1.U 310 311 /** 312 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 313 * code of original logic, this code has been deprecated 314 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 315 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 316 */ 317 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => 318 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U 319 )) // cat with overflow bit 320 321 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 322 323 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => 324 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U 325 )) // cat with overflow bit 326 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 327 328 if (env.FPGAPlatform) { 329 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 330 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) 331 332 XSError( 333 f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 334 "f1_half_snpc adder cut fail" 335 ) 336 XSError( 337 f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 338 "f1_half_snpc adder cut fail" 339 ) 340 } 341 342 val f1_cut_ptr = if (HasCExtension) 343 VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) 344 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) 345 346 /** 347 ****************************************************************************** 348 * IFU Stage 2 349 * - icache response data (latched for pipeline stop) 350 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 351 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 352 * - cut data from cachlines to packet instruction code 353 * - instruction predecode and RVC expand 354 ****************************************************************************** 355 */ 356 357 val icacheRespAllValid = WireInit(false.B) 358 359 val f2_valid = RegInit(false.B) 360 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 361 // val f2_situation = RegEnable(f1_situation, f1_fire) 362 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 363 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 364 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 365 366 f2_ready := f2_fire || !f2_valid 367 // TODO: addr compare may be timing critical 368 val f2_icache_all_resp_wire = 369 fromICache.valid && 370 fromICache.bits.vaddr(0) === f2_ftq_req.startAddr && 371 (fromICache.bits.doubleline && fromICache.bits.vaddr(1) === f2_ftq_req.nextlineStart || !f2_doubleLine) 372 val f2_icache_all_resp_reg = RegInit(false.B) 373 374 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 375 376 icacheMissBubble := io.icacheInter.topdownIcacheMiss 377 itlbMissBubble := io.icacheInter.topdownItlbMiss 378 379 io.icacheStop := !f3_ready 380 381 when(f2_flush)(f2_icache_all_resp_reg := false.B) 382 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) 383 .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) 384 385 when(f2_flush)(f2_valid := false.B) 386 .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) 387 .elsewhen(f2_fire)(f2_valid := false.B) 388 389 val f2_exception_in = fromICache.bits.exception 390 val f2_backendException = fromICache.bits.backendException 391 // paddr and gpaddr of [startAddr, nextLineAddr] 392 val f2_paddrs = fromICache.bits.paddr 393 val f2_gpaddr = fromICache.bits.gpaddr 394 val f2_isForVSnonLeafPTE = fromICache.bits.isForVSnonLeafPTE 395 396 // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct 397 val f2_mmio_mismatch_exception = VecInit(Seq( 398 ExceptionType.none, // mark the exception only on the second line 399 Mux( 400 // not double-line, skip check 401 !fromICache.bits.doubleline || ( 402 // is double-line, ask for consistent pmp_mmio and itlb_pbmt value 403 fromICache.bits.pmp_mmio(0) === fromICache.bits.pmp_mmio(1) && 404 fromICache.bits.itlb_pbmt(0) === fromICache.bits.itlb_pbmt(1) 405 ), 406 ExceptionType.none, 407 ExceptionType.af 408 ) 409 )) 410 411 // merge exceptions 412 val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception) 413 414 // we need only the first port, as the second is asked to be the same 415 val f2_pmp_mmio = fromICache.bits.pmp_mmio(0) 416 val f2_itlb_pbmt = fromICache.bits.itlb_pbmt(0) 417 418 /** 419 * reduce the number of registers, origin code 420 * f2_pc = RegEnable(f1_pc, f1_fire) 421 */ 422 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 423 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 424 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 425 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 426 427 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 428 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 429 430 def isNextLine(pc: UInt, startAddr: UInt) = 431 startAddr(blockOffBits) ^ pc(blockOffBits) 432 433 def isLastInLine(pc: UInt) = 434 pc(blockOffBits - 1, 0) === "b111110".U 435 436 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) 437 val f2_jump_range = 438 Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 439 require( 440 isPow2(PredictWidth), 441 "If PredictWidth does not satisfy the power of 2," + 442 "expression: Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits is not right !!" 443 ) 444 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( 445 f2_ftq_req.nextStartAddr, 446 f2_ftq_req.startAddr 447 ) 448 val f2_instr_range = f2_jump_range & f2_ftr_range 449 val f2_exception_vec = VecInit((0 until PredictWidth).map(i => 450 MuxCase( 451 ExceptionType.none, 452 Seq( 453 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 454 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 455 ) 456 ) 457 )) 458 val f2_perf_info = io.icachePerfInfo 459 460 def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { 461 require(HasCExtension) 462 // if(HasCExtension){ 463 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 464 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector 465 (0 until PredictWidth + 1).foreach(i => 466 result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 467 ) 468 result 469 // } else { 470 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 471 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 472 // (0 until PredictWidth).foreach( i => 473 // result(i) := dataVec(cutPtr(i)) 474 // ) 475 // result 476 // } 477 } 478 479 /* NOTE: the following `Cat(_data, _data)` *is* intentional. 