1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.frontend 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import xiangshan._ 23import utils._ 24import utility._ 25import xiangshan.ExceptionNO._ 26 27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr]( 28 p => p(XSCoreParamsKey).IBufSize 29) { 30} 31 32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr]( 33 p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank 34) { 35} 36 37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr]( 38 p => p(XSCoreParamsKey).IBufNBank 39) { 40} 41 42class IBufferIO(implicit p: Parameters) extends XSBundle { 43 val flush = Input(Bool()) 44 val ControlRedirect = Input(Bool()) 45 val ControlBTBMissBubble = Input(Bool()) 46 val TAGEMissBubble = Input(Bool()) 47 val SCMissBubble = Input(Bool()) 48 val ITTAGEMissBubble = Input(Bool()) 49 val RASMissBubble = Input(Bool()) 50 val MemVioRedirect = Input(Bool()) 51 val in = Flipped(DecoupledIO(new FetchToIBuffer)) 52 val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow)) 53 val full = Output(Bool()) 54 val decodeCanAccept = Input(Bool()) 55 val stallReason = new StallReasonIO(DecodeWidth) 56} 57 58class IBufEntry(implicit p: Parameters) extends XSBundle { 59 val inst = UInt(32.W) 60 val pc = UInt(VAddrBits.W) 61 val foldpc = UInt(MemPredPCWidth.W) 62 val pd = new PreDecodeInfo 63 val pred_taken = Bool() 64 val ftqPtr = new FtqPtr 65 val ftqOffset = UInt(log2Ceil(PredictWidth).W) 66 val exceptionType = IBufferExceptionType() 67 val triggered = TriggerAction() 68 69 def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = { 70 inst := fetch.instrs(i) 71 pc := fetch.pc(i) 72 foldpc := fetch.foldpc(i) 73 pd := fetch.pd(i) 74 pred_taken := fetch.ftqOffset(i).valid 75 ftqPtr := fetch.ftqPtr 76 ftqOffset := fetch.ftqOffset(i).bits 77 exceptionType := IBufferExceptionType.cvtFromFetchExcpAndCrossPageAndRVCII( 78 fetch.exceptionType(i), 79 fetch.crossPageIPFFix(i), 80 fetch.illegalInstr(i), 81 ) 82 triggered := fetch.triggered(i) 83 this 84 } 85 86 def toCtrlFlow: CtrlFlow = { 87 val cf = Wire(new CtrlFlow) 88 cf.instr := inst 89 cf.pc := pc 90 cf.foldpc := foldpc 91 cf.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 92 cf.exceptionVec(instrPageFault) := IBufferExceptionType.isPF (this.exceptionType) 93 cf.exceptionVec(instrGuestPageFault) := IBufferExceptionType.isGPF(this.exceptionType) 94 cf.exceptionVec(instrAccessFault) := IBufferExceptionType.isAF (this.exceptionType) 95 cf.exceptionVec(EX_II) := IBufferExceptionType.isRVCII(this.exceptionType) 96 cf.trigger := triggered 97 cf.pd := pd 98 cf.pred_taken := pred_taken 99 cf.crossPageIPFFix := IBufferExceptionType.isCrossPage(this.exceptionType) 100 cf.storeSetHit := DontCare 101 cf.waitForRobIdx := DontCare 102 cf.loadWaitBit := DontCare 103 cf.loadWaitStrict := DontCare 104 cf.ssid := DontCare 105 cf.ftqPtr := ftqPtr 106 cf.ftqOffset := ftqOffset 107 cf 108 } 109 110 object IBufferExceptionType extends NamedUInt(3) { 111 def None = "b000".U 112 def NonCrossPF = "b001".U 113 def NonCrossGPF = "b010".U 114 def NonCrossAF = "b011".U 115 // illegal instruction 116 def rvcII = "b100".U 117 def CrossPF = "b101".U 118 def CrossGPF = "b110".U 119 def CrossAF = "b111".U 120 121 def cvtFromFetchExcpAndCrossPageAndRVCII(fetchExcp: UInt, crossPage: Bool, rvcIll: Bool): UInt = { 122 require( 123 fetchExcp.getWidth == ExceptionType.width, 124 s"The width(${fetchExcp.getWidth}) of fetchExcp should be equal to " + 125 s"the width(${ExceptionType.width}) of frontend.ExceptionType." 