1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import chisel3._ 21import chisel3.util._ 22import org.chipsalliance.cde.config.Parameters 23import utility._ 24import utility.ChiselDB 25import xiangshan._ 26import xiangshan.backend.GPAMemEntry 27import xiangshan.cache.mmu._ 28import xiangshan.frontend.icache._ 29 30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { 31 def mmioBusWidth = 64 32 def mmioBusBytes = mmioBusWidth / 8 33 def maxInstrLen = 32 34} 35 36trait HasIFUConst extends HasXSParameter { 37 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = 38 Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 39 def fetchQueueSize = 2 40 41 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { 42 val byteOffset = pc - start 43 (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) 44 } 45} 46 47class IfuToFtqIO(implicit p: Parameters) extends XSBundle { 48 val pdWb = Valid(new PredecodeWritebackBundle) 49} 50 51class IfuToBackendIO(implicit p: Parameters) extends XSBundle { 52 // write to backend gpaddr mem 53 val gpaddrMem_wen = Output(Bool()) 54 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 55 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 56 // TODO: avoid cross page entry in Ftq 57 val gpaddrMem_wdata = Output(new GPAMemEntry) 58} 59 60class FtqInterface(implicit p: Parameters) extends XSBundle { 61 val fromFtq = Flipped(new FtqToIfuIO) 62 val toFtq = new IfuToFtqIO 63} 64 65class UncacheInterface(implicit p: Parameters) extends XSBundle { 66 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 67 val toUncache = DecoupledIO(new InsUncacheReq) 68} 69 70class NewIFUIO(implicit p: Parameters) extends XSBundle { 71 val ftqInter = new FtqInterface 72 val icacheInter = Flipped(new IFUICacheIO) 73 val icacheStop = Output(Bool()) 74 val icachePerfInfo = Input(new ICachePerfInfo) 75 val toIbuffer = Decoupled(new FetchToIBuffer) 76 val toBackend = new IfuToBackendIO 77 val uncacheInter = new UncacheInterface 78 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 79 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 80 val iTLBInter = new TlbRequestIO 81 val pmp = new ICachePMPBundle 82 val mmioCommitRead = new mmioCommitRead 83} 84 85// record the situation in which fallThruAddr falls into 86// the middle of an RVI inst 87class LastHalfInfo(implicit p: Parameters) extends XSBundle { 88 val valid = Bool() 89 val middlePC = UInt(VAddrBits.W) 90 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 91} 92 93class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 94 val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 95 val frontendTrigger = new FrontendTdataDistributeIO 96 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 97} 98 99class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 100 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 101 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 102 val target = UInt(VAddrBits.W) 103 val instrRange = Vec(PredictWidth, Bool()) 104 val instrValid = Vec(PredictWidth, Bool()) 105 val pds = Vec(PredictWidth, new PreDecodeInfo) 106 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 107 val fire_in = Bool() 108} 109 110class FetchToIBufferDB extends Bundle { 111 val start_addr = UInt(39.W) 112 val instr_count = UInt(32.W) 113 val exception = Bool() 114 val is_cache_hit = Bool() 115} 116 117class IfuWbToFtqDB extends Bundle { 118 val start_addr = UInt(39.W) 119 val is_miss_pred = Bool() 120 val miss_pred_offset = UInt(32.W) 121 val checkJalFault = Bool() 122 val checkRetFault = Bool() 123 val checkTargetFault = Bool() 124 val checkNotCFIFault = Bool() 125 val checkInvalidTaken = Bool() 126} 127 128class NewIFU(implicit p: Parameters) extends XSModule 129 with HasICacheParameters 130 with HasXSParameter 131 with HasIFUConst 132 with HasPdConst 133 with HasCircularQueuePtrHelper 134 with HasPerfEvents 135 with HasTlbConst { 136 val io = IO(new NewIFUIO) 137 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 138 val fromICache = io.icacheInter.resp 139 val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) 140 141 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 142 143 def numOfStage = 3 144 // equal lower_result overflow bit 145 def PcCutPoint = (VAddrBits / 4) - 1 146 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = 147 Mux( 148 low(PcCutPoint), 149 Cat(high1, low(PcCutPoint - 1, 0)), 150 Cat(high, low(PcCutPoint - 1, 0)) 151 ) 152 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 153 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 154 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 155 // bubble events in IFU, only happen in stage 1 156 val icacheMissBubble = Wire(Bool()) 157 val itlbMissBubble = Wire(Bool()) 158 159 // only driven by clock, not valid-ready 160 topdown_stages(0) := fromFtq.req.bits.topdown_info 161 for (i <- 1 until numOfStage) { 162 topdown_stages(i) := topdown_stages(i - 1) 163 } 164 when(icacheMissBubble) { 165 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 166 } 167 when(itlbMissBubble) { 168 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 169 } 170 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 171 when(fromFtq.topdown_redirect.valid) { 172 // only redirect from backend, IFU redirect itself is handled elsewhere 173 when(fromFtq.topdown_redirect.bits.debugIsCtrl) { 174 /* 175 for (i <- 0 until numOfStage) { 176 