480 * Explanation: 481 * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines, 482 * so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here. 483 * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power. 484 * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines, 485 * so IFU only need to receive 40B (5bank * 8B) valid data, and use only one port is enough. 486 * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request): 487 * MSB LSB 488 * cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 || 489 * cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 || 490 * and ICacheDataArray will respond: 491 * fromICache.bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 492 * therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre: 493 * f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 494 * requested data: ^-----------------------------^ 495 * For another example, pc falls on the 1st bank in cacheline 0, we have: 496 * fromICache.bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 497 * f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 498 * requested data: ^-----------------------------^ 499 * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y) 500 * Please also refer to: 501 * - DataArray selects data: 502 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381 503 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161 504 * - ICache respond to IFU: 505 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473 506 */ 507 val f2_data_2_cacheline = Cat(fromICache.bits.data, fromICache.bits.data) 508 509 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 510 511 /** predecode (include RVC expander) */ 512 // preDecoderRegIn.data := f2_reg_cut_data 513 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 514 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 515 // preDecoderRegIn.pc := f2_pc 516 517 val preDecoderIn = preDecoder.io.in 518 preDecoderIn.valid := f2_valid 519 preDecoderIn.bits.data := f2_cut_data 520 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 521 preDecoderIn.bits.pc := f2_pc 522 val preDecoderOut = preDecoder.io.out 523 524 // val f2_expd_instr = preDecoderOut.expInstr 525 val f2_instr = preDecoderOut.instr 526 val f2_pd = preDecoderOut.pd 527 val f2_jump_offset = preDecoderOut.jumpOffset 528 val f2_hasHalfValid = preDecoderOut.hasHalfValid 529 /* if there is a cross-page RVI instruction, and the former page has no exception, 530 * whether it has exception is actually depends on the latter page 531 */ 532 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => 533 Mux( 534 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)), 535 f2_exception(1), 536 ExceptionType.none 537 ) 538 }) 539 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) 540 541 /** 542 ****************************************************************************** 543 * IFU Stage 3 544 * - handle MMIO instruciton 545 * -send request to Uncache fetch Unit 546 * -every packet include 1 MMIO instruction 547 * -MMIO instructions will stop fetch pipeline until commiting from RoB 548 * -flush to snpc (send ifu_redirect to Ftq) 549 * - Ibuffer enqueue 550 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 551 * - handle last half RVI instruction 552 ****************************************************************************** 553 */ 554 555 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 556 557 val f3_valid = RegInit(false.B) 558 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 559 // val f3_situation = RegEnable(f2_situation, f2_fire) 560 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 561 val f3_fire = io.toIbuffer.fire 562 563 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 564 565 val f3_exception = RegEnable(f2_exception, f2_fire) 566 val f3_pmp_mmio = RegEnable(f2_pmp_mmio, f2_fire) 567 val f3_itlb_pbmt = RegEnable(f2_itlb_pbmt, f2_fire) 568 val f3_backendException = RegEnable(f2_backendException, f2_fire) 569 570 val f3_instr = RegEnable(f2_instr, f2_fire) 571 572 expanders.zipWithIndex.foreach { case (expander, i) => 573 expander.io.in := f3_instr(i) 574 expander.io.fsIsOff := io.csr_fsIsOff 575 } 576 // Use expanded instruction only when input is legal. 577 // Otherwise use origin illegal RVC instruction. 578 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 579 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 580 }) 581 val f3_ill = VecInit(expanders.map(_.io.ill)) 582 583 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 584 val f3_pd = WireInit(f3_pd_wire) 585 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 586 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 587 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 588 589 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 590 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 591 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 592 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 593 594 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 595 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 596 // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 597 598 /** 599 *********************************************************************** 600 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 601 *********************************************************************** 602 */ 603 val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) 604 for (i <- 0 until PredictWidth) { 605 if (i == (PredictWidth - 2)) { 606 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 607 } else if (i == (PredictWidth - 1)) { 608 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 609 } else { 610 f3_half_snpc(i) := f3_pc(i + 2) 611 } 612 } 613 614 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 