1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import chisel3._ 21import chisel3.util._ 22import org.chipsalliance.cde.config.Parameters 23import utility._ 24import utility.ChiselDB 25import xiangshan._ 26import xiangshan.backend.GPAMemEntry 27import xiangshan.cache.mmu._ 28import xiangshan.frontend.icache._ 29 30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { 31 def mmioBusWidth = 64 32 def mmioBusBytes = mmioBusWidth / 8 33 def maxInstrLen = 32 34} 35 36trait HasIFUConst extends HasXSParameter { 37 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = 38 Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 39 def fetchQueueSize = 2 40 41 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { 42 val byteOffset = pc - start 43 (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) 44 } 45} 46 47class IfuToFtqIO(implicit p: Parameters) extends XSBundle { 48 val pdWb = Valid(new PredecodeWritebackBundle) 49} 50 51class IfuToBackendIO(implicit p: Parameters) extends XSBundle { 52 // write to backend gpaddr mem 53 val gpaddrMem_wen = Output(Bool()) 54 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 55 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 56 // TODO: avoid cross page entry in Ftq 57 val gpaddrMem_wdata = Output(new GPAMemEntry) 58} 59 60class FtqInterface(implicit p: Parameters) extends XSBundle { 61 val fromFtq = Flipped(new FtqToIfuIO) 62 val toFtq = new IfuToFtqIO 63} 64 65class UncacheInterface(implicit p: Parameters) extends XSBundle { 66 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 67 val toUncache = DecoupledIO(new InsUncacheReq) 68} 69 70class NewIFUIO(implicit p: Parameters) extends XSBundle { 71 val ftqInter = new FtqInterface 72 val icacheInter = Flipped(new IFUICacheIO) 73 val icacheStop = Output(Bool()) 74 val icachePerfInfo = Input(new ICachePerfInfo) 75 val toIbuffer = Decoupled(new FetchToIBuffer) 76 val toBackend = new IfuToBackendIO 77 val uncacheInter = new UncacheInterface 78 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 79 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 80 val iTLBInter = new TlbRequestIO 81 val pmp = new ICachePMPBundle 82 val mmioCommitRead = new mmioCommitRead 83 val csr_fsIsOff = Input(Bool()) 84} 85 86// record the situation in which fallThruAddr falls into 87// the middle of an RVI inst 88class LastHalfInfo(implicit p: Parameters) extends XSBundle { 89 val valid = Bool() 90 val middlePC = UInt(VAddrBits.W) 91 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 92} 93 94class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 95 val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 96 val frontendTrigger = new FrontendTdataDistributeIO 97 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 98} 99 100class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 101 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 102 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 103 val target = UInt(VAddrBits.W) 104 val instrRange = Vec(PredictWidth, Bool()) 105 val instrValid = Vec(PredictWidth, Bool()) 106 val pds = Vec(PredictWidth, new PreDecodeInfo) 107 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 108 val fire_in = Bool() 109} 110 111class FetchToIBufferDB extends Bundle { 112 val start_addr = UInt(39.W) 113 val instr_count = UInt(32.W) 114 val exception = Bool() 115 val is_cache_hit = Bool() 116} 117 118class IfuWbToFtqDB extends Bundle { 119 val start_addr = UInt(39.W) 120 val is_miss_pred = Bool() 121 val miss_pred_offset = UInt(32.W) 122 val checkJalFault = Bool() 123 val checkRetFault = Bool() 124 val checkTargetFault = Bool() 125 val checkNotCFIFault = Bool() 126 val checkInvalidTaken = Bool() 127} 128 129class NewIFU(implicit p: Parameters) extends XSModule 130 with HasICacheParameters 131 with HasXSParameter 132 with HasIFUConst 133 with HasPdConst 134 with HasCircularQueuePtrHelper 135 with HasPerfEvents 136 with HasTlbConst { 137 val io = IO(new NewIFUIO) 138 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 139 val fromICache = io.icacheInter.resp 140 val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) 141 142 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 143 144 def numOfStage = 3 145 // equal lower_result overflow bit 146 def PcCutPoint = (VAddrBits / 4) - 1 147 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = 148 Mux( 149 low(PcCutPoint), 150 Cat(high1, low(PcCutPoint - 1, 0)), 151 Cat(high, low(PcCutPoint - 1, 0)) 152 ) 153 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 154 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 155 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 156 // bubble events in IFU, only happen in stage 1 157 val icacheMissBubble = Wire(Bool()) 158 val itlbMissBubble = Wire(Bool()) 159 160 // only driven by clock, not valid-ready 161 topdown_stages(0) := fromFtq.req.bits.topdown_info 162 for (i <- 1 until numOfStage) { 163 topdown_stages(i) := topdown_stages(i - 1) 164 } 165 when(icacheMissBubble) { 166 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 167 } 168 when(itlbMissBubble) { 169 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 170 } 171 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 172 when(fromFtq.topdown_redirect.valid) { 173 // only redirect from backend, IFU redirect itself is handled elsewhere 174 when(fromFtq.topdown_redirect.bits.debugIsCtrl) { 175 /* 176 for (i <- 0 until numOfStage) { 177 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 178 } 179 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 180 */ 181 when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 182 for (i <- 0 until numOfStage) { 183 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 184 } 185 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 