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 177 } 178 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 179 */ 180 when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 181 for (i <- 0 until numOfStage) { 182 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 183 } 184 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 185 }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { 186 for (i <- 0 until numOfStage) { 187 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 188 } 189 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 190 }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { 191 for (i <- 0 until numOfStage) { 192 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 193 } 194 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 195 }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 196 for (i <- 0 until numOfStage) { 197 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 198 } 199 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 200 }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { 201 for (i <- 0 until numOfStage) { 202 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 203 } 204 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 205 } 206 }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { 207 for (i <- 0 until numOfStage) { 208 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 209 } 210 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 211 }.otherwise { 212 for (i <- 0 until numOfStage) { 213 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 214 } 215 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 216 } 217 } 218 219 class TlbExept(implicit p: Parameters) extends XSBundle { 220 val pageFault = Bool() 221 val accessFault = Bool() 222 val mmio = Bool() 223 } 224 225 val preDecoder = Module(new PreDecode) 226 227 val predChecker = Module(new PredChecker) 228 val frontendTrigger = Module(new FrontendTrigger) 229 val (checkerIn, checkerOutStage1, checkerOutStage2) = 230 (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) 231 232 /** 233 ****************************************************************************** 234 * IFU Stage 0 235 * - send cacheline fetch request to ICacheMainPipe 236 ****************************************************************************** 237 */ 238 239 val f0_valid = fromFtq.req.valid 240 val f0_ftq_req = fromFtq.req.bits 241 val f0_doubleLine = fromFtq.req.bits.crossCacheline 242 val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) 243 val f0_fire = fromFtq.req.fire 244 245 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 246 val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B) 247 248 from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 249 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 250 251 val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) 252 val f3_wb_not_flush = WireInit(false.B) 253 254 backend_redirect := fromFtq.redirect.valid 255 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 256 f2_flush := backend_redirect || mmio_redirect || wb_redirect 257 f1_flush := f2_flush || from_bpu_f1_flush 258 f0_flush := f1_flush || from_bpu_f0_flush 259 260 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 261 262 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 263 264 when(wb_redirect) { 265 when(f3_wb_not_flush) { 266 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 267 } 268 for (i <- 0 until numOfStage - 1) { 269 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 270 } 271 } 272 273 /** <PERF> f0 fetch bubble */ 274 275 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) 276 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 277 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 278 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 279 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) 280 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) 281 XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush) 282 XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush) 283 284 /** 285 ****************************************************************************** 286 * IFU Stage 1 287 * - calculate pc/half_pc/cut_ptr for every instruction 288 ****************************************************************************** 289 */ 290 291 val f1_valid = RegInit(false.B) 292 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 293 // val f1_situation = RegEnable(f0_situation, f0_fire) 294 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 295 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 296 val f1_fire = f1_valid && f2_ready 297 298 f1_ready := f1_fire || !f1_valid 299 300 from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid 301 // from_bpu_f1_flush := false.B 302 303 when(f1_flush)(f1_valid := false.B) 304 .