126 ) 127 MuxCase(fetchExcp, Seq( 128 rvcIll -> this.rvcII, 129 crossPage -> Cat(1.U(1.W), fetchExcp), 130 )) 131 } 132 133 def isRVCII(uint: UInt): Bool = { 134 this.checkInputWidth(uint) 135 uint(2) && uint(1, 0) === 0.U 136 } 137 138 def isCrossPage(uint: UInt): Bool = { 139 this.checkInputWidth(uint) 140 uint(2) && uint(1, 0) =/= 0.U 141 } 142 143 def isPF (uint: UInt): Bool = uint(1, 0) === this.NonCrossPF (1, 0) 144 def isGPF(uint: UInt): Bool = uint(1, 0) === this.NonCrossGPF(1, 0) 145 def isAF (uint: UInt): Bool = uint(1, 0) === this.NonCrossAF (1, 0) 146 } 147} 148 149class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents { 150 val io = IO(new IBufferIO) 151 152 // io alias 153 private val decodeCanAccept = io.decodeCanAccept 154 155 // Parameter Check 156 private val bankSize = IBufSize / IBufNBank 157 require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize") 158 require(IBufNBank >= DecodeWidth, 159 s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth") 160 161 // IBuffer is organized as raw registers 162 // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled 163 // . + + E E E - . 164 // . + + E E E - . 165 // . . + E E E - . 166 // . . + E E E E - 167 // As shown above, + means enqueue, - means dequeue, E is current content 168 // When dequeue, read port is organized like a banked FIFO 169 // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area 170 // Enqueue writes cannot benefit from this characteristic unless use a SRAM 171 // For detail see Enqueue and Dequeue below 172 private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry))) 173 private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)( 174 bankID => VecInit.tabulate(bankSize)( 175 inBankOffset => ibuf(bankID + inBankOffset * IBufNBank) 176 ) 177 ) 178 179 180 // Bypass wire 181 private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 182 // Normal read wire 183 private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 184 // Output register 185 private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 186 private val outputEntriesValidNum = PriorityMuxDefault(outputEntries.map(_.valid).zip(Seq.range(1, DecodeWidth).map(_.U)).reverse.toSeq, 0.U) 187 188 // Between Bank 189 private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr))) 190 private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0) 191 private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType) 192 // Inside Bank 193 private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))) 194 private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType) 195 196 val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr)) 197 val deqPtrNext = Wire(deqPtr.cloneType) 198 199 val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr))) 200 val enqPtr = enqPtrVec(0) 201 202 val numTryEnq = WireDefault(0.U) 203 val numEnq = Mux(io.in.fire, numTryEnq, 0.U) 204 205 // empty and decode can accept insts 206 val useBypass = enqPtr === deqPtr && decodeCanAccept 207 208 // The number of decode accepted insts. 209 // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation. 210 private val numOut = Wire(UInt(log2Ceil(DecodeWidth).W)) 211 private val numDeq = numOut 212 213 // counter current number of valid 214 val numValid = distanceBetween(enqPtr, deqPtr) 215 val numValidAfterDeq = numValid - numDeq 216 // counter next number of valid 217 val numValidNext = numValid + numEnq - numDeq 218 val allowEnq = RegInit(true.B) 219 val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U) 220 221 allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full 222 223 val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i))) 224 val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i)) 225 226 val outputEntriesIsNotFull = !outputEntries(DecodeWidth-1).valid 227 