615 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 616 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 617 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 618 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 619 val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) 620 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 621 622 // Expand 1 bit to prevent overflow when assert 623 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 624 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 625 // brType, isCall and isRet generation is delayed to f3 stage 626 val f3Predecoder = Module(new F3Predecoder) 627 628 f3Predecoder.io.in.instr := f3_instr 629 630 f3_pd.zipWithIndex.map { case (pd, i) => 631 pd.brType := f3Predecoder.io.out.pd(i).brType 632 pd.isCall := f3Predecoder.io.out.pd(i).isCall 633 pd.isRet := f3Predecoder.io.out.pd(i).isRet 634 } 635 636 val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) 637 XSError(f3_valid && f3PdDiff, "f3 pd diff") 638 639 when(f3_valid && !f3_ftq_req.ftqOffset.valid) { 640 assert( 641 f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, 642 s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" 643 ) 644 } 645 646 /*** MMIO State Machine***/ 647 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 648 val mmio_is_RVC = RegInit(false.B) 649 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 650 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 651 // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795 652 val mmio_resend_gpaddr = RegInit(0.U(PAddrBitsMax.W)) 653 val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) 654 655 // last instuction finish 656 val is_first_instr = RegInit(true.B) 657 658 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 659 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 660 661 val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = 662 Enum(11) 663 val mmio_state = RegInit(m_idle) 664 665 // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs 666 /* FIXME: we do not distinguish pbmt is NC or IO now 667 * but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance 668 */ 669 val f3_req_is_mmio = 670 f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception) 671 val mmio_commit = VecInit(io.rob_commits.map { commit => 672 commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U 673 }).asUInt.orR 674 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 675 676 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 677 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 678 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 679 680 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 681 fromFtqRedirectReg.bits := RegEnable( 682 fromFtq.redirect.bits, 683 0.U.asTypeOf(fromFtq.redirect.bits), 684 fromFtq.redirect.valid 685 ) 686 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 687 val mmioF3Flush = RegNext(f3_flush, init = false.B) 688 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 689 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 690 691 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 692 693 /** 694 ********************************************************************************** 695 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 696 * This is the exception when the first instruction is an MMIO instruction. 697 ********************************************************************************** 698 */ 699 when(is_first_instr && f3_fire) { 700 is_first_instr := false.B 701 } 702 703 when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) 704 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) 705 .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) 706 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) 707 .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) 708 709 val f3_mmio_use_seq_pc = RegInit(false.B) 710 711 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) 712 val redirect_mmio_req = 713 fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 714 715 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) 716 .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) 717 718 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 719 720 // mmio state machine 721 switch(mmio_state) { 722 is(m_idle) { 723 when(f3_req_is_mmio) { 724 // in idempotent spaces, we can send request directly (i.e. can do speculative fetch) 725 mmio_state := Mux(f3_itlb_pbmt === Pbmt.nc, m_sendReq, m_waitLastCmt) 726 } 727 } 728 729 is(m_waitLastCmt) { 730 when(is_first_instr) { 731 mmio_state := m_sendReq 732 }.otherwise { 733 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 734 } 735 } 736 737 is(m_sendReq) { 738 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 739 } 740 741 is(m_waitResp) { 742 when(fromUncache.fire) { 743 val isRVC = fromUncache.bits.data(1, 0) =/= 3.U 744 val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U 745 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 746 mmio_is_RVC := isRVC 747 f3_mmio_data(0) := fromUncache.bits.data(15, 0) 748 f3_mmio_data(1) := fromUncache.bits.data(31, 16) 749 } 750 } 751 752 is(m_sendTLB) { 753 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 754 } 755 756 is(m_tlbResp) { 757 when(io.iTLBInter.resp.fire) { 758 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 759 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 760 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 761 // if itlb re-check respond pbmt mismatch with previous check, must be access fault 762 val pbmt_mismatch_exception = Mux( 763 io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt, 764 ExceptionType.af, 765 ExceptionType.none 766 ) 767 val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception) 768 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 769 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP) 770 // also save itlb response 771 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 772 mmio_resend_exception := exception 