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) 305 .elsewhen(f1_fire)(f1_valid := false.B) 306 307 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) 308 val f1_pc_high_plus1 = f1_pc_high + 1.U 309 310 /** 311 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 312 * code of original logic, this code has been deprecated 313 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 314 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 315 */ 316 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => 317 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U 318 )) // cat with overflow bit 319 320 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 321 322 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => 323 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U 324 )) // cat with overflow bit 325 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 326 327 if (env.FPGAPlatform) { 328 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 329 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) 330 331 XSError( 332 f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 333 "f1_half_snpc adder cut fail" 334 ) 335 XSError( 336 f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 337 "f1_half_snpc adder cut fail" 338 ) 339 } 340 341 val f1_cut_ptr = if (HasCExtension) 342 VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) 343 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) 344 345 /** 346 ****************************************************************************** 347 * IFU Stage 2 348 * - icache response data (latched for pipeline stop) 349 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 350 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 351 * - cut data from cachlines to packet instruction code 352 * - instruction predecode and RVC expand 353 ****************************************************************************** 354 */ 355 356 val icacheRespAllValid = WireInit(false.B) 357 358 val f2_valid = RegInit(false.B) 359 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 360 // val f2_situation = RegEnable(f1_situation, f1_fire) 361 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 362 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 363 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 364 365 f2_ready := f2_fire || !f2_valid 366 // TODO: addr compare may be timing critical 367 val f2_icache_all_resp_wire = 368 fromICache(0).valid && (fromICache(0).bits.vaddr === f2_ftq_req.startAddr) && ((fromICache(1).valid && (fromICache( 369 1 370 ).bits.vaddr === f2_ftq_req.nextlineStart)) || !f2_doubleLine) 371 val f2_icache_all_resp_reg = RegInit(false.B) 372 373 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 374 375 icacheMissBubble := io.icacheInter.topdownIcacheMiss 376 itlbMissBubble := io.icacheInter.topdownItlbMiss 377 378 io.icacheStop := !f3_ready 379 380 when(f2_flush)(f2_icache_all_resp_reg := false.B) 381 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) 382 .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) 383 384 when(f2_flush)(f2_valid := false.B) 385 .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) 386 .elsewhen(f2_fire)(f2_valid := false.B) 387 388 val f2_exception = VecInit((0 until PortNumber).map(i => fromICache(i).bits.exception)) 389 val f2_except_fromBackend = fromICache(0).bits.exceptionFromBackend 390 // paddr and gpaddr of [startAddr, nextLineAddr] 391 val f2_paddrs = VecInit((0 until PortNumber).map(i => fromICache(i).bits.paddr)) 392 val f2_gpaddr = fromICache(0).bits.gpaddr 393 val f2_isForVSnonLeafPTE = fromICache(0).bits.isForVSnonLeafPTE 394 395 // FIXME: what if port 0 is not mmio, but port 1 is? 396 // cancel mmio fetch if exception occurs 397 val f2_mmio = f2_exception(0) === ExceptionType.none && ( 398 fromICache(0).bits.pmp_mmio || 399 // currently, we do not distinguish between Pbmt.nc and Pbmt.io 400 // anyway, they are both non-cacheable, and should be handled with mmio fsm and sent to Uncache module 401 Pbmt.isUncache(fromICache(0).bits.itlb_pbmt) 402 ) 403 404 /** 405 * reduce the number of registers, origin code 406 * f2_pc = RegEnable(f1_pc, f1_fire) 407 */ 408 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 409 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 410 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 411 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 412 413 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 414 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 415 416 def isNextLine(pc: UInt, startAddr: UInt) = 417 startAddr(blockOffBits) ^ pc(blockOffBits) 418 419 def isLastInLine(pc: UInt) = 420 pc(blockOffBits - 1, 0) === "b111110".U 421 422 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) 423 val f2_jump_range = 424 Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 425 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( 426 f2_ftq_req.nextStartAddr, 427 f2_ftq_req.startAddr 428 ) 429 val f2_instr_range = f2_jump_range & f2_ftr_range 430 val f2_exception_vec = VecInit((0 until PredictWidth).map(i => 431 MuxCase( 432 ExceptionType.none, 433 Seq( 434 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 435 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 436 ) 437 ) 438 )) 439 val f2_perf_info = io.icachePerfInfo 440 441 def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { 442 require(HasCExtension) 443 // if(HasCExtension){ 444 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 445 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector 446 (0 until PredictWidth + 1).foreach(i => 447 result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 448 ) 449 result 450 // } else { 451 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 452 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 453 // (0 until PredictWidth).foreach( i => 454 // result(i) := dataVec(cutPtr(i)) 455 // ) 456 // result 457 // } 458 } 459 460 val f2_cache_response_data = fromICache.map(_.bits.data) 461 val f2_data_2_cacheline = Cat(f2_cache_response_data(0), f2_cache_response_data(0)) 462 463 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 464 465 /** predecode (include RVC expander) */ 466 // preDecoderRegIn.data := f2_reg_cut_data 467 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 468 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 469 // preDecoderRegIn.pc := f2_pc 470 471 val preDecoderIn = preDecoder.io.in 472 preDecoderIn.valid := f2_valid 473 preDecoderIn.bits.data := f2_cut_data 474 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 475 preDecoderIn.bits.pc := f2_pc 476 val preDecoderOut = preDecoder.io.out 477 478 // val f2_expd_instr = preDecoderOut.expInstr 479 val f2_instr = preDecoderOut.instr 480 val f2_pd = preDecoderOut.pd 481 val f2_jump_offset = preDecoderOut.jumpOffset 482 val f2_hasHalfValid = preDecoderOut.hasHalfValid 483 /* if there is a cross-page RVI instruction, and the former page has no exception, 484 * whether it has exception is actually depends on the latter page 485 */ 486 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => 487 Mux( 488 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && f2_exception(0) === ExceptionType.none, 489 f2_exception(1), 490 ExceptionType.none 491 ) 492 }) 493 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) 494 495 /** 496 ****************************************************************************** 497 * IFU Stage 3 498 * - handle MMIO instruciton 499 * -send request to Uncache fetch Unit 500 * -every packet include 1 MMIO instruction 501 * -MMIO instructions will stop fetch pipeline until commiting from RoB 502 * -flush to snpc (send ifu_redirect to Ftq) 503 * - Ibuffer enqueue 504 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 505 * - handle last half RVI instruction 506 ****************************************************************************** 507 */ 508 509 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 510 511 val f3_valid = RegInit(false.B) 512 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 513 // val f3_situation = RegEnable(f2_situation, f2_fire) 514 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 515 val f3_fire = io.toIbuffer.fire 516 517 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 518 519 val f3_exception = RegEnable(f2_exception, f2_fire) 520 val f3_mmio = RegEnable(f2_mmio, f2_fire) 521 val f3_except_fromBackend = RegEnable(f2_except_fromBackend, f2_fire) 522 523 val f3_instr = RegEnable(f2_instr, f2_fire) 524 525 expanders.zipWithIndex.foreach { case (expander, i) => 526 expander.io.in := f3_instr(i) 527 } 528 // Use expanded instruction only when input is legal. 529 // Otherwise use origin illegal RVC instruction. 530 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 531 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 532 }) 533 val f3_ill = VecInit(expanders.map(_.io.ill)) 534 535 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 536 val f3_pd = WireInit(f3_pd_wire) 537 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 538 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 539 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 540 541 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 542 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 543 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 544 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 545 546 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 547 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 548 // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 549 550 /** 551 *********************************************************************** 552 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 553 *********************************************************************** 554 */ 555 val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) 556 for (i <- 0 until PredictWidth) { 557 if (i == (PredictWidth - 2)) { 558 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 559 } else if (i == (PredictWidth - 1)) { 560 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 561 } else { 562 f3_half_snpc(i) := f3_pc(i + 2) 563 } 564 } 565 566 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 567 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 568 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 569 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 570 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 571 val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) 572 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 573 574 // Expand 1 bit to prevent overflow when assert 575 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 576 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 577 // brType, isCall and isRet generation is delayed to f3 stage 578 val f3Predecoder = Module(new F3Predecoder) 579 580 f3Predecoder.io.in.instr := f3_instr 581 582 f3_pd.zipWithIndex.map { case (pd, i) => 583 pd.brType := f3Predecoder.io.out.pd(i).brType 584 pd.isCall := f3Predecoder.io.out.pd(i).isCall 585 pd.isRet := f3Predecoder.io.out.pd(i).isRet 586 } 587 588 val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) 589 XSError(f3_valid && f3PdDiff, "f3 pd diff") 590 591 when(f3_valid && !f3_ftq_req.ftqOffset.valid) { 592 assert( 593 f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, 594 s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" 595 ) 596 } 597 598 /*** MMIO