xref: /XiangShan/src/main/scala/xiangshan/frontend/IFU.scala (revision 94aa21c6009c2f39c5c5dae9c87260c78887efcc)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.frontend
19
20import chisel3._
21import chisel3.util._
22import org.chipsalliance.cde.config.Parameters
23import utility._
24import utility.ChiselDB
25import xiangshan._
26import xiangshan.backend.GPAMemEntry
27import xiangshan.cache.mmu._
28import xiangshan.frontend.icache._
29
30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst {
31  def mmioBusWidth = 64
32  def mmioBusBytes = mmioBusWidth / 8
33  def maxInstrLen  = 32
34}
35
36trait HasIFUConst extends HasXSParameter {
37  def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt =
38    Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W))
39  def fetchQueueSize = 2
40
41  def getBasicBlockIdx(pc: UInt, start: UInt): UInt = {
42    val byteOffset = pc - start
43    (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits)
44  }
45}
46
47class IfuToFtqIO(implicit p: Parameters) extends XSBundle {
48  val pdWb = Valid(new PredecodeWritebackBundle)
49}
50
51class IfuToBackendIO(implicit p: Parameters) extends XSBundle {
52  // write to backend gpaddr mem
53  val gpaddrMem_wen   = Output(Bool())
54  val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr
55  // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo
56  // TODO: avoid cross page entry in Ftq
57  val gpaddrMem_wdata = Output(new GPAMemEntry)
58}
59
60class FtqInterface(implicit p: Parameters) extends XSBundle {
61  val fromFtq = Flipped(new FtqToIfuIO)
62  val toFtq   = new IfuToFtqIO
63}
64
65class UncacheInterface(implicit p: Parameters) extends XSBundle {
66  val fromUncache = Flipped(DecoupledIO(new InsUncacheResp))
67  val toUncache   = DecoupledIO(new InsUncacheReq)
68}
69
70class NewIFUIO(implicit p: Parameters) extends XSBundle {
71  val ftqInter        = new FtqInterface
72  val icacheInter     = Flipped(new IFUICacheIO)
73  val icacheStop      = Output(Bool())
74  val icachePerfInfo  = Input(new ICachePerfInfo)
75  val toIbuffer       = Decoupled(new FetchToIBuffer)
76  val toBackend       = new IfuToBackendIO
77  val uncacheInter    = new UncacheInterface
78  val frontendTrigger = Flipped(new FrontendTdataDistributeIO)
79  val rob_commits     = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo)))
80  val iTLBInter       = new TlbRequestIO
81  val pmp             = new ICachePMPBundle
82  val mmioCommitRead  = new mmioCommitRead
83  val csr_fsIsOff     = Input(Bool())
84}
85
86// record the situation in which fallThruAddr falls into
87// the middle of an RVI inst
88class LastHalfInfo(implicit p: Parameters) extends XSBundle {
89  val valid    = Bool()
90  val middlePC = UInt(VAddrBits.W)
91  def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr
92}
93
94class IfuToPreDecode(implicit p: Parameters) extends XSBundle {
95  val data            = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W))
96  val frontendTrigger = new FrontendTdataDistributeIO
97  val pc              = Vec(PredictWidth, UInt(VAddrBits.W))
98}
99
100class IfuToPredChecker(implicit p: Parameters) extends XSBundle {
101  val ftqOffset  = Valid(UInt(log2Ceil(PredictWidth).W))
102  val jumpOffset = Vec(PredictWidth, UInt(XLEN.W))
103  val target     = UInt(VAddrBits.W)
104  val instrRange = Vec(PredictWidth, Bool())
105  val instrValid = Vec(PredictWidth, Bool())
106  val pds        = Vec(PredictWidth, new PreDecodeInfo)
107  val pc         = Vec(PredictWidth, UInt(VAddrBits.W))
108  val fire_in    = Bool()
109}
110
111class FetchToIBufferDB extends Bundle {
112  val start_addr   = UInt(39.W)
113  val instr_count  = UInt(32.W)
114  val exception    = Bool()
115  val is_cache_hit = Bool()
116}
117
118class IfuWbToFtqDB extends Bundle {
119  val start_addr        = UInt(39.W)
120  val is_miss_pred      = Bool()
121  val miss_pred_offset  = UInt(32.W)
122  val checkJalFault     = Bool()
123  val checkRetFault     = Bool()
124  val checkTargetFault  = Bool()
125  val checkNotCFIFault  = Bool()
126  val checkInvalidTaken = Bool()
127}
128
129class NewIFU(implicit p: Parameters) extends XSModule
130    with HasICacheParameters
131    with HasXSParameter
132    with HasIFUConst
133    with HasPdConst
134    with HasCircularQueuePtrHelper
135    with HasPerfEvents
136    with HasTlbConst {
137  val io                       = IO(new NewIFUIO)
138  val (toFtq, fromFtq)         = (io.ftqInter.toFtq, io.ftqInter.fromFtq)
139  val fromICache               = io.icacheInter.resp
140  val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache)
141
142  def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits)
143
144  def numOfStage = 3
145  // equal lower_result overflow bit
146  def PcCutPoint = (VAddrBits / 4) - 1
147  def CatPC(low: UInt, high: UInt, high1: UInt): UInt =
148    Mux(
149      low(PcCutPoint),
150      Cat(high1, low(PcCutPoint - 1, 0)),
151      Cat(high, low(PcCutPoint - 1, 0))
152    )
153  def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1)))
154  require(numOfStage > 1, "BPU numOfStage must be greater than 1")
155  val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle))))
156  // bubble events in IFU, only happen in stage 1
157  val icacheMissBubble = Wire(Bool())
158  val itlbMissBubble   = Wire(Bool())
159
160  // only driven by clock, not valid-ready
161  topdown_stages(0) := fromFtq.req.bits.topdown_info
162  for (i <- 1 until numOfStage) {
163    topdown_stages(i) := topdown_stages(i - 1)
164  }
165  when(icacheMissBubble) {
166    topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B
167  }
168  when(itlbMissBubble) {
169    topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B
170  }
171  io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1)
172  when(fromFtq.topdown_redirect.valid) {
173    // only redirect from backend, IFU redirect itself is handled elsewhere
174    when(fromFtq.topdown_redirect.bits.debugIsCtrl) {
175      /*