186 }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { 187 for (i <- 0 until numOfStage) { 188 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 189 } 190 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 191 }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { 192 for (i <- 0 until numOfStage) { 193 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 194 } 195 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 196 }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 197 for (i <- 0 until numOfStage) { 198 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 199 } 200 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 201 }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { 202 for (i <- 0 until numOfStage) { 203 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 204 } 205 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 206 } 207 }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { 208 for (i <- 0 until numOfStage) { 209 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 210 } 211 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 212 }.otherwise { 213 for (i <- 0 until numOfStage) { 214 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 215 } 216 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 217 } 218 } 219 220 class TlbExept(implicit p: Parameters) extends XSBundle { 221 val pageFault = Bool() 222 val accessFault = Bool() 223 val mmio = Bool() 224 } 225 226 val preDecoder = Module(new PreDecode) 227 228 val predChecker = Module(new PredChecker) 229 val frontendTrigger = Module(new FrontendTrigger) 230 val (checkerIn, checkerOutStage1, checkerOutStage2) = 231 (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) 232 233 /** 234 ****************************************************************************** 235 * IFU Stage 0 236 * - send cacheline fetch request to ICacheMainPipe 237 ****************************************************************************** 238 */ 239 240 val f0_valid = fromFtq.req.valid 241 val f0_ftq_req = fromFtq.req.bits 242 val f0_doubleLine = fromFtq.req.bits.crossCacheline 243 val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) 244 val f0_fire = fromFtq.req.fire 245 246 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 247 val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B) 248 249 from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 250 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 251 252 val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) 253 val f3_wb_not_flush = WireInit(false.B) 254 255 backend_redirect := fromFtq.redirect.valid 256 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 257 f2_flush := backend_redirect || mmio_redirect || wb_redirect 258 f1_flush := f2_flush || from_bpu_f1_flush 259 f0_flush := f1_flush || from_bpu_f0_flush 260 261 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 262 263 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 264 265 when(wb_redirect) { 266 when(f3_wb_not_flush) { 267 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 268 } 269 for (i <- 0 until numOfStage - 1) { 270 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 271 } 272 } 273 274 /** <PERF> f0 fetch bubble */ 275 276 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) 277 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 278 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 279 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 280 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) 281 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) 282 XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush) 283 XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush) 284 285 /** 286 ****************************************************************************** 287 * IFU Stage 1 288 * - calculate pc/half_pc/cut_ptr for every instruction 289 ****************************************************************************** 290 */ 291 292 val f1_valid = RegInit(false.B) 293 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 294 // val f1_situation = RegEnable(f0_situation, f0_fire) 295 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 296 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 297 val f1_fire = f1_valid && f2_ready 298 299 f1_ready := f1_fire || !f1_valid 300 301 from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid 302 // from_bpu_f1_flush := false.B 303 304 when(f1_flush)(f1_valid := false.B) 305 .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) 306 .elsewhen(f1_fire)(f1_valid := false.B) 307 308 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) 309 val f1_pc_high_plus1 = f1_pc_high + 1.U 310 311 /** 312 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 313 * code of original logic, this code has been deprecated 314 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 315 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 316 */ 317 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => 318 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U 319 )) // cat with overflow bit 320 321 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 322 323 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => 324 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U 325 )) // cat with overflow bit 326 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 327 328 if (env.FPGAPlatform) { 329 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 330 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) 331 332 XSError( 333 f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 334 "f1_half_snpc adder cut fail" 335 ) 336 XSError( 337 f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 338 "f1_half_snpc adder cut fail" 339 ) 340 } 341 342 val