State Machine***/ 599 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 600 val mmio_is_RVC = RegInit(false.B) 601 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 602 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 603 val mmio_resend_gpaddr = RegInit(0.U(GPAddrBits.W)) 604 val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) 605 606 // last instuction finish 607 val is_first_instr = RegInit(true.B) 608 609 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 610 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 611 612 val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = 613 Enum(11) 614 val mmio_state = RegInit(m_idle) 615 616 val f3_req_is_mmio = f3_mmio && f3_valid 617 val mmio_commit = VecInit(io.rob_commits.map { commit => 618 commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U 619 }).asUInt.orR 620 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 621 622 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 623 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 624 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 625 626 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 627 fromFtqRedirectReg.bits := RegEnable( 628 fromFtq.redirect.bits, 629 0.U.asTypeOf(fromFtq.redirect.bits), 630 fromFtq.redirect.valid 631 ) 632 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 633 val mmioF3Flush = RegNext(f3_flush, init = false.B) 634 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 635 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 636 637 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 638 639 /** 640 ********************************************************************************** 641 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 642 * This is the exception when the first instruction is an MMIO instruction. 643 ********************************************************************************** 644 */ 645 when(is_first_instr && f3_fire) { 646 is_first_instr := false.B 647 } 648 649 when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) 650 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) 651 .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) 652 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) 653 .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) 654 655 val f3_mmio_use_seq_pc = RegInit(false.B) 656 657 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) 658 val redirect_mmio_req = 659 fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 660 661 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) 662 .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) 663 664 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 665 666 // mmio state machine 667 switch(mmio_state) { 668 is(m_idle) { 669 when(f3_req_is_mmio) { 670 mmio_state := m_waitLastCmt 671 } 672 } 673 674 is(m_waitLastCmt) { 675 when(is_first_instr) { 676 mmio_state := m_sendReq 677 }.otherwise { 678 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 679 } 680 } 681 682 is(m_sendReq) { 683 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 684 } 685 686 is(m_waitResp) { 687 when(fromUncache.fire) { 688 val isRVC = fromUncache.bits.data(1, 0) =/= 3.U 689 val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U 690 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 691 mmio_is_RVC := isRVC 692 f3_mmio_data(0) := fromUncache.bits.data(15, 0) 693 f3_mmio_data(1) := fromUncache.bits.data(31, 16) 694 } 695 } 696 697 is(m_sendTLB) { 698 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 699 } 700 701 is(m_tlbResp) { 702 when(io.iTLBInter.resp.fire) { 703 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 704 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 705 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 706 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 707 mmio_state := Mux(tlb_exception === ExceptionType.none, m_sendPMP, m_waitCommit) 708 // also save itlb response 709 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 710 mmio_resend_exception := tlb_exception 711 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 712 mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) 713 } 714 } 715 716 is(m_sendPMP) { 717 // if pmp re-check does not respond mmio, must be access fault 718 val pmp_exception = Mux(io.pmp.resp.mmio, ExceptionType.fromPMPResp(io.pmp.resp), ExceptionType.af) 719 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 720 mmio_state := Mux(pmp_exception === ExceptionType.none, m_resendReq, m_waitCommit) 721 // also save pmp response 722 mmio_resend_exception := pmp_exception 723 } 724 725 is(m_resendReq) { 726 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 727 } 728 729 is(m_waitResendResp) { 730 when(fromUncache.fire) { 731 mmio_state := m_waitCommit 732 f3_mmio_data(1) := fromUncache.bits.data(15, 0) 733 } 734 } 735 736 is(m_waitCommit) { 737 mmio_state := Mux(mmio_commit, m_commited, m_waitCommit) 738 } 739 740 // normal mmio instruction 741 is(m_commited) { 742 mmio_state := m_idle 743 mmio_is_RVC := false.B 744 mmio_resend_addr := 0.U 745 mmio_resend_exception := ExceptionType.none 746 mmio_resend_gpaddr := 0.U 747 mmio_resend_isForVSnonLeafPTE := false.B 748 } 749 } 750 751 // Exception or flush by older branch prediction 752 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 753 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 754 mmio_state := m_idle 