176      for (i <- 0 until numOfStage) {
177        topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
178      }
179      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
180       */
181      when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) {
182        for (i <- 0 until numOfStage) {
183          topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
184        }
185        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B
186      }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) {
187        for (i <- 0 until numOfStage) {
188          topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B
189        }
190        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
191      }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) {
192        for (i <- 0 until numOfStage) {
193          topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B
194        }
195        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B
196      }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) {
197        for (i <- 0 until numOfStage) {
198          topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
199        }
200        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
201      }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) {
202        for (i <- 0 until numOfStage) {
203          topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B
204        }
205        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B
206      }
207    }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) {
208      for (i <- 0 until numOfStage) {
209        topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
210      }
211      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
212    }.otherwise {
213      for (i <- 0 until numOfStage) {
214        topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
215      }
216      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
217    }
218  }
219
220  class TlbExept(implicit p: Parameters) extends XSBundle {
221    val pageFault   = Bool()
222    val accessFault = Bool()
223    val mmio        = Bool()
224  }
225
226  val preDecoder = Module(new PreDecode)
227
228  val predChecker     = Module(new PredChecker)
229  val frontendTrigger = Module(new FrontendTrigger)
230  val (checkerIn, checkerOutStage1, checkerOutStage2) =
231    (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out)
232
233  /**
234    ******************************************************************************
235    * IFU Stage 0
236    * - send cacheline fetch request to ICacheMainPipe
237    ******************************************************************************
238    */
239
240  val f0_valid      = fromFtq.req.valid
241  val f0_ftq_req    = fromFtq.req.bits
242  val f0_doubleLine = fromFtq.req.bits.crossCacheline
243  val f0_vSetIdx    = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart))
244  val f0_fire       = fromFtq.req.fire
245
246  val f0_flush, f1_flush, f2_flush, f3_flush                                     = WireInit(false.B)
247  val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B)
248
249  from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) ||
250    fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx)
251
252  val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B)
253  val f3_wb_not_flush                              = WireInit(false.B)
254
255  backend_redirect := fromFtq.redirect.valid
256  f3_flush         := backend_redirect || (wb_redirect && !f3_wb_not_flush)
257  f2_flush         := backend_redirect || mmio_redirect || wb_redirect
258  f1_flush         := f2_flush || from_bpu_f1_flush
259  f0_flush         := f1_flush || from_bpu_f0_flush
260
261  val f1_ready, f2_ready, f3_ready = WireInit(false.B)
262
263  fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady
264
265  when(wb_redirect) {
266    when(f3_wb_not_flush) {
267      topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B
268    }
269    for (i <- 0 until numOfStage - 1) {
270      topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
271    }
272  }
273
274  /** <PERF> f0 fetch bubble */
275
276  XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready)
277  // XSPerfAccumulate("fetch_bubble_pipe_stall",    f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready )
278  // XSPerfAccumulate("fetch_bubble_icache_0_busy",   f0_valid && !toICache(0).ready  )
279  // XSPerfAccumulate("fetch_bubble_icache_1_busy",   f0_valid && !toICache(1).ready  )
280  XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect)
281  XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect)
282  XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush)
283  XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush)
284
285  /**
286    ******************************************************************************
287    * IFU Stage 1
288    * - calculate pc/half_pc/cut_ptr for every instruction
289    ******************************************************************************
290    */
291
292  val f1_valid   = RegInit(false.B)
293  val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire)
294  // val f1_situation  = RegEnable(f0_situation,  f0_fire)
295  val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire)
296  val f1_vSetIdx    = RegEnable(f0_vSetIdx, f0_fire)
297  val f1_fire       = f1_valid && f2_ready
298
299  f1_ready := f1_fire || !f1_valid
300
301  from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid
302  // from_bpu_f1_flush := false.B
303
304  when(f1_flush)(f1_valid := false.B)
305    .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B)
306    .elsewhen(f1_fire)(f1_valid := false.B)
307
308  val f1_pc_high       = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint)
309  val f1_pc_high_plus1 = f1_pc_high + 1.U
310
311  /**
312   * In order to reduce power consumption, avoid calculating the full PC value in the first level.