f1_cut_ptr = if (HasCExtension) 343 VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) 344 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) 345 346 /** 347 ****************************************************************************** 348 * IFU Stage 2 349 * - icache response data (latched for pipeline stop) 350 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 351 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 352 * - cut data from cachlines to packet instruction code 353 * - instruction predecode and RVC expand 354 ****************************************************************************** 355 */ 356 357 val icacheRespAllValid = WireInit(false.B) 358 359 val f2_valid = RegInit(false.B) 360 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 361 // val f2_situation = RegEnable(f1_situation, f1_fire) 362 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 363 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 364 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 365 366 f2_ready := f2_fire || !f2_valid 367 // TODO: addr compare may be timing critical 368 val f2_icache_all_resp_wire = 369 fromICache(0).valid && (fromICache(0).bits.vaddr === f2_ftq_req.startAddr) && ((fromICache(1).valid && (fromICache( 370 1 371 ).bits.vaddr === f2_ftq_req.nextlineStart)) || !f2_doubleLine) 372 val f2_icache_all_resp_reg = RegInit(false.B) 373 374 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 375 376 icacheMissBubble := io.icacheInter.topdownIcacheMiss 377 itlbMissBubble := io.icacheInter.topdownItlbMiss 378 379 io.icacheStop := !f3_ready 380 381 when(f2_flush)(f2_icache_all_resp_reg := false.B) 382 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) 383 .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) 384 385 when(f2_flush)(f2_valid := false.B) 386 .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) 387 .elsewhen(f2_fire)(f2_valid := false.B) 388 389 val f2_exception_in = VecInit((0 until PortNumber).map(i => fromICache(i).bits.exception)) 390 val f2_backendException = fromICache(0).bits.backendException 391 // paddr and gpaddr of [startAddr, nextLineAddr] 392 val f2_paddrs = VecInit((0 until PortNumber).map(i => fromICache(i).bits.paddr)) 393 val f2_gpaddr = fromICache(0).bits.gpaddr 394 val f2_isForVSnonLeafPTE = fromICache(0).bits.isForVSnonLeafPTE 395 396 // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct 397 val f2_mmio_mismatch_exception = VecInit(Seq.fill(2)(Mux( 398 // not double-line, skip check 399 !fromICache(1).valid || 400 // is double-line, ask for consistent pmp_mmio and itlb_pbmt value 401 fromICache(0).bits.pmp_mmio === fromICache(1).bits.pmp_mmio && 402 fromICache(0).bits.itlb_pbmt === fromICache(1).bits.itlb_pbmt, 403 ExceptionType.none, 404 ExceptionType.af 405 ))) 406 407 // merge exceptions 408 val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception) 409 410 // we need only the first port, as the second is asked to be the same 411 val f2_pmp_mmio = fromICache(0).bits.pmp_mmio 412 val f2_itlb_pbmt = fromICache(0).bits.itlb_pbmt 413 414 /** 415 * reduce the number of registers, origin code 416 * f2_pc = RegEnable(f1_pc, f1_fire) 417 */ 418 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 419 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 420 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 421 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 422 423 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 424 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 425 426 def isNextLine(pc: UInt, startAddr: UInt) = 427 startAddr(blockOffBits) ^ pc(blockOffBits) 428 429 def isLastInLine(pc: UInt) = 430 pc(blockOffBits - 1, 0) === "b111110".U 431 432 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) 433 val f2_jump_range = 434 Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 435 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( 436 f2_ftq_req.nextStartAddr, 437 f2_ftq_req.startAddr 438 ) 439 val f2_instr_range = f2_jump_range & f2_ftr_range 440 val f2_exception_vec = VecInit((0 until PredictWidth).map(i => 441 MuxCase( 442 ExceptionType.none, 443 Seq( 444 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 445 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 446 ) 447 ) 448 )) 449 val f2_perf_info = io.icachePerfInfo 450 451 def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { 452 require(HasCExtension) 453 // if(HasCExtension){ 454 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 455 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector 456 (0 until PredictWidth + 1).foreach(i => 457 result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 458 ) 459 result 460 // } else { 461 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 462 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 463 // (0 until PredictWidth).foreach( i => 464 // result(i) := dataVec(cutPtr(i)) 465 // ) 466 // result 467 // } 468 } 469 470 val f2_cache_response_data = fromICache.map(_.bits.data) 471 /* NOTE: the following `Cat(_data(0), _data(0))` *is* intentional, _data(1) is technically useless in current design. 472 * Explanation: 473 * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines, 474 * so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here. 475 * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power. 476 * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines, 477 * so IFU only need to receive 40B (5bank * 8B) valid data, and use only the first port is enough. 