xref: /XiangShan/src/main/scala/xiangshan/frontend/IBuffer.scala (revision 887862dbb8debde8ab099befc426493834a69ee7)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.frontend
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import xiangshan._
23import utils._
24import utility._
25import xiangshan.ExceptionNO._
26
27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr](
28  p => p(XSCoreParamsKey).IBufSize
29) {
30}
31
32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr](
33  p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank
34) {
35}
36
37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr](
38  p => p(XSCoreParamsKey).IBufNBank
39) {
40}
41
42class IBufferIO(implicit p: Parameters) extends XSBundle {
43  val flush = Input(Bool())
44  val ControlRedirect = Input(Bool())
45  val ControlBTBMissBubble = Input(Bool())
46  val TAGEMissBubble = Input(Bool())
47  val SCMissBubble = Input(Bool())
48  val ITTAGEMissBubble = Input(Bool())
49  val RASMissBubble = Input(Bool())
50  val MemVioRedirect = Input(Bool())
51  val in = Flipped(DecoupledIO(new FetchToIBuffer))
52  val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow))
53  val full = Output(Bool())
54  val decodeCanAccept = Input(Bool())
55  val stallReason = new StallReasonIO(DecodeWidth)
56}
57
58class IBufEntry(implicit p: Parameters) extends XSBundle {
59  val inst = UInt(32.W)
60  val pc = UInt(VAddrBits.W)
61  val foldpc = UInt(MemPredPCWidth.W)
62  val pd = new PreDecodeInfo
63  val pred_taken = Bool()
64  val ftqPtr = new FtqPtr
65  val ftqOffset = UInt(log2Ceil(PredictWidth).W)
66  val exceptionType = IBufferExceptionType()
67  val triggered = TriggerAction()
68
69  def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = {
70    inst   := fetch.instrs(i)
71    pc     := fetch.pc(i)
72    foldpc := fetch.foldpc(i)
73    pd     := fetch.pd(i)
74    pred_taken := fetch.ftqOffset(i).valid
75    ftqPtr := fetch.ftqPtr
76    ftqOffset := fetch.ftqOffset(i).bits
77    exceptionType := IBufferExceptionType.cvtFromFetchExcpAndCrossPageAndRVCII(
78      fetch.exceptionType(i),
79      fetch.crossPageIPFFix(i),
80      fetch.illegalInstr(i),
81    )
82    triggered := fetch.triggered(i)
83    this
84  }
85
86  def toCtrlFlow: CtrlFlow = {
87    val cf = Wire(new CtrlFlow)
88    cf.instr := inst
89    cf.pc := pc
90    cf.foldpc := foldpc
91    cf.exceptionVec := 0.U.asTypeOf(ExceptionVec())
92    cf.exceptionVec(instrPageFault)      := IBufferExceptionType.isPF (this.exceptionType)
93    cf.exceptionVec(instrGuestPageFault) := IBufferExceptionType.isGPF(this.exceptionType)
94    cf.exceptionVec(instrAccessFault)    := IBufferExceptionType.isAF (this.exceptionType)
95    cf.exceptionVec(EX_II)               := IBufferExceptionType.isRVCII(this.exceptionType)
96    cf.trigger := triggered
97    cf.pd := pd
98    cf.pred_taken := pred_taken
99    cf.crossPageIPFFix := IBufferExceptionType.isCrossPage(this.exceptionType)
100    cf.storeSetHit := DontCare
101    cf.waitForRobIdx := DontCare
102    cf.loadWaitBit := DontCare
103    cf.loadWaitStrict := DontCare
104    cf.ssid := DontCare
105    cf.ftqPtr := ftqPtr
106    cf.ftqOffset := ftqOffset
107    cf
108  }
109
110  object IBufferExceptionType extends NamedUInt(3) {
111    def None         = "b000".U
112    def NonCrossPF   = "b001".U
113    def NonCrossGPF  = "b010".U
114    def NonCrossAF   = "b011".U
115    // illegal instruction
116    def rvcII        = "b100".U
117    def CrossPF      = "b101".U
118    def CrossGPF     = "b110".U
119    def CrossAF      = "b111".U
120
121    def cvtFromFetchExcpAndCrossPageAndRVCII(fetchExcp: UInt, crossPage: Bool, rvcIll: Bool): UInt = {
122      require(
123        fetchExcp.getWidth == ExceptionType.width,
124        s"The width(${fetchExcp.getWidth}) of fetchExcp should be equal to " +
125        s"the width(${ExceptionType.width}) of frontend.ExceptionType."