313   * code of original logic, this code has been deprecated
314   * val f1_pc                 = VecInit(f1_pc_lower_result.map{ i =>
315   *  Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))})
316   */
317  val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i =>
318    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U
319  )) // cat with overflow bit
320
321  val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1)
322
323  val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i =>
324    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U
325  )) // cat with overflow bit
326  val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1)
327
328  if (env.FPGAPlatform) {
329    val f1_pc_diff        = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U))
330    val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U))
331
332    XSError(
333      f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
334      "f1_half_snpc adder cut fail"
335    )
336    XSError(
337      f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
338      "f1_half_snpc adder cut fail"
339    )
340  }
341
342  val f1_cut_ptr = if (HasCExtension)
343    VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U))
344  else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U))
345
346  /**
347    ******************************************************************************
348    * IFU Stage 2
349    * - icache response data (latched for pipeline stop)
350    * - generate exceprion bits for every instruciton (page fault/access fault/mmio)
351    * - generate predicted instruction range (1 means this instruciton is in this fetch packet)
352    * - cut data from cachlines to packet instruction code
353    * - instruction predecode and RVC expand
354    ******************************************************************************
355    */
356
357  val icacheRespAllValid = WireInit(false.B)
358
359  val f2_valid   = RegInit(false.B)
360  val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire)
361  // val f2_situation  = RegEnable(f1_situation,  f1_fire)
362  val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire)
363  val f2_vSetIdx    = RegEnable(f1_vSetIdx, f1_fire)
364  val f2_fire       = f2_valid && f3_ready && icacheRespAllValid
365
366  f2_ready := f2_fire || !f2_valid
367  // TODO: addr compare may be timing critical
368  val f2_icache_all_resp_wire =
369    fromICache.valid &&
370      fromICache.bits.vaddr(0) === f2_ftq_req.startAddr &&
371      (fromICache.bits.doubleline && fromICache.bits.vaddr(1) === f2_ftq_req.nextlineStart || !f2_doubleLine)
372  val f2_icache_all_resp_reg = RegInit(false.B)
373
374  icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire
375
376  icacheMissBubble := io.icacheInter.topdownIcacheMiss
377  itlbMissBubble   := io.icacheInter.topdownItlbMiss
378
379  io.icacheStop := !f3_ready
380
381  when(f2_flush)(f2_icache_all_resp_reg := false.B)
382    .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B)
383    .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B)
384
385  when(f2_flush)(f2_valid := false.B)
386    .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B)
387    .elsewhen(f2_fire)(f2_valid := false.B)
388
389  val f2_exception_in     = fromICache.bits.exception
390  val f2_backendException = fromICache.bits.backendException
391  // paddr and gpaddr of [startAddr, nextLineAddr]
392  val f2_paddrs            = fromICache.bits.paddr
393  val f2_gpaddr            = fromICache.bits.gpaddr
394  val f2_isForVSnonLeafPTE = fromICache.bits.isForVSnonLeafPTE
395
396  // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct
397  val f2_mmio_mismatch_exception = VecInit(Seq(
398    ExceptionType.none, // mark the exception only on the second line
399    Mux(
400      // not double-line, skip check
401      !fromICache.bits.doubleline || (
402        // is double-line, ask for consistent pmp_mmio and itlb_pbmt value
403        fromICache.bits.pmp_mmio(0) === fromICache.bits.pmp_mmio(1) &&
404          fromICache.bits.itlb_pbmt(0) === fromICache.bits.itlb_pbmt(1)
405      ),
406      ExceptionType.none,
407      ExceptionType.af
408    )
409  ))
410
411  // merge exceptions
412  val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception)
413
414  // we need only the first port, as the second is asked to be the same
415  val f2_pmp_mmio  = fromICache.bits.pmp_mmio(0)
416  val f2_itlb_pbmt = fromICache.bits.itlb_pbmt(0)
417
418  /**
419    * reduce the number of registers, origin code
420    * f2_pc = RegEnable(f1_pc, f1_fire)
421    */
422  val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire)
423  val f2_pc_high         = RegEnable(f1_pc_high, f1_fire)
424  val f2_pc_high_plus1   = RegEnable(f1_pc_high_plus1, f1_fire)
425  val f2_pc              = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1)
426
427  val f2_cut_ptr      = RegEnable(f1_cut_ptr, f1_fire)
428  val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire)
429
430  def isNextLine(pc: UInt, startAddr: UInt) =
431    startAddr(blockOffBits) ^ pc(blockOffBits)
432
433  def isLastInLine(pc: UInt) =
434    pc(blockOffBits - 1, 0) === "b111110".U
435
436  val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth)))
437  val f2_jump_range =
438    Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits
439  require(
440    isPow2(PredictWidth),
441    "If PredictWidth does not satisfy the power of 2," +
442      "expression: Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits is not right !!"
443  )
444  val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx(
445    f2_ftq_req.nextStartAddr,
446    f2_ftq_req.startAddr
447  )
448  val f2_instr_range = f2_jump_range & f2_ftr_range
449  val f2_exception_vec = VecInit((0 until PredictWidth).map(i =>
450    MuxCase(
451      ExceptionType.none,
452      Seq(
453        !isNextLine(f2_pc(i), f2_ftq_req.startAddr)                   -> f2_exception(0),
454        (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1)
455      )
456    )
457  ))
458  val f2_perf_info = io.icachePerfInfo
459
460  def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = {
461    require(HasCExtension)
462    // if(HasCExtension){
463    val result  = Wire(Vec(PredictWidth + 1, UInt(16.W)))
464    val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector
465    (0 until PredictWidth + 1).foreach(i =>
466      result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1
467    )
468    result
469    // } else {
470    //   val result   = Wire(Vec(PredictWidth, UInt(32.W)) )
471    //   val dataVec  = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W)))
472    //   (0 until PredictWidth).foreach( i =>
473    //     result(i) := dataVec(cutPtr(i))
474    //   )
475    //   result
476    // }
477  }
478
479  /* NOTE: the following `Cat(_data, _data)` *is* intentional.
480   * Explanation:
481   * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines,
482   *    so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here.
483   * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power.
484   * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines,
485   *    so IFU only need to receive 40B (5bank * 8B) valid data, and use only one port is enough.