478 * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request): 479 * MSB LSB 480 * cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 || 481 * cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 || 482 * and ICacheDataArray will respond: 483 * fromICache(0).bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 484 * therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre: 485 * f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 486 * requested data: ^-----------------------------^ 487 * For another example, pc falls on the 1st bank in cacheline 0, we have: 488 * fromICache(0).bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 489 * f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 490 * requested data: ^-----------------------------^ 491 * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y) 492 * Please also refer to: 493 * - DataArray selects data: 494 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381 495 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161 496 * - ICache respond to IFU: 497 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473 498 */ 499 val f2_data_2_cacheline = Cat(f2_cache_response_data(0), f2_cache_response_data(0)) 500 501 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 502 503 /** predecode (include RVC expander) */ 504 // preDecoderRegIn.data := f2_reg_cut_data 505 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 506 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 507 // preDecoderRegIn.pc := f2_pc 508 509 val preDecoderIn = preDecoder.io.in 510 preDecoderIn.valid := f2_valid 511 preDecoderIn.bits.data := f2_cut_data 512 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 513 preDecoderIn.bits.pc := f2_pc 514 val preDecoderOut = preDecoder.io.out 515 516 // val f2_expd_instr = preDecoderOut.expInstr 517 val f2_instr = preDecoderOut.instr 518 val f2_pd = preDecoderOut.pd 519 val f2_jump_offset = preDecoderOut.jumpOffset 520 val f2_hasHalfValid = preDecoderOut.hasHalfValid 521 /* if there is a cross-page RVI instruction, and the former page has no exception, 522 * whether it has exception is actually depends on the latter page 523 */ 524 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => 525 Mux( 526 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)), 527 f2_exception(1), 528 ExceptionType.none 529 ) 530 }) 531 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) 532 533 /** 534 ****************************************************************************** 535 * IFU Stage 3 536 * - handle MMIO instruciton 537 * -send request to Uncache fetch Unit 538 * -every packet include 1 MMIO instruction 539 * -MMIO instructions will stop fetch pipeline until commiting from RoB 540 * -flush to snpc (send ifu_redirect to Ftq) 541 * - Ibuffer enqueue 542 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 543 * - handle last half RVI instruction 544 ****************************************************************************** 545 */ 546 547 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 548 549 val f3_valid = RegInit(false.B) 550 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 551 // val f3_situation = RegEnable(f2_situation, f2_fire) 552 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 553 val f3_fire = io.toIbuffer.fire 554 555 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 556 557 val f3_exception = RegEnable(f2_exception, f2_fire) 558 val f3_pmp_mmio = RegEnable(f2_pmp_mmio, f2_fire) 559 val f3_itlb_pbmt = RegEnable(f2_itlb_pbmt, f2_fire) 560 val f3_backendException = RegEnable(f2_backendException, f2_fire) 561 562 val f3_instr = RegEnable(f2_instr, f2_fire) 563 564 expanders.zipWithIndex.foreach { case (expander, i) => 565 expander.io.in := f3_instr(i) 566 expander.io.fsIsOff := io.csr_fsIsOff 567 } 568 // Use expanded instruction only when input is legal. 569 // Otherwise use origin illegal RVC instruction. 570 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 571 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 572 }) 573 val f3_ill = VecInit(expanders.map(_.io.ill)) 574 575 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 576 val f3_pd = WireInit(f3_pd_wire) 577 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 578 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 579 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 580 581 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 582 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 583 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 584 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 585 586 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 587 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 588 // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 589 590 /** 591 *********************************************************************** 592 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 593 *********************************************************************** 594 */ 595 val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) 596 for (i <- 0 until PredictWidth) { 597 if (i == (PredictWidth - 2)) { 598 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 599 } else if (i == (PredictWidth - 1)) { 600 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 601 } else { 602 f3_half_snpc(i) := f3_pc(i + 2) 603 } 604 } 605 606 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 607 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 608 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 609 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 610 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 611 val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) 612 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 613 614 // Expand 1 bit to prevent overflow when assert 615 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 616 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 617 // brType, isCall and isRet generation is delayed to f3 stage 618 val f3Predecoder = Module(new F3Predecoder) 619 620 f3Predecoder.io.in.instr := f3_instr 621 622 f3_pd.zipWithIndex.map { case (pd, i) => 623 pd.brType := f3Predecoder.io.out.pd(i).brType 624 pd.isCall := f3Predecoder.io.out.pd(i).isCall 625 pd.isRet := f3Predecoder.io.out.pd(i).isRet 626 } 627 628 val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) 629 XSError(f3_valid && f3PdDiff, "f3 pd diff") 630 631 when(f3_valid && !f3_ftq_req.ftqOffset.valid) { 632 assert( 633 f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, 634 s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" 635 ) 636 } 637 638 /*** MMIO State Machine***/ 639 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 640 val mmio_is_RVC = RegInit(false.B) 641 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 642 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 643 // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795 644 val mmio_resend_gpaddr = RegInit(0.U(PAddrBitsMax.W)) 645 val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) 646 647 // last instuction finish 648 val is_first_instr = RegInit(true.B) 649 650 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 651 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 652 653 val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = 654 Enum(11) 655 val mmio_state = RegInit(m_idle) 656 657 // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs 658 /* FIXME: we do not distinguish pbmt is NC or IO now 659 * but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance 660 */ 661 val f3_req_is_mmio = 662 f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception) 663 val mmio_commit = VecInit(io.rob_commits.map { commit => 664 commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U 665 }).asUInt.orR 666 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 667 668 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 669 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 670 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 671 672 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 673 fromFtqRedirectReg.bits := RegEnable( 674 fromFtq.redirect.bits, 675 0.U.asTypeOf(fromFtq.redirect.bits), 676 fromFtq.redirect.valid 677 ) 678 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 679 val mmioF3Flush = RegNext(f3_flush, init = false.B) 680 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 681 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 682 683 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 684 685 /** 686 ********************************************************************************** 687 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 688 * This is the exception when the first instruction is an MMIO instruction. 689 ********************************************************************************** 690 */ 691 when(is_first_instr && f3_fire) { 692 is_first_instr := false.B 693 } 694 695 when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) 696 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) 697 .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) 698 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) 699 .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) 700 701 val f3_mmio_use_seq_pc = RegInit(false.B) 702 703 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) 704 val redirect_mmio_req = 705 fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 706 707 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) 708 .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) 709 710 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 711 712 // mmio state machine 713 switch(mmio_state) { 714 is(m_idle) { 715 when(f3_req_is_mmio) { 716 mmio_state := m_waitLastCmt 717 } 718 } 719 720 is(m_waitLastCmt) { 721 when(is_first_instr) { 722 mmio_state := m_sendReq 723 }.otherwise { 724 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 725 } 726 } 727 728 is(m_sendReq) { 729 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 730 } 731 732 is(m_waitResp) { 733 when(fromUncache.fire) { 734 val isRVC = fromUncache.bits.data(1, 0) =/= 3.U 735 val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U 736 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 737 mmio_is_RVC := isRVC 738 f3_mmio_data(0) := fromUncache.bits.data(15, 0) 739 f3_mmio_data(1) := fromUncache.bits.data(31, 16) 740 } 741 } 742 743 is(m_sendTLB) { 744 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 745 } 746 747 is(m_tlbResp) { 748 when(io.iTLBInter.resp.fire) { 749 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 750 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 751 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 752 // if itlb re-check respond pbmt mismatch with previous check, must be access fault 753 val pbmt_mismatch_exception = Mux( 754 io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt, 755 ExceptionType.af, 756 ExceptionType.none 757 ) 758 val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception) 759 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 760 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP) 761 // also save itlb response 762 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 763 mmio_resend_exception := exception 764 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 765 mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) 766 } 767 } 768 769 is(m_sendPMP) { 770 val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp) 771 // if pmp re-check respond mismatch with previous check, must be access fault 772 val mmio_mismatch_exception = Mux( 773 io.pmp.resp.mmio =/= f3_pmp_mmio, 774 ExceptionType.af, 775 ExceptionType.none 776 ) 777 val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception) 778 