755 mmio_is_RVC := false.B 756 mmio_resend_addr := 0.U 757 mmio_resend_exception := ExceptionType.none 758 mmio_resend_gpaddr := 0.U 759 mmio_resend_isForVSnonLeafPTE := false.B 760 f3_mmio_data.map(_ := 0.U) 761 } 762 763 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 764 toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) 765 fromUncache.ready := true.B 766 767 // send itlb request in m_sendTLB state 768 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 769 io.iTLBInter.req.bits.size := 3.U 770 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 771 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 772 io.iTLBInter.req.bits.cmd := TlbCmd.exec 773 io.iTLBInter.req.bits.isPrefetch := false.B 774 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 775 io.iTLBInter.req.bits.no_translate := false.B 776 io.iTLBInter.req.bits.fullva := 0.U 777 io.iTLBInter.req.bits.checkfullva := false.B 778 io.iTLBInter.req.bits.hyperinst := DontCare 779 io.iTLBInter.req.bits.hlvx := DontCare 780 io.iTLBInter.req.bits.memidx := DontCare 781 io.iTLBInter.req.bits.debug.robIdx := DontCare 782 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 783 io.iTLBInter.req.bits.pmp_addr := DontCare 784 // whats the difference between req_kill and req.bits.kill? 785 io.iTLBInter.req_kill := false.B 786 // wait for itlb response in m_tlbResp state 787 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 788 789 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 790 io.pmp.req.bits.addr := mmio_resend_addr 791 io.pmp.req.bits.size := 3.U 792 io.pmp.req.bits.cmd := TlbCmd.exec 793 794 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 795 796 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 797 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) 798 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 799 800 /*** prediction result check ***/ 801 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 802 checkerIn.jumpOffset := f3_jump_offset 803 checkerIn.target := f3_ftq_req.nextStartAddr 804 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 805 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 806 checkerIn.pds := f3_pd 807 checkerIn.pc := f3_pc 808 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 809 810 /*** handle half RVI in the last 2 Bytes ***/ 811 812 def hasLastHalf(idx: UInt) = 813 // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 814 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( 815 idx 816 ) && !f3_req_is_mmio 817 818 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 819 820 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 821 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 822 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 823 824 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt 825 val f3_lastHalf_disable = RegInit(false.B) 826 827 when(f3_flush || (f3_fire && f3_lastHalf_disable)) { 828 f3_lastHalf_disable := false.B 829 } 830 831 when(f3_flush) { 832 f3_lastHalf.valid := false.B 833 }.elsewhen(f3_fire) { 834 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 835 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 836 } 837 838 f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) 839 840 /*** frontend Trigger ***/ 841 frontendTrigger.io.pds := f3_pd 842 frontendTrigger.io.pc := f3_pc 843 frontendTrigger.io.data := f3_cut_data 844 845 frontendTrigger.io.frontendTrigger := io.frontendTrigger 846 847 val f3_triggered = frontendTrigger.io.triggered 848 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 849 850 /*** send to Ibuffer ***/ 851 io.toIbuffer.valid := f3_toIbuffer_valid 852 io.toIbuffer.bits.instrs := f3_expd_instr 853 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 854 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 855 io.toIbuffer.bits.pd := f3_pd 856 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 857 io.toIbuffer.bits.pc := f3_pc 858 // Find last using PriorityMux 859 io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools 860 io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => 861 a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio 862 } 863 io.toIbuffer.bits.foldpc := f3_foldpc 864 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 865 // exceptionFromBackend only needs to be set for the first instruction. 866 // Other instructions in the same block may have pf or af set, 867 // which is a side effect of the first instruction and actually not necessary. 868 io.toIbuffer.bits.exceptionFromBackend := (0 until PredictWidth).map { 869 case 0 => f3_except_fromBackend 870 case _ => false.B 871 } 872 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(_ =/= ExceptionType.none) 873 io.toIbuffer.bits.illegalInstr := f3_ill 874 io.toIbuffer.bits.triggered := f3_triggered 875 876 when(f3_lastHalf.valid) { 877 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 878 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 879 } 880 881 /** to backend */ 882 // f3_gpaddr is valid iff gpf is detected 883 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 884 f3_req_is_mmio, 885 mmio_resend_exception === ExceptionType.gpf, 886 f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) 887 ) 888 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 889 io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 890 io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( 891 f3_req_is_mmio, 892 mmio_resend_isForVSnonLeafPTE, 893 f3_isForVSnonLeafPTE 894 ) 895 896 // Write back to Ftq 897 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 898 val finishFetchMaskReg = RegNext(f3_cache_fetch) 899 900 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 901 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 902 f3_mmio_missOffset.valid := f3_req_is_mmio 903 f3_mmio_missOffset.bits := 0.U 904 905 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 906 // When backend redirect, mmio_state reset after 1 cycle. 