1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.frontend 18 19import chisel3._ 20import chisel3.util._ 21import org.chipsalliance.cde.config.Parameters 22import utility._ 23import utils._ 24import xiangshan._ 25import xiangshan.ExceptionNO._ 26 27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr](p => p(XSCoreParamsKey).IBufSize) {} 28 29class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr](p => 30 p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank 31 ) {} 32 33class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr](p => p(XSCoreParamsKey).IBufNBank) {} 34 35class IBufferIO(implicit p: Parameters) extends XSBundle { 36 val flush = Input(Bool()) 37 val ControlRedirect = Input(Bool()) 38 val ControlBTBMissBubble = Input(Bool()) 39 val TAGEMissBubble = Input(Bool()) 40 val SCMissBubble = Input(Bool()) 41 val ITTAGEMissBubble = Input(Bool()) 42 val RASMissBubble = Input(Bool()) 43 val MemVioRedirect = Input(Bool()) 44 val in = Flipped(DecoupledIO(new FetchToIBuffer)) 45 val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow)) 46 val full = Output(Bool()) 47 val decodeCanAccept = Input(Bool()) 48 val stallReason = new StallReasonIO(DecodeWidth) 49} 50 51class IBufEntry(implicit p: Parameters) extends XSBundle { 52 val inst = UInt(32.W) 53 val pc = UInt(VAddrBits.W) 54 val foldpc = UInt(MemPredPCWidth.W) 55 val pd = new PreDecodeInfo 56 val pred_taken = Bool() 57 val ftqPtr = new FtqPtr 58 val ftqOffset = UInt(log2Ceil(PredictWidth).W) 59 val exceptionType = IBufferExceptionType() 60 val backendException = Bool() 61 val triggered = TriggerAction() 62 val isLastInFtqEntry = Bool() 63 64 def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = { 65 inst := fetch.instrs(i) 66 pc := fetch.pc(i) 67 foldpc := fetch.foldpc(i) 68 pd := fetch.pd(i) 69 pred_taken := fetch.ftqOffset(i).valid 70 ftqPtr := fetch.ftqPtr 71 ftqOffset := fetch.ftqOffset(i).bits 72 exceptionType := IBufferExceptionType.cvtFromFetchExcpAndCrossPageAndRVCII( 73 fetch.exceptionType(i), 74 fetch.crossPageIPFFix(i), 75 fetch.illegalInstr(i) 76 ) 77 backendException := fetch.backendException(i) 78 triggered := fetch.triggered(i) 79 isLastInFtqEntry := fetch.isLastInFtqEntry(i) 80 this 81 } 82 83 def toCtrlFlow: CtrlFlow = { 84 val cf = Wire(new CtrlFlow) 85 cf.instr := inst 86 cf.pc := pc 87 cf.foldpc := foldpc 88 cf.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 89 cf.exceptionVec(instrPageFault) := IBufferExceptionType.isPF(this.exceptionType) 90 cf.exceptionVec(instrGuestPageFault) := IBufferExceptionType.isGPF(this.exceptionType) 91 cf.exceptionVec(instrAccessFault) := IBufferExceptionType.isAF(this.exceptionType) 92 cf.exceptionVec(EX_II) := IBufferExceptionType.isRVCII(this.exceptionType) 93 cf.backendException := backendException 94 cf.trigger := triggered 95 cf.pd := pd 96 cf.pred_taken := pred_taken 97 cf.crossPageIPFFix := IBufferExceptionType.isCrossPage(this.exceptionType) 98 cf.storeSetHit := DontCare 99 cf.waitForRobIdx := DontCare 100 cf.loadWaitBit := DontCare 101 cf.loadWaitStrict := DontCare 102 cf.ssid := DontCare 103 cf.ftqPtr := ftqPtr 104 cf.ftqOffset := ftqOffset 105 cf.isLastInFtqEntry := isLastInFtqEntry 106 cf 107 } 108 109 object IBufferExceptionType extends NamedUInt(3) { 110 def None = "b000".U 111 def NonCrossPF = "b001".U 112 def NonCrossGPF = "b010".U 113 def NonCrossAF = "b011".U 114 // illegal instruction 115 def rvcII = "b100".U 116 def CrossPF = "b101".U 117 def CrossGPF = "b110".U 118 def CrossAF = "b111".U 119 120 def cvtFromFetchExcpAndCrossPageAndRVCII(fetchExcp: UInt, crossPage: Bool, rvcIll: Bool): UInt = { 121 require( 122 fetchExcp.getWidth == ExceptionType.width, 123 s"The width(${fetchExcp.getWidth}) of fetchExcp should be equal to " + 124 s"the width(${ExceptionType.width}) of frontend.ExceptionType." 