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 779 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq) 780 // also save pmp response 781 mmio_resend_exception := exception 782 } 783 784 is(m_resendReq) { 785 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 786 } 787 788 is(m_waitResendResp) { 789 when(fromUncache.fire) { 790 mmio_state := m_waitCommit 791 f3_mmio_data(1) := fromUncache.bits.data(15, 0) 792 } 793 } 794 795 is(m_waitCommit) { 796 mmio_state := Mux(mmio_commit, m_commited, m_waitCommit) 797 } 798 799 // normal mmio instruction 800 is(m_commited) { 801 mmio_state := m_idle 802 mmio_is_RVC := false.B 803 mmio_resend_addr := 0.U 804 mmio_resend_exception := ExceptionType.none 805 mmio_resend_gpaddr := 0.U 806 mmio_resend_isForVSnonLeafPTE := false.B 807 } 808 } 809 810 // Exception or flush by older branch prediction 811 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 812 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 813 mmio_state := m_idle 814 mmio_is_RVC := false.B 815 mmio_resend_addr := 0.U 816 mmio_resend_exception := ExceptionType.none 817 mmio_resend_gpaddr := 0.U 818 mmio_resend_isForVSnonLeafPTE := false.B 819 f3_mmio_data.map(_ := 0.U) 820 } 821 822 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 823 toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) 824 fromUncache.ready := true.B 825 826 // send itlb request in m_sendTLB state 827 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 828 io.iTLBInter.req.bits.size := 3.U 829 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 830 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 831 io.iTLBInter.req.bits.cmd := TlbCmd.exec 832 io.iTLBInter.req.bits.isPrefetch := false.B 833 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 834 io.iTLBInter.req.bits.no_translate := false.B 835 io.iTLBInter.req.bits.fullva := 0.U 836 io.iTLBInter.req.bits.checkfullva := false.B 837 io.iTLBInter.req.bits.hyperinst := DontCare 838 io.iTLBInter.req.bits.hlvx := DontCare 839 io.iTLBInter.req.bits.memidx := DontCare 840 io.iTLBInter.req.bits.debug.robIdx := DontCare 841 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 842 io.iTLBInter.req.bits.pmp_addr := DontCare 843 // whats the difference between req_kill and req.bits.kill? 844 io.iTLBInter.req_kill := false.B 845 // wait for itlb response in m_tlbResp state 846 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 847 848 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 849 io.pmp.req.bits.addr := mmio_resend_addr 850 io.pmp.req.bits.size := 3.U 851 io.pmp.req.bits.cmd := TlbCmd.exec 852 853 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 854 855 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 856 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) 857 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 858 859 /*** prediction result check ***/ 860 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 861 checkerIn.jumpOffset := f3_jump_offset 862 checkerIn.target := f3_ftq_req.nextStartAddr 863 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 864 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 865 checkerIn.pds := f3_pd 866 checkerIn.pc := f3_pc 867 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 868 869 /*** handle half RVI in the last 2 Bytes ***/ 870 871 def hasLastHalf(idx: UInt) = 872 // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 873 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( 874 idx 875 ) && !f3_req_is_mmio 876 877 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 878 879 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 880 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 881 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 882 883 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt 884 val f3_lastHalf_disable = RegInit(false.B) 885 886 when(f3_flush || (f3_fire && f3_lastHalf_disable)) { 887 f3_lastHalf_disable := false.B 888 } 889 890 when(f3_flush) { 891 f3_lastHalf.valid := false.B 892 }.elsewhen(f3_fire) { 893 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 894 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 895 } 896 897 f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) 898 899 /*** frontend Trigger ***/ 900 frontendTrigger.io.pds := f3_pd 901 frontendTrigger.io.pc := f3_pc 902 frontendTrigger.io.data := f3_cut_data 903 904 frontendTrigger.io.frontendTrigger := io.frontendTrigger 905 906 val f3_triggered = frontendTrigger.io.triggered 907 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 908 909 /*** send to Ibuffer ***/ 910 io.toIbuffer.valid := f3_toIbuffer_valid 911 io.toIbuffer.bits.instrs := f3_expd_instr 912 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 913 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 914 io.toIbuffer.bits.pd := f3_pd 915 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 916 io.toIbuffer.bits.pc := f3_pc 917 // Find last using PriorityMux 918 io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools 919 io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => 920 a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio 921 } 922 io.toIbuffer.bits.foldpc := f3_foldpc 923 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 924 // backendException only needs to be set for the first instruction. 925 // Other instructions in the same block may have pf or af set, 926 // which is a side effect of the first instruction and actually not necessary. 