486   * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request):
487   *                                MSB                                         LSB
488   *                  cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 ||
489   *                  cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 ||
490   *    and ICacheDataArray will respond:
491   *         fromICache.bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
492   *    therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre:
493   *          f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
494   *                                             requested data: ^-----------------------------^
495   * For another example, pc falls on the 1st bank in cacheline 0, we have:
496   *         fromICache.bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
497   *          f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
498   *                                                                           requested data: ^-----------------------------^
499   * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y)
500   * Please also refer to:
501   * - DataArray selects data:
502   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381
503   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161
504   * - ICache respond to IFU:
505   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473
506   */
507  val f2_data_2_cacheline = Cat(fromICache.bits.data, fromICache.bits.data)
508
509  val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr)
510
511  /** predecode (include RVC expander) */
512  // preDecoderRegIn.data := f2_reg_cut_data
513  // preDecoderRegInIn.frontendTrigger := io.frontendTrigger
514  // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable
515  // preDecoderRegIn.pc  := f2_pc
516
517  val preDecoderIn = preDecoder.io.in
518  preDecoderIn.valid                := f2_valid
519  preDecoderIn.bits.data            := f2_cut_data
520  preDecoderIn.bits.frontendTrigger := io.frontendTrigger
521  preDecoderIn.bits.pc              := f2_pc
522  val preDecoderOut = preDecoder.io.out
523
524  // val f2_expd_instr     = preDecoderOut.expInstr
525  val f2_instr        = preDecoderOut.instr
526  val f2_pd           = preDecoderOut.pd
527  val f2_jump_offset  = preDecoderOut.jumpOffset
528  val f2_hasHalfValid = preDecoderOut.hasHalfValid
529  /* if there is a cross-page RVI instruction, and the former page has no exception,
530   * whether it has exception is actually depends on the latter page
531   */
532  val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i =>
533    Mux(
534      isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)),
535      f2_exception(1),
536      ExceptionType.none
537    )
538  })
539  XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid)
540
541  /**
542    ******************************************************************************
543    * IFU Stage 3
544    * - handle MMIO instruciton
545    *  -send request to Uncache fetch Unit
546    *  -every packet include 1 MMIO instruction
547    *  -MMIO instructions will stop fetch pipeline until commiting from RoB
548    *  -flush to snpc (send ifu_redirect to Ftq)
549    * - Ibuffer enqueue
550    * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault)
551    * - handle last half RVI instruction
552    ******************************************************************************
553    */
554
555  val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander))
556
557  val f3_valid   = RegInit(false.B)
558  val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire)
559  // val f3_situation      = RegEnable(f2_situation,  f2_fire)
560  val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire)
561  val f3_fire       = io.toIbuffer.fire
562
563  val f3_cut_data = RegEnable(f2_cut_data, f2_fire)
564
565  val f3_exception        = RegEnable(f2_exception, f2_fire)
566  val f3_pmp_mmio         = RegEnable(f2_pmp_mmio, f2_fire)
567  val f3_itlb_pbmt        = RegEnable(f2_itlb_pbmt, f2_fire)
568  val f3_backendException = RegEnable(f2_backendException, f2_fire)
569
570  val f3_instr = RegEnable(f2_instr, f2_fire)
571
572  expanders.zipWithIndex.foreach { case (expander, i) =>
573    expander.io.in      := f3_instr(i)
574    expander.io.fsIsOff := io.csr_fsIsOff
575  }
576  // Use expanded instruction only when input is legal.
577  // Otherwise use origin illegal RVC instruction.
578  val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander =>
579    Mux(expander.io.ill, expander.io.in, expander.io.out.bits)
580  })
581  val f3_ill = VecInit(expanders.map(_.io.ill))
582
583  val f3_pd_wire                 = RegEnable(f2_pd, f2_fire)
584  val f3_pd                      = WireInit(f3_pd_wire)
585  val f3_jump_offset             = RegEnable(f2_jump_offset, f2_fire)
586  val f3_exception_vec           = RegEnable(f2_exception_vec, f2_fire)
587  val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire)
588
589  val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire)
590  val f3_pc_high         = RegEnable(f2_pc_high, f2_fire)
591  val f3_pc_high_plus1   = RegEnable(f2_pc_high_plus1, f2_fire)
592  val f3_pc              = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1)
593
594  val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire)
595  val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire)
596  // val f3_half_snpc      = RegEnable(f2_half_snpc,   f2_fire)
597
598  /**
599    ***********************************************************************
600    * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice.
601    ***********************************************************************
602    */
603  val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W)))
604  for (i <- 0 until PredictWidth) {
605    if (i == (PredictWidth - 2)) {
606      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1)
607    } else if (i == (PredictWidth - 1)) {
608      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1)
609    } else {
610      f3_half_snpc(i) := f3_pc(i + 2)
611    }
612  }
613
614  val f3_instr_range       = RegEnable(f2_instr_range, f2_fire)
615  val f3_foldpc            = RegEnable(f2_foldpc, f2_fire)
616  val f3_hasHalfValid      = RegEnable(f2_hasHalfValid, f2_fire)
617  val f3_paddrs            = RegEnable(f2_paddrs, f2_fire)
618  val f3_gpaddr            = RegEnable(f2_gpaddr, f2_fire)
619  val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire)
620  val f3_resend_vaddr      = RegEnable(f2_resend_vaddr, f2_fire)
621
622  // Expand 1 bit to prevent overflow when assert
623  val f3_ftq_req_startAddr     = Cat(0.U(1.W), f3_ftq_req.startAddr)
624  val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr)
625  // brType, isCall and isRet generation is delayed to f3 stage
626  val f3Predecoder = Module(new F3Predecoder)
627
628  f3Predecoder.io.in.instr := f3_instr
629
630  f3_pd.zipWithIndex.map { case (pd, i) =>
631    pd.brType := f3Predecoder.io.out.pd(i).brType
632    pd.isCall := f3Predecoder.io.out.pd(i).isCall
633    pd.isRet  := f3Predecoder.io.out.pd(i).isRet
634  }
635
636  val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _)
637  XSError(f3_valid && f3PdDiff, "f3 pd diff")
638
639  when(f3_valid && !f3_ftq_req.ftqOffset.valid) {
640    assert(
641      f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr,
642      s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!"