125 ) 126 MuxCase( 127 0.U, 128 Seq( 129 crossPage -> Cat(1.U(1.W), fetchExcp), 130 fetchExcp.orR -> fetchExcp, 131 rvcIll -> this.rvcII 132 ) 133 ) 134 } 135 136 def isRVCII(uint: UInt): Bool = { 137 this.checkInputWidth(uint) 138 uint(2) && uint(1, 0) === 0.U 139 } 140 141 def isCrossPage(uint: UInt): Bool = { 142 this.checkInputWidth(uint) 143 uint(2) && uint(1, 0) =/= 0.U 144 } 145 146 def isPF(uint: UInt): Bool = uint(1, 0) === this.NonCrossPF(1, 0) 147 def isGPF(uint: UInt): Bool = uint(1, 0) === this.NonCrossGPF(1, 0) 148 def isAF(uint: UInt): Bool = uint(1, 0) === this.NonCrossAF(1, 0) 149 } 150} 151 152class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents { 153 val io = IO(new IBufferIO) 154 155 // io alias 156 private val decodeCanAccept = io.decodeCanAccept 157 158 // Parameter Check 159 private val bankSize = IBufSize / IBufNBank 160 require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize") 161 require( 162 IBufNBank >= DecodeWidth, 163 s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth" 164 ) 165 166 // IBuffer is organized as raw registers 167 // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled 168 // . + + E E E - . 169 // . + + E E E - . 170 // . . + E E E - . 171 // . . + E E E E - 172 // As shown above, + means enqueue, - means dequeue, E is current content 173 // When dequeue, read port is organized like a banked FIFO 174 // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area 175 // Enqueue writes cannot benefit from this characteristic unless use a SRAM 176 // For detail see Enqueue and Dequeue below 177 private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry))) 178 private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)(bankID => 179 VecInit.tabulate(bankSize)(inBankOffset => ibuf(bankID + inBankOffset * IBufNBank)) 180 ) 181 182 // Bypass wire 183 private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 184 // Normal read wire 185 private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 186 // Output register 187 private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 188 private val outputEntriesValidNum = 189 PriorityMuxDefault(outputEntries.map(_.valid).zip(Seq.range(1, DecodeWidth).map(_.U)).reverse.toSeq, 0.U) 190 191 // Between Bank 192 private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr))) 193 private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0) 194 private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType) 195 // Inside Bank 196 private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))) 197 private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType) 198 199 val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr)) 200 val deqPtrNext = Wire(deqPtr.cloneType) 201 202 val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr))) 203 val enqPtr = enqPtrVec(0) 204 205 val numTryEnq = WireDefault(0.U) 206 val numEnq = Mux(io.in.fire, numTryEnq, 0.U) 207 208 // empty and decode can accept insts 209 val useBypass = enqPtr === deqPtr && decodeCanAccept 210 211 // The number of decode accepted insts. 212 // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation. 213 private val numOut = Wire(UInt(log2Ceil(DecodeWidth).W)) 214 private val numDeq = numOut 215 216 // counter current number of valid 217 val numValid = distanceBetween(enqPtr, deqPtr) 218 val numValidAfterDeq = numValid - numDeq 219 // counter next number of valid 220 val numValidNext = numValid + numEnq - numDeq 221 val allowEnq = RegInit(true.B) 222 val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U) 223 224 allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full 225 226 val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i))) 227 val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i)) 228 229 val outputEntriesIsNotFull = !outputEntries(DecodeWidth - 1).valid 230 when(decodeCanAccept) { 231 numOut := Mux(numValid >= DecodeWidth.U, DecodeWidth.U, numValid) 232 }.elsewhen(outputEntriesIsNotFull) { 233 numOut := Mux(numValid >= DecodeWidth.U - outputEntriesValidNum, DecodeWidth.U - outputEntriesValidNum, numValid) 234 }.otherwise { 235 numOut := 0.U 236 } 237 val numBypass = Wire(UInt(log2Ceil(DecodeWidth).W)) 238 // when using bypass, bypassed entries do not enqueue 239 when(useBypass) { 240 when(numFromFetch >= DecodeWidth.U) { 241 numTryEnq := numFromFetch - DecodeWidth.U 242 numBypass := DecodeWidth.U 243 }.otherwise { 244 numTryEnq := 0.U 245 numBypass := numFromFetch 246 } 247 }.otherwise { 248 numTryEnq := numFromFetch 249 numBypass := 0.U 250 } 251 252 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 253 // Bypass 254 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 