126      )
127      MuxCase(0.U, Seq(
128        crossPage     -> Cat(1.U(1.W), fetchExcp),
129        fetchExcp.orR -> fetchExcp,
130        rvcIll        -> this.rvcII,
131      ))
132    }
133
134    def isRVCII(uint: UInt): Bool = {
135      this.checkInputWidth(uint)
136      uint(2) && uint(1, 0) === 0.U
137    }
138
139    def isCrossPage(uint: UInt): Bool = {
140      this.checkInputWidth(uint)
141      uint(2) && uint(1, 0) =/= 0.U
142    }
143
144    def isPF (uint: UInt): Bool = uint(1, 0) === this.NonCrossPF (1, 0)
145    def isGPF(uint: UInt): Bool = uint(1, 0) === this.NonCrossGPF(1, 0)
146    def isAF (uint: UInt): Bool = uint(1, 0) === this.NonCrossAF (1, 0)
147  }
148}
149
150class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents {
151  val io = IO(new IBufferIO)
152
153  // io alias
154  private val decodeCanAccept = io.decodeCanAccept
155
156  // Parameter Check
157  private val bankSize = IBufSize / IBufNBank
158  require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize")
159  require(IBufNBank >= DecodeWidth,
160    s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth")
161
162  // IBuffer is organized as raw registers
163  // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled
164  //                             . + + E E E - .
165  //                             . + + E E E - .
166  //                             . . + E E E - .
167  //                             . . + E E E E -
168  // As shown above, + means enqueue, - means dequeue, E is current content
169  // When dequeue, read port is organized like a banked FIFO
170  // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area
171  // Enqueue writes cannot benefit from this characteristic unless use a SRAM
172  // For detail see Enqueue and Dequeue below
173  private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry)))
174  private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)(
175    bankID => VecInit.tabulate(bankSize)(
176      inBankOffset => ibuf(bankID + inBankOffset * IBufNBank)
177    )
178  )
179
180
181  // Bypass wire
182  private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
183  // Normal read wire
184  private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
185  // Output register
186  private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
187  private val outputEntriesValidNum = PriorityMuxDefault(outputEntries.map(_.valid).zip(Seq.range(1, DecodeWidth).map(_.U)).reverse.toSeq, 0.U)
188
189  // Between Bank
190  private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr)))
191  private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0)
192  private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType)
193  // Inside Bank
194  private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)))
195  private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType)
196
197  val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr))
198  val deqPtrNext = Wire(deqPtr.cloneType)
199
200  val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr)))
201  val enqPtr = enqPtrVec(0)
202
203  val numTryEnq = WireDefault(0.U)
204  val numEnq = Mux(io.in.fire, numTryEnq, 0.U)
205
206  // empty and decode can accept insts
207  val useBypass = enqPtr === deqPtr && decodeCanAccept
208
209  // The number of decode accepted insts.
210  // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation.