643    )
644  }
645
646  /*** MMIO State Machine***/
647  val f3_mmio_data          = Reg(Vec(2, UInt(16.W)))
648  val mmio_is_RVC           = RegInit(false.B)
649  val mmio_resend_addr      = RegInit(0.U(PAddrBits.W))
650  val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W))
651  // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795
652  val mmio_resend_gpaddr            = RegInit(0.U(PAddrBitsMax.W))
653  val mmio_resend_isForVSnonLeafPTE = RegInit(false.B)
654
655  // last instuction finish
656  val is_first_instr = RegInit(true.B)
657
658  /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/
659  io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U)
660
661  val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil =
662    Enum(11)
663  val mmio_state = RegInit(m_idle)
664
665  // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs
666  /* FIXME: we do not distinguish pbmt is NC or IO now
667   *        but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance
668   */
669  val f3_req_is_mmio =
670    f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception)
671  val mmio_commit = VecInit(io.rob_commits.map { commit =>
672    commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U
673  }).asUInt.orR
674  val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited
675
676  val f3_mmio_to_commit      = f3_req_is_mmio && mmio_state === m_waitCommit
677  val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit)
678  val f3_mmio_can_go         = f3_mmio_to_commit && !f3_mmio_to_commit_next
679
680  val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType)
681  fromFtqRedirectReg.bits := RegEnable(
682    fromFtq.redirect.bits,
683    0.U.asTypeOf(fromFtq.redirect.bits),
684    fromFtq.redirect.valid
685  )
686  fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B)
687  val mmioF3Flush           = RegNext(f3_flush, init = false.B)
688  val f3_ftq_flush_self     = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level)
689  val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx)
690
691  val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older
692
693  /**
694    **********************************************************************************
695    * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted.
696    * This is the exception when the first instruction is an MMIO instruction.
697    **********************************************************************************
698    */
699  when(is_first_instr && f3_fire) {
700    is_first_instr := false.B
701  }
702
703  when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B)
704    .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B)
705    .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B)
706    .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B)
707    .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B)
708
709  val f3_mmio_use_seq_pc = RegInit(false.B)
710
711  val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset)
712  val redirect_mmio_req =
713    fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U
714
715  when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B)
716    .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B)
717
718  f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid
719
720  // mmio state machine
721  switch(mmio_state) {
722    is(m_idle) {
723      when(f3_req_is_mmio) {
724        // in idempotent spaces, we can send request directly (i.e. can do speculative fetch)
725        mmio_state := Mux(f3_itlb_pbmt === Pbmt.nc, m_sendReq, m_waitLastCmt)
726      }
727    }
728
729    is(m_waitLastCmt) {
730      when(is_first_instr) {
731        mmio_state := m_sendReq
732      }.otherwise {
733        mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt)
734      }
735    }
736
737    is(m_sendReq) {
738      mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq)
739    }
740
741    is(m_waitResp) {
742      when(fromUncache.fire) {
743        val isRVC      = fromUncache.bits.data(1, 0) =/= 3.U
744        val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U
745        mmio_state      := Mux(needResend, m_sendTLB, m_waitCommit)
746        mmio_is_RVC     := isRVC
747        f3_mmio_data(0) := fromUncache.bits.data(15, 0)
748        f3_mmio_data(1) := fromUncache.bits.data(31, 16)
749      }
750    }
751
752    is(m_sendTLB) {
753      mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB)
754    }
755
756    is(m_tlbResp) {
757      when(io.iTLBInter.resp.fire) {
758        // we are using a blocked tlb, so resp.fire must have !resp.bits.miss
759        assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire")
760        val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits)
761        // if itlb re-check respond pbmt mismatch with previous check, must be access fault
762        val pbmt_mismatch_exception = Mux(
763          io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt,
764          ExceptionType.af,
765          ExceptionType.none
766        )
767        val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception)
768        // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit
769        mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP)
770        // also save itlb response
771        mmio_resend_addr              := io.iTLBInter.resp.bits.paddr(0)
772        mmio_resend_exception         := exception
773        mmio_resend_gpaddr            := io.iTLBInter.resp.bits.gpaddr(0)
774        mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0)
775      }
776    }
777
778    is(m_sendPMP) {
779      val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp)
780      // if pmp re-check respond mismatch with previous check, must be access fault
781      val mmio_mismatch_exception = Mux(
782        io.pmp.resp.mmio =/= f3_pmp_mmio,
783        ExceptionType.af,
784        ExceptionType.none
785      )
786      val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception)
787      // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit
788      mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq)
789      // also save pmp response
790      mmio_resend_exception := exception
791    }
792
793    is(m_resendReq) {