255 bypassEntries.zipWithIndex.foreach { 256 case (entry, idx) => 257 // Select 258 val validOH = Range(0, PredictWidth).map { 259 i => 260 io.in.bits.valid(i) && 261 io.in.bits.enqEnable(i) && 262 enqOffset(i) === idx.asUInt 263 } // Should be OneHot 264 entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush 265 entry.bits := Mux1H(validOH, enqData) 266 267 // Debug Assertion 268 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 269 } 270 271 // => Decode Output 272 // clean register output 273 io.out zip outputEntries foreach { 274 case (io, reg) => 275 io.valid := reg.valid 276 io.bits := reg.bits.toCtrlFlow 277 } 278 (outputEntries zip bypassEntries).zipWithIndex.foreach { 279 case ((out, bypass), i) => 280 when(decodeCanAccept) { 281 when(useBypass && io.in.valid) { 282 out := bypass 283 }.otherwise { 284 out := deqEntries(i) 285 } 286 }.elsewhen(outputEntriesIsNotFull) { 287 out.valid := deqEntries(i).valid 288 out.bits := Mux( 289 i.U < outputEntriesValidNum, 290 out.bits, 291 VecInit(deqEntries.take(i + 1).map(_.bits))(i.U - outputEntriesValidNum) 292 ) 293 } 294 } 295 296 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 297 // Enqueue 298 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 299 io.in.ready := allowEnq 300 // Data 301 ibuf.zipWithIndex.foreach { 302 case (entry, idx) => { 303 // Select 304 val validOH = Range(0, PredictWidth).map { 305 i => 306 val useBypassMatch = enqOffset(i) >= DecodeWidth.U && 307 enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt 308 val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt 309 val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue 310 311 io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m 312 } // Should be OneHot 313 val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush 314 315 // Write port 316 // Each IBuffer entry has a PredictWidth -> 1 Mux 317 val writeEntry = Mux1H(validOH, enqData) 318 entry := Mux(wen, writeEntry, entry) 319 320 // Debug Assertion 321 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 322 } 323 } 324 // Pointer maintenance 325 when(io.in.fire && !io.flush) { 326 enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq)) 327 } 328 329 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 330 // Dequeue 331 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 332 val outputEntriesValidNumNext = Wire(UInt(log2Ceil(DecodeWidth).W)) 333 XSError(outputEntriesValidNumNext > DecodeWidth.U, "Ibuffer: outputEntriesValidNumNext > DecodeWidth.U") 334 val validVec = UIntToMask(outputEntriesValidNumNext(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth) 335 when(decodeCanAccept) { 336 outputEntriesValidNumNext := Mux(useBypass, numBypass, numDeq) 337 }.elsewhen(outputEntriesIsNotFull) { 338 outputEntriesValidNumNext := outputEntriesValidNum + numDeq 339 }.otherwise { 340 outputEntriesValidNumNext := outputEntriesValidNum 341 } 342 // Data 343 // Read port 344 // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1 345 // Should be better than IBufSize -> 1 in area, with no significant latency increase 346 private val readStage1: Vec[IBufEntry] = 347 VecInit.tabulate(IBufNBank)(bankID => Mux1H(UIntToOH(deqInBankPtr(bankID).value), bankedIBufView(bankID))) 348 for (i <- 0 until DecodeWidth) { 349 deqEntries(i).valid := validVec(i) 350 deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVec(i).value), readStage1) 351 } 352 // Pointer maintenance 353 deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq)) 354 deqPtrNext := deqPtr + numDeq 355 deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach { 356 case ((ptrNext, ptr), idx) => { 357 // validVec[k] == bankValid[deqBankPtr + k] 358 // So bankValid[n] == validVec[n - deqBankPtr] 359 val validIdx = Mux( 360 idx.asUInt >= deqBankPtr.value, 361 idx.asUInt - deqBankPtr.value, 362 ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0) 363 )(log2Ceil(DecodeWidth) - 1, 0) 364 val bankAdvance = numOut > validIdx 365 ptrNext := Mux(bankAdvance, ptr + 1.U, ptr) 366 } 367 } 368 369 // Flush 370 when(io.flush) { 371 allowEnq := true.B 372 enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr)) 373 deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr)) 374 deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)) 375 deqPtr := 0.U.asTypeOf(new IBufPtr()) 376 outputEntries.foreach(_.valid := false.B) 377 }.otherwise { 378 deqPtr := deqPtrNext 379 deqInBankPtr := deqInBankPtrNext 380 deqBankPtrVec := deqBankPtrVecNext 381 } 382 io.full := !allowEnq 383 384 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 385 // TopDown 386 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 387 val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle)) 388 topdown_stage := io.in.bits.topdown_info 389 when(io.flush) { 390 when(io.ControlRedirect) { 391 when(io.ControlBTBMissBubble) { 392 topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B 393 }.elsewhen(io.TAGEMissBubble) { 394 topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 395 }.elsewhen(io.SCMissBubble) { 396 topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B 397 }.elsewhen(io.ITTAGEMissBubble) { 398 topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 399 }.elsewhen(io.RASMissBubble) { 400 topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B 401 } 402 }.elsewhen(io.MemVioRedirect) { 403 topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 404 }.otherwise { 405 topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 406 } 407 } 408 409 val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W)) 410 val deqValidCount = PopCount(validVec.asBools) 411 val deqWasteCount = DecodeWidth.U - deqValidCount 412 matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse) 413 414 io.stallReason.reason.map(_ := 0.U) 415 for (i <- 0 until DecodeWidth) { 416 when(i.U < deqWasteCount) { 417 io.stallReason.reason(DecodeWidth - i - 1) := matchBubble 418 } 419 } 420 421 when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) { 422 // should set reason for FetchFragmentationStall 423 // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B 424 for (i <- 0 until DecodeWidth) { 425 when(i.U < deqWasteCount) { 426 io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U 427 } 428 } 429 } 430 431 when(io.stallReason.backReason.valid) { 432 io.stallReason.reason.map(_ := io.stallReason.backReason.bits) 433 } 434 435 // Debug info 436 XSError( 437 deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt, 438 "Dequeue PTR mismatch" 439 ) 440 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 441 442 XSDebug(io.flush, "IBuffer Flushed\n") 443 444 XSDebug(io.in.fire, "Enque:\n") 445 XSDebug(io.in.fire, p"MASK=${Binary(io.in.bits.valid)}\n") 446 for (i <- 0 until PredictWidth) { 447 XSDebug(io.in.fire, p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n") 448 } 449 450 for (i <- 0 until DecodeWidth) { 451 XSDebug( 452 io.out(i).fire, 453 p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" + 454 p"v=${io.out(i).valid} r=${io.out(i).ready} " + 455 p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n" 456 ) 457 } 458 459 XSDebug(p"numValid: ${numValid}\n") 460 XSDebug(p"EnqNum: ${numEnq}\n") 461 XSDebug(p"DeqNum: ${numDeq}\n") 462 463 val afterInit = RegInit(false.B) 464 val headBubble = RegInit(false.B) 465 when(io.in.fire)(afterInit := true.B) 466 when(io.flush) { 467 headBubble := true.B 468 }.elsewhen(numValid =/= 0.U) { 469 headBubble := false.B 470 } 471 val instrHungry = afterInit && (numValid === 0.U) && !headBubble 472 473 QueuePerf(IBufSize, numValid, !allowEnq) 474 XSPerfAccumulate("flush", io.flush) 475 XSPerfAccumulate("hungry", instrHungry) 476 477 val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble 478 XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull) 479 480 val FrontBubble = Mux(decodeCanAccept, DecodeWidth.U - numOut, 0.U) 481 482 val perfEvents = Seq( 483 ("IBuffer_Flushed ", io.flush), 484 ("IBuffer_hungry ", instrHungry), 485 ("IBuffer_1_4_valid", (numValid > (0 * (IBufSize / 4)).U) & (numValid < (1 * (IBufSize / 4)).U)), 486 ("IBuffer_2_4_valid", (numValid >= (1 * (IBufSize / 4)).U) & (numValid < (2 * (IBufSize / 4)).U)), 487 ("IBuffer_3_4_valid", (numValid >= (2 * (IBufSize / 4)).U) & (numValid < (3 * (IBufSize / 4)).U)), 488 ("IBuffer_4_4_valid", (numValid >= (3 * (IBufSize / 4)).U) & (numValid < (4 * (IBufSize / 4)).U)), 489 ("IBuffer_full ", numValid.andR), 490 ("Front_Bubble ", FrontBubble) 491 ) 492 generatePerfEvent() 493} 494