773 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 774 mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) 775 } 776 } 777 778 is(m_sendPMP) { 779 val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp) 780 // if pmp re-check respond mismatch with previous check, must be access fault 781 val mmio_mismatch_exception = Mux( 782 io.pmp.resp.mmio =/= f3_pmp_mmio, 783 ExceptionType.af, 784 ExceptionType.none 785 ) 786 val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception) 787 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 788 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq) 789 // also save pmp response 790 mmio_resend_exception := exception 791 } 792 793 is(m_resendReq) { 794 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 795 } 796 797 is(m_waitResendResp) { 798 when(fromUncache.fire) { 799 mmio_state := m_waitCommit 800 f3_mmio_data(1) := fromUncache.bits.data(15, 0) 801 } 802 } 803 804 is(m_waitCommit) { 805 // in idempotent spaces, we can skip waiting for commit (i.e. can do speculative fetch) 806 // but we do not skip m_waitCommit state, as other signals (e.g. f3_mmio_can_go relies on this) 807 mmio_state := Mux(mmio_commit || f3_itlb_pbmt === Pbmt.nc, m_commited, m_waitCommit) 808 } 809 810 // normal mmio instruction 811 is(m_commited) { 812 mmio_state := m_idle 813 mmio_is_RVC := false.B 814 mmio_resend_addr := 0.U 815 mmio_resend_exception := ExceptionType.none 816 mmio_resend_gpaddr := 0.U 817 mmio_resend_isForVSnonLeafPTE := false.B 818 } 819 } 820 821 // Exception or flush by older branch prediction 822 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 823 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 824 mmio_state := m_idle 825 mmio_is_RVC := false.B 826 mmio_resend_addr := 0.U 827 mmio_resend_exception := ExceptionType.none 828 mmio_resend_gpaddr := 0.U 829 mmio_resend_isForVSnonLeafPTE := false.B 830 f3_mmio_data.map(_ := 0.U) 831 } 832 833 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 834 toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) 835 fromUncache.ready := true.B 836 837 // send itlb request in m_sendTLB state 838 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 839 io.iTLBInter.req.bits.size := 3.U 840 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 841 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 842 io.iTLBInter.req.bits.cmd := TlbCmd.exec 843 io.iTLBInter.req.bits.isPrefetch := false.B 844 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 845 io.iTLBInter.req.bits.no_translate := false.B 846 io.iTLBInter.req.bits.fullva := 0.U 847 io.iTLBInter.req.bits.checkfullva := false.B 848 io.iTLBInter.req.bits.hyperinst := DontCare 849 io.iTLBInter.req.bits.hlvx := DontCare 850 io.iTLBInter.req.bits.memidx := DontCare 851 io.iTLBInter.req.bits.debug.robIdx := DontCare 852 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 853 io.iTLBInter.req.bits.pmp_addr := DontCare 854 // whats the difference between req_kill and req.bits.kill? 855 io.iTLBInter.req_kill := false.B 856 // wait for itlb response in m_tlbResp state 857 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 858 859 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 860 io.pmp.req.bits.addr := mmio_resend_addr 861 io.pmp.req.bits.size := 3.U 862 io.pmp.req.bits.cmd := TlbCmd.exec 863 864 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 865 866 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 867 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) 868 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 869 870 /*** prediction result check ***/ 871 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 872 checkerIn.jumpOffset := f3_jump_offset 873 checkerIn.target := f3_ftq_req.nextStartAddr 874 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 875 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 876 checkerIn.pds := f3_pd 877 checkerIn.pc := f3_pc 878 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 879 880 /*** handle half RVI in the last 2 Bytes ***/ 881 882 def hasLastHalf(idx: UInt) = 883 // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 884 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( 885 idx 886 ) && !f3_req_is_mmio 887 888 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 889 890 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 891 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 892 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 893 894 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt 895 val f3_lastHalf_disable = RegInit(false.B) 896 897 when(f3_flush || (f3_fire && f3_lastHalf_disable)) { 898 f3_lastHalf_disable := false.B 899 } 900 901 when(f3_flush) { 902 f3_lastHalf.valid := false.B 903 }.elsewhen(f3_fire) { 904 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 905 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 906 } 907 908 f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) 909 910 /*** frontend Trigger ***/ 911 frontendTrigger.io.pds := f3_pd 912 frontendTrigger.io.pc := f3_pc 913 frontendTrigger.io.data := f3_cut_data 914 915 frontendTrigger.io.frontendTrigger := io.frontendTrigger 916 917 val f3_triggered = frontendTrigger.io.triggered 918 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 919 920 /*** send to Ibuffer ***/ 921 io.toIbuffer.valid := f3_toIbuffer_valid 922 io.toIbuffer.bits.instrs := f3_expd_instr 923 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 924 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 925 io.toIbuffer.bits.pd := f3_pd 926 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 927 io.toIbuffer.bits.pc := f3_pc 928 // Find last using PriorityMux 929 io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools 930 io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => 931 a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio 932 } 933 io.toIbuffer.bits.foldpc := f3_foldpc 934 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 935 // backendException only needs to be set for the first instruction. 