794      mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq)
795    }
796
797    is(m_waitResendResp) {
798      when(fromUncache.fire) {
799        mmio_state      := m_waitCommit
800        f3_mmio_data(1) := fromUncache.bits.data(15, 0)
801      }
802    }
803
804    is(m_waitCommit) {
805      // in idempotent spaces, we can skip waiting for commit (i.e. can do speculative fetch)
806      // but we do not skip m_waitCommit state, as other signals (e.g. f3_mmio_can_go relies on this)
807      mmio_state := Mux(mmio_commit || f3_itlb_pbmt === Pbmt.nc, m_commited, m_waitCommit)
808    }
809
810    // normal mmio instruction
811    is(m_commited) {
812      mmio_state                    := m_idle
813      mmio_is_RVC                   := false.B
814      mmio_resend_addr              := 0.U
815      mmio_resend_exception         := ExceptionType.none
816      mmio_resend_gpaddr            := 0.U
817      mmio_resend_isForVSnonLeafPTE := false.B
818    }
819  }
820
821  // Exception or flush by older branch prediction
822  // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect
823  when(f3_ftq_flush_self || f3_ftq_flush_by_older) {
824    mmio_state                    := m_idle
825    mmio_is_RVC                   := false.B
826    mmio_resend_addr              := 0.U
827    mmio_resend_exception         := ExceptionType.none
828    mmio_resend_gpaddr            := 0.U
829    mmio_resend_isForVSnonLeafPTE := false.B
830    f3_mmio_data.map(_ := 0.U)
831  }
832
833  toUncache.valid     := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio
834  toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0))
835  fromUncache.ready   := true.B
836
837  // send itlb request in m_sendTLB state
838  io.iTLBInter.req.valid                   := (mmio_state === m_sendTLB) && f3_req_is_mmio
839  io.iTLBInter.req.bits.size               := 3.U
840  io.iTLBInter.req.bits.vaddr              := f3_resend_vaddr
841  io.iTLBInter.req.bits.debug.pc           := f3_resend_vaddr
842  io.iTLBInter.req.bits.cmd                := TlbCmd.exec
843  io.iTLBInter.req.bits.isPrefetch         := false.B
844  io.iTLBInter.req.bits.kill               := false.B // IFU use itlb for mmio, doesn't need sync, set it to false
845  io.iTLBInter.req.bits.no_translate       := false.B
846  io.iTLBInter.req.bits.fullva             := 0.U
847  io.iTLBInter.req.bits.checkfullva        := false.B
848  io.iTLBInter.req.bits.hyperinst          := DontCare
849  io.iTLBInter.req.bits.hlvx               := DontCare
850  io.iTLBInter.req.bits.memidx             := DontCare
851  io.iTLBInter.req.bits.debug.robIdx       := DontCare
852  io.iTLBInter.req.bits.debug.isFirstIssue := DontCare
853  io.iTLBInter.req.bits.pmp_addr           := DontCare
854  // whats the difference between req_kill and req.bits.kill?
855  io.iTLBInter.req_kill := false.B
856  // wait for itlb response in m_tlbResp state
857  io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio
858
859  io.pmp.req.valid     := (mmio_state === m_sendPMP) && f3_req_is_mmio
860  io.pmp.req.bits.addr := mmio_resend_addr
861  io.pmp.req.bits.size := 3.U
862  io.pmp.req.bits.cmd  := TlbCmd.exec
863
864  val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo))
865
866  val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt
867  val f3_mmio_range      = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B))
868  val f3_instr_valid     = Wire(Vec(PredictWidth, Bool()))
869
870  /*** prediction result check   ***/
871  checkerIn.ftqOffset  := f3_ftq_req.ftqOffset
872  checkerIn.jumpOffset := f3_jump_offset
873  checkerIn.target     := f3_ftq_req.nextStartAddr
874  checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
875  checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool()))
876  checkerIn.pds        := f3_pd
877  checkerIn.pc         := f3_pc
878  checkerIn.fire_in    := RegNext(f2_fire, init = false.B)
879
880  /*** handle half RVI in the last 2 Bytes  ***/
881
882  def hasLastHalf(idx: UInt) =
883    // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio
884    !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(
885      idx
886    ) && !f3_req_is_mmio
887
888  val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange)
889
890  val f3_hasLastHalf    = hasLastHalf((PredictWidth - 1).U)
891  val f3_false_lastHalf = hasLastHalf(f3_last_validIdx)
892  val f3_false_snpc     = f3_half_snpc(f3_last_validIdx)
893
894  val f3_lastHalf_mask    = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt
895  val f3_lastHalf_disable = RegInit(false.B)
896
897  when(f3_flush || (f3_fire && f3_lastHalf_disable)) {
898    f3_lastHalf_disable := false.B
899  }
900
901  when(f3_flush) {
902    f3_lastHalf.valid := false.B
903  }.elsewhen(f3_fire) {
904    f3_lastHalf.valid    := f3_hasLastHalf && !f3_lastHalf_disable
905    f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr
906  }
907
908  f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid)))
909
910  /*** frontend Trigger  ***/
911  frontendTrigger.io.pds  := f3_pd
912  frontendTrigger.io.pc   := f3_pc
913  frontendTrigger.io.data := f3_cut_data
914
915  frontendTrigger.io.frontendTrigger := io.frontendTrigger
916
917  val f3_triggered       = frontendTrigger.io.triggered
918  val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush
919
920  /*** send to Ibuffer  ***/
921  io.toIbuffer.valid          := f3_toIbuffer_valid
922  io.toIbuffer.bits.instrs    := f3_expd_instr
923  io.toIbuffer.bits.valid     := f3_instr_valid.asUInt
924  io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt
925  io.toIbuffer.bits.pd        := f3_pd
926  io.toIbuffer.bits.ftqPtr    := f3_ftq_req.ftqIdx
927  io.toIbuffer.bits.pc        := f3_pc
928  // Find last using PriorityMux
929  io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools
930  io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) =>
931    a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio
932  }
933  io.toIbuffer.bits.foldpc        := f3_foldpc
934  io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec)
935  // backendException only needs to be set for the first instruction.
936  // Other instructions in the same block may have pf or af set,
937  // which is a side effect of the first instruction and actually not necessary.