927 io.toIbuffer.bits.backendException := (0 until PredictWidth).map { 928 case 0 => f3_backendException 929 case _ => false.B 930 } 931 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException) 932 io.toIbuffer.bits.illegalInstr := f3_ill 933 io.toIbuffer.bits.triggered := f3_triggered 934 935 when(f3_lastHalf.valid) { 936 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 937 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 938 } 939 940 /** to backend */ 941 // f3_gpaddr is valid iff gpf is detected 942 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 943 f3_req_is_mmio, 944 mmio_resend_exception === ExceptionType.gpf, 945 f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) 946 ) 947 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 948 io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 949 io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( 950 f3_req_is_mmio, 951 mmio_resend_isForVSnonLeafPTE, 952 f3_isForVSnonLeafPTE 953 ) 954 955 // Write back to Ftq 956 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 957 val finishFetchMaskReg = RegNext(f3_cache_fetch) 958 959 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 960 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 961 f3_mmio_missOffset.valid := f3_req_is_mmio 962 f3_mmio_missOffset.bits := 0.U 963 964 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 965 // When backend redirect, mmio_state reset after 1 cycle. 966 // In this case, mask .valid to avoid overriding backend redirect 967 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 968 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 969 mmioFlushWb.bits.pc := f3_pc 970 mmioFlushWb.bits.pd := f3_pd 971 mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } 972 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 973 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 974 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 975 mmioFlushWb.bits.cfiOffset := DontCare 976 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) 977 mmioFlushWb.bits.jalTarget := DontCare 978 mmioFlushWb.bits.instrRange := f3_mmio_range 979 980 val mmioRVCExpander = Module(new RVCExpander) 981 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 982 mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff 983 984 /** external predecode for MMIO instruction */ 985 when(f3_req_is_mmio) { 986 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 987 val currentIsRVC = isRVC(inst) 988 989 val brType :: isCall :: isRet :: Nil = brInfo(inst) 990 val jalOffset = jal_offset(inst, currentIsRVC) 991 val brOffset = br_offset(inst, currentIsRVC) 992 993 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 994 995 io.toIbuffer.bits.pd(0).valid := true.B 996 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 997 io.toIbuffer.bits.pd(0).brType := brType 998 io.toIbuffer.bits.pd(0).isCall := isCall 999 io.toIbuffer.bits.pd(0).isRet := isRet 1000 1001 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 1002 io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception) 1003 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 1004 1005 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 1006 1007 mmioFlushWb.bits.pd(0).valid := true.B 1008 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 1009 mmioFlushWb.bits.pd(0).brType := brType 1010 mmioFlushWb.bits.pd(0).isCall := isCall 1011 mmioFlushWb.bits.pd(0).isRet := isRet 1012 } 1013 1014 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 1015 1016 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) 1017 1018 /** 1019 ****************************************************************************** 1020 * IFU Write Back Stage 1021 * - write back predecode information to Ftq to update 1022 * - redirect if found fault prediction 1023 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 1024 ****************************************************************************** 1025 */ 1026 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 1027 val wb_valid = RegNext(wb_enable, init = false.B) 1028 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 1029 1030 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 1031 val wb_check_result_stage2 = checkerOutStage2 1032 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 1033 1034 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 1035 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 1036 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 1037 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 1038 1039 // val wb_pc = RegEnable(f3_pc, wb_enable) 1040 val wb_pd = RegEnable(f3_pd, wb_enable) 1041 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 1042 1043 /* false hit lastHalf */ 1044 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 1045 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 1046 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 1047 1048 val wb_half_flush = wb_false_lastHalf 1049 val wb_half_target = wb_false_target 1050 1051 /* false oversize */ 1052 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC 1053 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 1054 val lastTaken = wb_check_result_stage1.fixedTaken.last 1055 1056 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 1057 1058 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 1059 * we set a flag to notify f3 that the last half flag need not to be set. 1060 */ 1061 // f3_fire is after wb_valid 1062 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1063 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( 1064 f3_fire, 1065 init = false.B 1066 ) && !f3_flush) { 1067 f3_lastHalf_disable := true.B 1068 } 1069 1070 // wb_valid and f3_fire are in same cycle 1071 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1072 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { 1073 f3_lastHalf.valid := false.B 1074 } 1075 1076 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 1077 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => 1078 v && pd.isJal 1079 })) 1080 