936 // Other instructions in the same block may have pf or af set, 937 // which is a side effect of the first instruction and actually not necessary. 938 io.toIbuffer.bits.backendException := (0 until PredictWidth).map { 939 case 0 => f3_backendException 940 case _ => false.B 941 } 942 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException) 943 io.toIbuffer.bits.illegalInstr := f3_ill 944 io.toIbuffer.bits.triggered := f3_triggered 945 946 when(f3_lastHalf.valid) { 947 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 948 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 949 } 950 951 /** to backend */ 952 // f3_gpaddr is valid iff gpf is detected 953 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 954 f3_req_is_mmio, 955 mmio_resend_exception === ExceptionType.gpf, 956 f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) 957 ) 958 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 959 io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 960 io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( 961 f3_req_is_mmio, 962 mmio_resend_isForVSnonLeafPTE, 963 f3_isForVSnonLeafPTE 964 ) 965 966 // Write back to Ftq 967 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 968 val finishFetchMaskReg = RegNext(f3_cache_fetch) 969 970 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 971 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 972 f3_mmio_missOffset.valid := f3_req_is_mmio 973 f3_mmio_missOffset.bits := 0.U 974 975 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 976 // When backend redirect, mmio_state reset after 1 cycle. 977 // In this case, mask .valid to avoid overriding backend redirect 978 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 979 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 980 mmioFlushWb.bits.pc := f3_pc 981 mmioFlushWb.bits.pd := f3_pd 982 mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } 983 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 984 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 985 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 986 mmioFlushWb.bits.cfiOffset := DontCare 987 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) 988 mmioFlushWb.bits.jalTarget := DontCare 989 mmioFlushWb.bits.instrRange := f3_mmio_range 990 991 val mmioRVCExpander = Module(new RVCExpander) 992 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 993 mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff 994 995 /** external predecode for MMIO instruction */ 996 when(f3_req_is_mmio) { 997 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 998 val currentIsRVC = isRVC(inst) 999 1000 val brType :: isCall :: isRet :: Nil = brInfo(inst) 1001 val jalOffset = jal_offset(inst, currentIsRVC) 1002 val brOffset = br_offset(inst, currentIsRVC) 1003 1004 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 1005 1006 io.toIbuffer.bits.pd(0).valid := true.B 1007 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 1008 io.toIbuffer.bits.pd(0).brType := brType 1009 io.toIbuffer.bits.pd(0).isCall := isCall 1010 io.toIbuffer.bits.pd(0).isRet := isRet 1011 1012 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 1013 io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception) 1014 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 1015 1016 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 1017 1018 mmioFlushWb.bits.pd(0).valid := true.B 1019 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 1020 mmioFlushWb.bits.pd(0).brType := brType 1021 mmioFlushWb.bits.pd(0).isCall := isCall 1022 mmioFlushWb.bits.pd(0).isRet := isRet 1023 } 1024 1025 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 1026 1027 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) 1028 1029 /** 1030 ****************************************************************************** 1031 * IFU Write Back Stage 1032 * - write back predecode information to Ftq to update 1033 * - redirect if found fault prediction 1034 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 1035 ****************************************************************************** 1036 */ 1037 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 1038 val wb_valid = RegNext(wb_enable, init = false.B) 1039 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 1040 1041 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 1042 val wb_check_result_stage2 = checkerOutStage2 1043 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 1044 1045 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 1046 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 1047 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 1048 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 1049 1050 // val wb_pc = RegEnable(f3_pc, wb_enable) 1051 val wb_pd = RegEnable(f3_pd, wb_enable) 1052 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 1053 1054 /* false hit lastHalf */ 1055 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 1056 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 1057 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 1058 1059 val wb_half_flush = wb_false_lastHalf 1060 val wb_half_target = wb_false_target 1061 1062 /* false oversize */ 1063 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC 1064 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 1065 val lastTaken = wb_check_result_stage1.fixedTaken.last 1066 1067 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 1068 1069 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 1070 * we set a flag to notify f3 that the last half flag need not to be set. 1071 */ 1072 // f3_fire is after wb_valid 1073 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1074 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( 1075 f3_fire, 1076 init = false.B 1077 ) && !f3_flush) { 1078 f3_lastHalf_disable := true.B 1079 } 1080 1081 // wb_valid and f3_fire are in same cycle 1082 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1083 