938  io.toIbuffer.bits.backendException := (0 until PredictWidth).map {
939    case 0 => f3_backendException
940    case _ => false.B
941  }
942  io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException)
943  io.toIbuffer.bits.illegalInstr    := f3_ill
944  io.toIbuffer.bits.triggered       := f3_triggered
945
946  when(f3_lastHalf.valid) {
947    io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask
948    io.toIbuffer.bits.valid     := f3_lastHalf_mask & f3_instr_valid.asUInt
949  }
950
951  /** to backend */
952  // f3_gpaddr is valid iff gpf is detected
953  io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux(
954    f3_req_is_mmio,
955    mmio_resend_exception === ExceptionType.gpf,
956    f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _)
957  )
958  io.toBackend.gpaddrMem_waddr        := f3_ftq_req.ftqIdx.value
959  io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr)
960  io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux(
961    f3_req_is_mmio,
962    mmio_resend_isForVSnonLeafPTE,
963    f3_isForVSnonLeafPTE
964  )
965
966  // Write back to Ftq
967  val f3_cache_fetch     = f3_valid && !(f2_fire && !f2_flush)
968  val finishFetchMaskReg = RegNext(f3_cache_fetch)
969
970  val mmioFlushWb        = Wire(Valid(new PredecodeWritebackBundle))
971  val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)))
972  f3_mmio_missOffset.valid := f3_req_is_mmio
973  f3_mmio_missOffset.bits  := 0.U
974
975  // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return
976  // When backend redirect, mmio_state reset after 1 cycle.
977  // In this case, mask .valid to avoid overriding backend redirect
978  mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) &&
979    f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older)
980  mmioFlushWb.bits.pc := f3_pc
981  mmioFlushWb.bits.pd := f3_pd
982  mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) }
983  mmioFlushWb.bits.ftqIdx     := f3_ftq_req.ftqIdx
984  mmioFlushWb.bits.ftqOffset  := f3_ftq_req.ftqOffset.bits
985  mmioFlushWb.bits.misOffset  := f3_mmio_missOffset
986  mmioFlushWb.bits.cfiOffset  := DontCare
987  mmioFlushWb.bits.target     := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U)
988  mmioFlushWb.bits.jalTarget  := DontCare
989  mmioFlushWb.bits.instrRange := f3_mmio_range
990
991  val mmioRVCExpander = Module(new RVCExpander)
992  mmioRVCExpander.io.in      := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U)
993  mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff
994
995  /** external predecode for MMIO instruction */
996  when(f3_req_is_mmio) {
997    val inst         = Cat(f3_mmio_data(1), f3_mmio_data(0))
998    val currentIsRVC = isRVC(inst)
999
1000    val brType :: isCall :: isRet :: Nil = brInfo(inst)
1001    val jalOffset                        = jal_offset(inst, currentIsRVC)
1002    val brOffset                         = br_offset(inst, currentIsRVC)
1003
1004    io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits)
1005
1006    io.toIbuffer.bits.pd(0).valid  := true.B
1007    io.toIbuffer.bits.pd(0).isRVC  := currentIsRVC
1008    io.toIbuffer.bits.pd(0).brType := brType
1009    io.toIbuffer.bits.pd(0).isCall := isCall
1010    io.toIbuffer.bits.pd(0).isRet  := isRet
1011
1012    io.toIbuffer.bits.exceptionType(0)   := mmio_resend_exception
1013    io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception)
1014    io.toIbuffer.bits.illegalInstr(0)    := mmioRVCExpander.io.ill
1015
1016    io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt
1017
1018    mmioFlushWb.bits.pd(0).valid  := true.B
1019    mmioFlushWb.bits.pd(0).isRVC  := currentIsRVC
1020    mmioFlushWb.bits.pd(0).brType := brType
1021    mmioFlushWb.bits.pd(0).isCall := isCall
1022    mmioFlushWb.bits.pd(0).isRet  := isRet
1023  }
1024
1025  mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc)
1026
1027  XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready)
1028
1029  /**
1030    ******************************************************************************
1031    * IFU Write Back Stage
1032    * - write back predecode information to Ftq to update
1033    * - redirect if found fault prediction
1034    * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction)
1035    ******************************************************************************
1036    */
1037  val wb_enable  = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush
1038  val wb_valid   = RegNext(wb_enable, init = false.B)
1039  val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable)
1040
1041  val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable)
1042  val wb_check_result_stage2 = checkerOutStage2
1043  val wb_instr_range         = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable)
1044
1045  val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable)
1046  val wb_pc_high         = RegEnable(f3_pc_high, wb_enable)
1047  val wb_pc_high_plus1   = RegEnable(f3_pc_high_plus1, wb_enable)
1048  val wb_pc              = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1)
1049
1050  // val wb_pc             = RegEnable(f3_pc, wb_enable)
1051  val wb_pd          = RegEnable(f3_pd, wb_enable)
1052  val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable)
1053
1054  /* false hit lastHalf */
1055  val wb_lastIdx        = RegEnable(f3_last_validIdx, wb_enable)
1056  val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U
1057  val wb_false_target   = RegEnable(f3_false_snpc, wb_enable)
1058
1059  val wb_half_flush  = wb_false_lastHalf
1060  val wb_half_target = wb_false_target
1061
1062  /* false oversize */
1063  val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC
1064  val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC
1065  val lastTaken = wb_check_result_stage1.fixedTaken.last
1066
1067  f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid
1068
1069  /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls,
1070    * we set a flag to notify f3 that the last half flag need not to be set.