907 // In this case, mask .valid to avoid overriding backend redirect 908 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 909 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 910 mmioFlushWb.bits.pc := f3_pc 911 mmioFlushWb.bits.pd := f3_pd 912 mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } 913 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 914 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 915 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 916 mmioFlushWb.bits.cfiOffset := DontCare 917 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) 918 mmioFlushWb.bits.jalTarget := DontCare 919 mmioFlushWb.bits.instrRange := f3_mmio_range 920 921 val mmioRVCExpander = Module(new RVCExpander) 922 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 923 924 /** external predecode for MMIO instruction */ 925 when(f3_req_is_mmio) { 926 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 927 val currentIsRVC = isRVC(inst) 928 929 val brType :: isCall :: isRet :: Nil = brInfo(inst) 930 val jalOffset = jal_offset(inst, currentIsRVC) 931 val brOffset = br_offset(inst, currentIsRVC) 932 933 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 934 935 io.toIbuffer.bits.pd(0).valid := true.B 936 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 937 io.toIbuffer.bits.pd(0).brType := brType 938 io.toIbuffer.bits.pd(0).isCall := isCall 939 io.toIbuffer.bits.pd(0).isRet := isRet 940 941 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 942 io.toIbuffer.bits.crossPageIPFFix(0) := mmio_resend_exception =/= ExceptionType.none 943 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 944 945 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 946 947 mmioFlushWb.bits.pd(0).valid := true.B 948 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 949 mmioFlushWb.bits.pd(0).brType := brType 950 mmioFlushWb.bits.pd(0).isCall := isCall 951 mmioFlushWb.bits.pd(0).isRet := isRet 952 } 953 954 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 955 956 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) 957 958 /** 959 ****************************************************************************** 960 * IFU Write Back Stage 961 * - write back predecode information to Ftq to update 962 * - redirect if found fault prediction 963 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 964 ****************************************************************************** 965 */ 966 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 967 val wb_valid = RegNext(wb_enable, init = false.B) 968 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 969 970 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 971 val wb_check_result_stage2 = checkerOutStage2 972 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 973 974 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 975 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 976 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 977 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 978 979 // val wb_pc = RegEnable(f3_pc, wb_enable) 980 val wb_pd = RegEnable(f3_pd, wb_enable) 981 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 982 983 /* false hit lastHalf */ 984 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 985 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 986 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 987 988 val wb_half_flush = wb_false_lastHalf 989 val wb_half_target = wb_false_target 990 991 /* false oversize */ 992 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC 993 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 994 val lastTaken = wb_check_result_stage1.fixedTaken.last 995 996 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 997 998 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 999 * we set a flag to notify f3 that the last half flag need not to be set. 1000 */ 1001 // f3_fire is after wb_valid 1002 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1003 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( 1004 f3_fire, 1005 init = false.B 1006 ) && !f3_flush) { 1007 f3_lastHalf_disable := true.B 1008 } 1009 1010 // wb_valid and f3_fire are in same cycle 1011 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1012 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { 1013 f3_lastHalf.valid := false.B 1014 } 1015 1016 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 1017 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => 1018 v && pd.isJal 1019 })) 1020 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1021 checkFlushWb.valid := wb_valid 1022 checkFlushWb.bits.pc := wb_pc 1023 checkFlushWb.bits.pd := wb_pd 1024 checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } 1025 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 1026 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 1027 