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { 1084 f3_lastHalf.valid := false.B 1085 } 1086 1087 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 1088 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => 1089 v && pd.isJal 1090 })) 1091 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1092 checkFlushWb.valid := wb_valid 1093 checkFlushWb.bits.pc := wb_pc 1094 checkFlushWb.bits.pd := wb_pd 1095 checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } 1096 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 1097 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 1098 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 1099 checkFlushWb.bits.misOffset.bits := Mux( 1100 wb_half_flush, 1101 wb_lastIdx, 1102 ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1103 ) 1104 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 1105 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 1106 checkFlushWb.bits.target := Mux( 1107 wb_half_flush, 1108 wb_half_target, 1109 wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) 1110 ) 1111 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 1112 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 1113 1114 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 1115 1116 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 1117 1118 /*write back flush type*/ 1119 val checkFaultType = wb_check_result_stage2.faultType 1120 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) 1121 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) 1122 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) 1123 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) 1124 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) 1125 1126 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) 1127 XSPerfAccumulate("predecode_flush_retFault", checkRetFault) 1128 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) 1129 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) 1130 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) 1131 1132 XSDebug( 1133 checkRetFault, 1134 "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1135 wb_ftq_req.startAddr, 1136 wb_ftq_req.nextStartAddr, 1137 wb_ftq_req.ftqOffset.valid, 1138 wb_ftq_req.ftqOffset.bits 1139 ) 1140 1141 /** performance counter */ 1142 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1143 val f3_req_0 = io.toIbuffer.fire 1144 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1145 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1146 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1147 val f3_hit = f3_perf_info.hit 1148 val perfEvents = Seq( 1149 ("frontendFlush ", wb_redirect), 1150 ("ifu_req ", io.toIbuffer.fire), 1151 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), 1152 ("ifu_req_cacheline_0 ", f3_req_0), 1153 ("ifu_req_cacheline_1 ", f3_req_1), 1154 ("ifu_req_cacheline_0_hit ", f3_hit_1), 1155 ("ifu_req_cacheline_1_hit ", f3_hit_1), 1156 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), 1157 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), 1158 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), 1159 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), 1160 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), 1161 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1162 ) 1163 generatePerfEvent() 1164 1165 XSPerfAccumulate("ifu_req", io.toIbuffer.fire) 1166 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) 1167 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) 1168 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) 1169 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) 1170 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) 1171 XSPerfAccumulate("frontendFlush", wb_redirect) 1172 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) 1173 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) 1174 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) 1175 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) 1176 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) 1177 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1178 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) 1179 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1180 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) 1181 XSPerfHistogram( 1182 "ifu2ibuffer_validCnt", 1183 PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), 1184 io.toIbuffer.fire, 1185 0, 1186 PredictWidth + 1, 1187 1 1188 ) 1189 1190 val hartId = p(XSCoreParamsKey).HartId 1191 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1192 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1193 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1194 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1195 1196 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1197 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1198 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1199 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1200 fetchIBufferDumpData.is_cache_hit := f3_hit 1201 1202 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1203 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1204 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1205 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1206 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1207 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1208 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1209 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1210 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1211 1212 fetchToIBufferTable.log( 1213 data = fetchIBufferDumpData, 1214 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1215 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1216 clock = clock, 1217 reset = reset 1218 ) 1219 ifuWbToFtqTable.log( 1220 data = ifuWbToFtqDumpData, 1221 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1222 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1223 clock = clock, 1224 reset = reset 1225 ) 1226 1227} 1228