1071    */
1072  // f3_fire is after wb_valid
1073  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1074    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext(
1075      f3_fire,
1076      init = false.B
1077    ) && !f3_flush) {
1078    f3_lastHalf_disable := true.B
1079  }
1080
1081  // wb_valid and f3_fire are in same cycle
1082  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1083    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) {
1084    f3_lastHalf.valid := false.B
1085  }
1086
1087  val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle))
1088  val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) =>
1089    v && pd.isJal
1090  }))
1091  val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1092  checkFlushWb.valid   := wb_valid
1093  checkFlushWb.bits.pc := wb_pc
1094  checkFlushWb.bits.pd := wb_pd
1095  checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) }
1096  checkFlushWb.bits.ftqIdx          := wb_ftq_req.ftqIdx
1097  checkFlushWb.bits.ftqOffset       := wb_ftq_req.ftqOffset.bits
1098  checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush
1099  checkFlushWb.bits.misOffset.bits := Mux(
1100    wb_half_flush,
1101    wb_lastIdx,
1102    ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1103  )
1104  checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken)
1105  checkFlushWb.bits.cfiOffset.bits  := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken)
1106  checkFlushWb.bits.target := Mux(
1107    wb_half_flush,
1108    wb_half_target,
1109    wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx)
1110  )
1111  checkFlushWb.bits.jalTarget  := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx)
1112  checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
1113
1114  toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb)
1115
1116  wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid
1117
1118  /*write back flush type*/
1119  val checkFaultType    = wb_check_result_stage2.faultType
1120  val checkJalFault     = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _)
1121  val checkRetFault     = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _)
1122  val checkTargetFault  = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _)
1123  val checkNotCFIFault  = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _)
1124  val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _)
1125
1126  XSPerfAccumulate("predecode_flush_jalFault", checkJalFault)
1127  XSPerfAccumulate("predecode_flush_retFault", checkRetFault)
1128  XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault)
1129  XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault)
1130  XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken)
1131
1132  XSDebug(
1133    checkRetFault,
1134    "startAddr:%x  nextstartAddr:%x  taken:%d    takenIdx:%d\n",
1135    wb_ftq_req.startAddr,
1136    wb_ftq_req.nextStartAddr,
1137    wb_ftq_req.ftqOffset.valid,
1138    wb_ftq_req.ftqOffset.bits
1139  )
1140
1141  /** performance counter */
1142  val f3_perf_info = RegEnable(f2_perf_info, f2_fire)
1143  val f3_req_0     = io.toIbuffer.fire
1144  val f3_req_1     = io.toIbuffer.fire && f3_doubleLine
1145  val f3_hit_0     = io.toIbuffer.fire && f3_perf_info.bank_hit(0)
1146  val f3_hit_1     = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1)
1147  val f3_hit       = f3_perf_info.hit
1148  val perfEvents = Seq(
1149    ("frontendFlush                ", wb_redirect),
1150    ("ifu_req                      ", io.toIbuffer.fire),
1151    ("ifu_miss                     ", io.toIbuffer.fire && !f3_perf_info.hit),
1152    ("ifu_req_cacheline_0          ", f3_req_0),
1153    ("ifu_req_cacheline_1          ", f3_req_1),
1154    ("ifu_req_cacheline_0_hit      ", f3_hit_1),
1155    ("ifu_req_cacheline_1_hit      ", f3_hit_1),
1156    ("only_0_hit                   ", f3_perf_info.only_0_hit && io.toIbuffer.fire),
1157    ("only_0_miss                  ", f3_perf_info.only_0_miss && io.toIbuffer.fire),
1158    ("hit_0_hit_1                  ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire),
1159    ("hit_0_miss_1                 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire),
1160    ("miss_0_hit_1                 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire),
1161    ("miss_0_miss_1                ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1162  )
1163  generatePerfEvent()
1164
1165  XSPerfAccumulate("ifu_req", io.toIbuffer.fire)
1166  XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit)
1167  XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0)
1168  XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1)
1169  XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0)
1170  XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1)
1171  XSPerfAccumulate("frontendFlush", wb_redirect)
1172  XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire)
1173  XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire)
1174  XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire)
1175  XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire)
1176  XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire)
1177  XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1178  XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire)
1179  XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1180  XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire)
1181  XSPerfHistogram(
1182    "ifu2ibuffer_validCnt",
1183    PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable),
1184    io.toIbuffer.fire,
1185    0,
1186    PredictWidth + 1,
1187    1
1188  )
1189
1190  val hartId                     = p(XSCoreParamsKey).HartId
1191  val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId")
1192  val isWriteIfuWbToFtqTable     = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId")
1193  val fetchToIBufferTable        = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB)
1194  val ifuWbToFtqTable            = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB)
1195
1196  val fetchIBufferDumpData = Wire(new FetchToIBufferDB)
1197  fetchIBufferDumpData.start_addr  := f3_ftq_req.startAddr
1198  fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable)
1199  fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1200  fetchIBufferDumpData.is_cache_hit := f3_hit
1201
1202  val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB)
1203  ifuWbToFtqDumpData.start_addr        := wb_ftq_req.startAddr
1204  ifuWbToFtqDumpData.is_miss_pred      := checkFlushWb.bits.misOffset.valid
1205  ifuWbToFtqDumpData.miss_pred_offset  := checkFlushWb.bits.misOffset.bits
1206  ifuWbToFtqDumpData.checkJalFault     := checkJalFault
1207  ifuWbToFtqDumpData.checkRetFault     := checkRetFault
1208  ifuWbToFtqDumpData.checkTargetFault  := checkTargetFault
1209  ifuWbToFtqDumpData.checkNotCFIFault  := checkNotCFIFault
1210  ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken
1211
1212  fetchToIBufferTable.log(
1213    data = fetchIBufferDumpData,
1214    en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire,
1215    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1216    clock = clock,
1217    reset = reset
1218  )
1219  ifuWbToFtqTable.log(
1220    data = ifuWbToFtqDumpData,
1221    en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid,
1222    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1223    clock = clock,
1224    reset = reset
1225  )
1226
1227}
1228