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 1028 checkFlushWb.bits.misOffset.bits := Mux( 1029 wb_half_flush, 1030 wb_lastIdx, 1031 ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1032 ) 1033 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 1034 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 1035 checkFlushWb.bits.target := Mux( 1036 wb_half_flush, 1037 wb_half_target, 1038 wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) 1039 ) 1040 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 1041 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 1042 1043 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 1044 1045 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 1046 1047 /*write back flush type*/ 1048 val checkFaultType = wb_check_result_stage2.faultType 1049 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) 1050 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) 1051 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) 1052 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) 1053 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) 1054 1055 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) 1056 XSPerfAccumulate("predecode_flush_retFault", checkRetFault) 1057 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) 1058 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) 1059 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) 1060 1061 when(checkRetFault) { 1062 XSDebug( 1063 "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1064 wb_ftq_req.startAddr, 1065 wb_ftq_req.nextStartAddr, 1066 wb_ftq_req.ftqOffset.valid, 1067 wb_ftq_req.ftqOffset.bits 1068 ) 1069 } 1070 1071 /** performance counter */ 1072 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1073 val f3_req_0 = io.toIbuffer.fire 1074 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1075 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1076 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1077 val f3_hit = f3_perf_info.hit 1078 val perfEvents = Seq( 1079 ("frontendFlush ", wb_redirect), 1080 ("ifu_req ", io.toIbuffer.fire), 1081 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), 1082 ("ifu_req_cacheline_0 ", f3_req_0), 1083 ("ifu_req_cacheline_1 ", f3_req_1), 1084 ("ifu_req_cacheline_0_hit ", f3_hit_1), 1085 ("ifu_req_cacheline_1_hit ", f3_hit_1), 1086 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), 1087 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), 1088 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), 1089 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), 1090 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), 1091 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1092 ) 1093 generatePerfEvent() 1094 1095 XSPerfAccumulate("ifu_req", io.toIbuffer.fire) 1096 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) 1097 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) 1098 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) 1099 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) 1100 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) 1101 XSPerfAccumulate("frontendFlush", wb_redirect) 1102 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) 1103 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) 1104 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) 1105 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) 1106 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) 1107 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1108 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) 1109 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1110 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) 1111 XSPerfHistogram( 1112 "ifu2ibuffer_validCnt", 1113 PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), 1114 io.toIbuffer.fire, 1115 0, 1116 PredictWidth + 1, 1117 1 1118 ) 1119 1120 val hartId = p(XSCoreParamsKey).HartId 1121 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1122 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1123 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1124 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1125 1126 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1127 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1128 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1129 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1130 fetchIBufferDumpData.is_cache_hit := f3_hit 1131 1132 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1133 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1134 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1135 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1136 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1137 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1138 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1139 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1140 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1141 1142 fetchToIBufferTable.log( 1143 data = fetchIBufferDumpData, 1144 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1145 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1146 clock = clock, 1147 reset = reset 1148 ) 1149 ifuWbToFtqTable.log( 1150 data = ifuWbToFtqDumpData, 1151 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1152 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1153 clock = clock, 1154 reset = reset 1155 ) 1156 1157} 1158