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1081 checkFlushWb.valid := wb_valid 1082 checkFlushWb.bits.pc := wb_pc 1083 checkFlushWb.bits.pd := wb_pd 1084 checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } 1085 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 1086 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 1087 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 1088 checkFlushWb.bits.misOffset.bits := Mux( 1089 wb_half_flush, 1090 wb_lastIdx, 1091 ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1092 ) 1093 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 1094 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 1095 checkFlushWb.bits.target := Mux( 1096 wb_half_flush, 1097 wb_half_target, 1098 wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) 1099 ) 1100 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 1101 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 1102 1103 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 1104 1105 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 1106 1107 /*write back flush type*/ 1108 val checkFaultType = wb_check_result_stage2.faultType 1109 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) 1110 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) 1111 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) 1112 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) 1113 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) 1114 1115 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) 1116 XSPerfAccumulate("predecode_flush_retFault", checkRetFault) 1117 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) 1118 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) 1119 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) 1120 1121 when(checkRetFault) { 1122 XSDebug( 1123 "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1124 wb_ftq_req.startAddr, 1125 wb_ftq_req.nextStartAddr, 1126 wb_ftq_req.ftqOffset.valid, 1127 wb_ftq_req.ftqOffset.bits 1128 ) 1129 } 1130 1131 /** performance counter */ 1132 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1133 val f3_req_0 = io.toIbuffer.fire 1134 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1135 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1136 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1137 val f3_hit = f3_perf_info.hit 1138 val perfEvents = Seq( 1139 ("frontendFlush ", wb_redirect), 1140 ("ifu_req ", io.toIbuffer.fire), 1141 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), 1142 ("ifu_req_cacheline_0 ", f3_req_0), 1143 ("ifu_req_cacheline_1 ", f3_req_1), 1144 ("ifu_req_cacheline_0_hit ", f3_hit_1), 1145 ("ifu_req_cacheline_1_hit ", f3_hit_1), 1146 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), 1147 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), 1148 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), 1149 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), 1150 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), 1151 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1152 ) 1153 generatePerfEvent() 1154 1155 XSPerfAccumulate("ifu_req", io.toIbuffer.fire) 1156 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) 1157 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) 1158 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) 1159 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) 1160 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) 1161 XSPerfAccumulate("frontendFlush", wb_redirect) 1162 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) 1163 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) 1164 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) 1165 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) 1166 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) 1167 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1168 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) 1169 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1170 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) 1171 XSPerfHistogram( 1172 "ifu2ibuffer_validCnt", 1173 PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), 1174 io.toIbuffer.fire, 1175 0, 1176 PredictWidth + 1, 1177 1 1178 ) 1179 1180 val hartId = p(XSCoreParamsKey).HartId 1181 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1182 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1183 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1184 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1185 1186 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1187 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1188 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1189 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1190 fetchIBufferDumpData.is_cache_hit := f3_hit 1191 1192 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1193 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1194 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1195 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1196 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1197 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1198 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1199 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1200 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1201 1202 fetchToIBufferTable.log( 1203 data = fetchIBufferDumpData, 1204 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1205 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1206 clock = clock, 1207 reset = reset 1208 ) 1209 ifuWbToFtqTable.log( 1210 data = ifuWbToFtqDumpData, 1211 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1212 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1213 clock = clock, 1214 reset = reset 1215 ) 1216 1217} 1218