when(decodeCanAccept) { 228 numOut := Mux(numValid >= DecodeWidth.U, DecodeWidth.U, numValid) 229 }.elsewhen(outputEntriesIsNotFull) { 230 numOut := Mux(numValid >= DecodeWidth.U - outputEntriesValidNum, DecodeWidth.U - outputEntriesValidNum, numValid) 231 }.otherwise { 232 numOut := 0.U 233 } 234 val numBypass = Wire(UInt(log2Ceil(DecodeWidth).W)) 235 // when using bypass, bypassed entries do not enqueue 236 when(useBypass) { 237 when(numFromFetch >= DecodeWidth.U) { 238 numTryEnq := numFromFetch - DecodeWidth.U 239 numBypass := DecodeWidth.U 240 } .otherwise { 241 numTryEnq := 0.U 242 numBypass := numFromFetch 243 } 244 } .otherwise { 245 numTryEnq := numFromFetch 246 numBypass := 0.U 247 } 248 249 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 250 // Bypass 251 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 252 bypassEntries.zipWithIndex.foreach { 253 case (entry, idx) => 254 // Select 255 val validOH = Range(0, PredictWidth).map { 256 i => 257 io.in.bits.valid(i) && 258 io.in.bits.enqEnable(i) && 259 enqOffset(i) === idx.asUInt 260 } // Should be OneHot 261 entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush 262 entry.bits := Mux1H(validOH, enqData) 263 264 // Debug Assertion 265 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 266 } 267 268 // => Decode Output 269 // clean register output 270 io.out zip outputEntries foreach { 271 case (io, reg) => 272 io.valid := reg.valid 273 io.bits := reg.bits.toCtrlFlow 274 } 275 (outputEntries zip bypassEntries).zipWithIndex.foreach { 276 case ((out, bypass), i) => 277 when(decodeCanAccept) { 278 when(useBypass && io.in.valid) { 279 out := bypass 280 }.otherwise { 281 out := deqEntries(i) 282 } 283 }.elsewhen(outputEntriesIsNotFull){ 284 out.valid := deqEntries(i).valid 285 out.bits := Mux(i.U < outputEntriesValidNum, out.bits, VecInit(deqEntries.take(i + 1).map(_.bits))(i.U - outputEntriesValidNum)) 286 } 287 } 288 289 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 290 // Enqueue 291 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 292 io.in.ready := allowEnq 293 // Data 294 ibuf.zipWithIndex.foreach { 295 case (entry, idx) => { 296 // Select 297 val validOH = Range(0, PredictWidth).map { 298 i => 299 val useBypassMatch = enqOffset(i) >= DecodeWidth.U && 300 enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt 301 val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt 302 val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue 303 304 io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m 305 } // Should be OneHot 306 val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush 307 308 // Write port 309 // Each IBuffer entry has a PredictWidth -> 1 Mux 310 val writeEntry = Mux1H(validOH, enqData) 311 entry := Mux(wen, writeEntry, entry) 312 313 // Debug Assertion 314 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 315 } 316 } 317 // Pointer maintenance 318 when (io.in.fire && !io.flush) { 319 enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq)) 320 } 321 322 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 323 // Dequeue 324 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 325 val outputEntriesValidNumNext = Wire(UInt(log2Ceil(DecodeWidth).W)) 326 XSError(outputEntriesValidNumNext > DecodeWidth.U, "Ibuffer: outputEntriesValidNumNext > DecodeWidth.U") 327 val validVec = UIntToMask(outputEntriesValidNumNext(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth) 328 when(decodeCanAccept) { 329 outputEntriesValidNumNext := Mux(useBypass, numBypass, numDeq) 330 }.elsewhen(outputEntriesIsNotFull) { 331 outputEntriesValidNumNext := outputEntriesValidNum + numDeq 332 }.otherwise { 333 outputEntriesValidNumNext := outputEntriesValidNum 334 } 335 // Data 336 // Read port 337 // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1 338 // Should be better than IBufSize -> 1 in area, with no significant latency increase 339 private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)( 340 bankID => Mux1H(UIntToOH(deqInBankPtr(bankID).value), bankedIBufView(bankID)) 341 ) 342 for (i <- 0 until DecodeWidth) { 343 deqEntries(i).valid := validVec(i) 344 deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVec(i).value), readStage1) 345 } 346 // Pointer maintenance 347 deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq)) 348 deqPtrNext := deqPtr + numDeq 349 deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach { 350 case ((ptrNext, ptr), idx) => { 351 // validVec[k] == bankValid[deqBankPtr + k] 352 // So bankValid[n] == validVec[n - deqBankPtr] 353 val validIdx = Mux(idx.asUInt >= deqBankPtr.value, 354 idx.asUInt - deqBankPtr.value, 355 ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0) 356 )(log2Ceil(DecodeWidth) - 1, 0) 357 val bankAdvance = numOut > validIdx 358 ptrNext := Mux(bankAdvance , ptr + 1.U, ptr) 359 } 360 } 361 362 // Flush 363 when (io.flush) { 364 allowEnq := true.B 365 enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr)) 366 deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr)) 367 deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)) 368 deqPtr := 0.U.asTypeOf(new IBufPtr()) 369 outputEntries.foreach(_.valid := false.B) 370 }.otherwise { 371 deqPtr := deqPtrNext 372 deqInBankPtr := deqInBankPtrNext 373 deqBankPtrVec := deqBankPtrVecNext 374 } 375 io.full := !allowEnq 376 377 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 378 // TopDown 379 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 380 val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle)) 381 topdown_stage := io.in.bits.topdown_info 382 when(io.flush) { 383 when(io.ControlRedirect) { 384 when(io.ControlBTBMissBubble) { 385 topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B 386 }.elsewhen(io.TAGEMissBubble) { 387 topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 388 }.elsewhen(io.SCMissBubble) { 389 topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B 390 }.elsewhen(io.ITTAGEMissBubble) { 391 topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 392 }.elsewhen(io.RASMissBubble) { 393 topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B 394 } 395 }.elsewhen(io.MemVioRedirect) { 396 topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 397 }.otherwise { 398 topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 399 } 400 } 401 402 403 val dequeueInsufficient = Wire(Bool()) 404 val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W)) 405 val deqValidCount = PopCount(validVec.asBools) 406 val deqWasteCount = DecodeWidth.U - deqValidCount 407 dequeueInsufficient := deqValidCount < DecodeWidth.U 408 matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse) 409 410 io.stallReason.reason.map(_ := 0.U) 411 for (i <- 0 until DecodeWidth) { 412 when(i.U < deqWasteCount) { 413 io.stallReason.reason(DecodeWidth - i - 1) := matchBubble 414 } 415 } 416 417 when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) { 418 // should set reason for FetchFragmentationStall 419 // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B 420 for (i <- 0 until DecodeWidth) { 421 when(i.U < deqWasteCount) { 422 io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U 423 } 424 } 425 } 426 427 when(io.stallReason.backReason.valid) { 428 io.stallReason.reason.map(_ := io.stallReason.backReason.bits) 429 } 430 431 // Debug info 432 XSError( 433 deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt, 434 "Dequeue PTR mismatch" 435 ) 436 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 437 438 XSDebug(io.flush, "IBuffer Flushed\n") 439 440 when(io.in.fire) { 441 XSDebug("Enque:\n") 442 XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n") 443 for(i <- 0 until PredictWidth){ 444 XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n") 445 } 446 } 447 448 for (i <- 0 until DecodeWidth) { 449 XSDebug(io.out(i).fire, 450 p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" + 451 p"v=${io.out(i).valid} r=${io.out(i).ready} " + 452 p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n") 453 } 454 455 XSDebug(p"numValid: ${numValid}\n") 456 XSDebug(p"EnqNum: ${numEnq}\n") 457 XSDebug(p"DeqNum: ${numDeq}\n") 458 459 val afterInit = RegInit(false.B) 460 val headBubble = RegInit(false.B) 461 when (io.in.fire) { afterInit := true.B } 462 when (io.flush) { 463 headBubble := true.B 464 } .elsewhen(numValid =/= 0.U) { 465 headBubble := false.B 466 } 467 val instrHungry = afterInit && (numValid === 0.U) && !headBubble 468 469 QueuePerf(IBufSize, numValid, !allowEnq) 470 XSPerfAccumulate("flush", io.flush) 471 XSPerfAccumulate("hungry", instrHungry) 472 473 val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble 474 XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull) 475 /* 476 XSPerfAccumulate("ICacheMissBubble", Mux(matchBubbleVec(TopDownCounters.ICacheMissBubble.id), deqWasteCount, 0.U)) 477 XSPerfAccumulate("ITLBMissBubble", Mux(matchBubbleVec(TopDownCounters.ITLBMissBubble.id), deqWasteCount, 0.U)) 478 XSPerfAccumulate("ControlRedirectBubble", Mux(matchBubbleVec(TopDownCounters.ControlRedirectBubble.id), deqWasteCount, 0.U)) 479 XSPerfAccumulate("MemVioRedirectBubble", Mux(matchBubbleVec(TopDownCounters.MemVioRedirectBubble.id), deqWasteCount, 0.U)) 480 XSPerfAccumulate("OtherRedirectBubble", Mux(matchBubbleVec(TopDownCounters.OtherRedirectBubble.id), deqWasteCount, 0.U)) 481 XSPerfAccumulate("BTBMissBubble", Mux(matchBubbleVec(TopDownCounters.BTBMissBubble.id), deqWasteCount, 0.U)) 482 XSPerfAccumulate("OverrideBubble", Mux(matchBubbleVec(TopDownCounters.OverrideBubble.id), deqWasteCount, 0.U)) 483 XSPerfAccumulate("FtqUpdateBubble", Mux(matchBubbleVec(TopDownCounters.FtqUpdateBubble.id), deqWasteCount, 0.U)) 484 XSPerfAccumulate("FtqFullStall", Mux(matchBubbleVec(TopDownCounters.FtqFullStall.id), deqWasteCount, 0.U)) 485 XSPerfAccumulate("FetchFragmentBubble", 486 Mux(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR, 0.U, deqWasteCount)) 487 XSPerfAccumulate("TAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.TAGEMissBubble.id), deqWasteCount, 0.U)) 488 XSPerfAccumulate("SCMissBubble", Mux(matchBubbleVec(TopDownCounters.SCMissBubble.id), deqWasteCount, 0.U)) 489 XSPerfAccumulate("ITTAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.ITTAGEMissBubble.id), deqWasteCount, 0.U)) 490 XSPerfAccumulate("RASMissBubble", Mux(matchBubbleVec(TopDownCounters.RASMissBubble.id), deqWasteCount, 0.U)) 491 */ 492 493 val perfEvents = Seq( 494 ("IBuffer_Flushed ", io.flush ), 495 ("IBuffer_hungry ", instrHungry ), 496 ("IBuffer_1_4_valid", (numValid > (0*(IBufSize/4)).U) & (numValid < (1*(IBufSize/4)).U) ), 497 ("IBuffer_2_4_valid", (numValid >= (1*(IBufSize/4)).U) & (numValid < (2*(IBufSize/4)).U) ), 498 ("IBuffer_3_4_valid", (numValid >= (2*(IBufSize/4)).U) & (numValid < (3*(IBufSize/4)).U) ), 499 ("IBuffer_4_4_valid", (numValid >= (3*(IBufSize/4)).U) & (numValid < (4*(IBufSize/4)).U) ), 500 ("IBuffer_full ", numValid.andR ), 501 ("Front_Bubble ", PopCount((0 until DecodeWidth).map(i => io.out(i).ready && !io.out(i).valid))) 502 ) 503 generatePerfEvent() 504} 505