211  private val numOut = Wire(UInt(log2Ceil(DecodeWidth).W))
212  private val numDeq = numOut
213
214  // counter current number of valid
215  val numValid = distanceBetween(enqPtr, deqPtr)
216  val numValidAfterDeq = numValid - numDeq
217  // counter next number of valid
218  val numValidNext = numValid + numEnq - numDeq
219  val allowEnq = RegInit(true.B)
220  val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U)
221
222  allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full
223
224  val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i)))
225  val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i))
226
227  val outputEntriesIsNotFull = !outputEntries(DecodeWidth-1).valid
228  when(decodeCanAccept) {
229    numOut := Mux(numValid >= DecodeWidth.U, DecodeWidth.U, numValid)
230  }.elsewhen(outputEntriesIsNotFull) {
231    numOut := Mux(numValid >= DecodeWidth.U - outputEntriesValidNum, DecodeWidth.U - outputEntriesValidNum, numValid)
232  }.otherwise {
233    numOut := 0.U
234  }
235  val numBypass = Wire(UInt(log2Ceil(DecodeWidth).W))
236  // when using bypass, bypassed entries do not enqueue
237  when(useBypass) {
238    when(numFromFetch >= DecodeWidth.U) {
239      numTryEnq := numFromFetch - DecodeWidth.U
240      numBypass := DecodeWidth.U
241    } .otherwise {
242      numTryEnq := 0.U
243      numBypass := numFromFetch
244    }
245  } .otherwise {
246    numTryEnq := numFromFetch
247    numBypass := 0.U
248  }
249
250  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
251  // Bypass
252  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
253  bypassEntries.zipWithIndex.foreach {
254    case (entry, idx) =>
255      // Select
256      val validOH = Range(0, PredictWidth).map {
257        i =>
258          io.in.bits.valid(i) &&
259            io.in.bits.enqEnable(i) &&
260            enqOffset(i) === idx.asUInt
261      } // Should be OneHot
262      entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush
263      entry.bits := Mux1H(validOH, enqData)
264
265      // Debug Assertion
266      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
267  }
268
269  // => Decode Output
270  // clean register output
271  io.out zip outputEntries foreach {
272    case (io, reg) =>
273      io.valid := reg.valid
274      io.bits := reg.bits.toCtrlFlow
275  }
276  (outputEntries zip bypassEntries).zipWithIndex.foreach {
277    case ((out, bypass), i) =>
278      when(decodeCanAccept) {
279        when(useBypass && io.in.valid) {
280          out := bypass
281        }.otherwise {
282          out := deqEntries(i)
283        }
284      }.elsewhen(outputEntriesIsNotFull){
285        out.valid := deqEntries(i).valid
286        out.bits := Mux(i.U < outputEntriesValidNum, out.bits, VecInit(deqEntries.take(i + 1).map(_.bits))(i.U - outputEntriesValidNum))
287      }
288  }
289
290  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
291  // Enqueue
292  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
293  io.in.ready := allowEnq
294  // Data
295  ibuf.zipWithIndex.foreach {
296    case (entry, idx) => {
297      // Select
298      val validOH = Range(0, PredictWidth).map {
299        i =>
300          val useBypassMatch = enqOffset(i) >= DecodeWidth.U &&
301            enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt
302          val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt
303          val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue
304
305          io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m
306      } // Should be OneHot
307      val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush
308
309      // Write port
310      // Each IBuffer entry has a PredictWidth -> 1 Mux
311      val writeEntry = Mux1H(validOH, enqData)
312      entry := Mux(wen, writeEntry, entry)
313
314      // Debug Assertion
315      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
316    }
317  }
318  // Pointer maintenance
319  when (io.in.fire && !io.flush) {
320    enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq))
321  }
322
323  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
324  // Dequeue
325  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
326  val outputEntriesValidNumNext = Wire(UInt(log2Ceil(DecodeWidth).W))
327  XSError(outputEntriesValidNumNext > DecodeWidth.U, "Ibuffer: outputEntriesValidNumNext > DecodeWidth.U")
328  val validVec = UIntToMask(outputEntriesValidNumNext(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth)
329  when(decodeCanAccept) {
330    outputEntriesValidNumNext := Mux(useBypass, numBypass, numDeq)
331  }.elsewhen(outputEntriesIsNotFull) {
332    outputEntriesValidNumNext := outputEntriesValidNum + numDeq
333  }.otherwise {
334    outputEntriesValidNumNext := outputEntriesValidNum
335  }
336  // Data
337  // Read port
338  // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1
339  // Should be better than IBufSize -> 1 in area, with no significant latency increase
340  private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)(
341    bankID => Mux1H(UIntToOH(deqInBankPtr(bankID).value), bankedIBufView(bankID))
342  )
343  for (i <- 0 until DecodeWidth) {
344    deqEntries(i).valid := validVec(i)
345    deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVec(i).value), readStage1)
346  }
347  // Pointer maintenance
348  deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq))
349  deqPtrNext := deqPtr + numDeq
350  deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach {
351    case ((ptrNext, ptr), idx) => {
352      // validVec[k] == bankValid[deqBankPtr + k]
353      // So bankValid[n] == validVec[n - deqBankPtr]
354      val validIdx = Mux(idx.asUInt >= deqBankPtr.value,
355        idx.asUInt - deqBankPtr.value,
356        ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0)
357      )(log2Ceil(DecodeWidth) - 1, 0)
358      val bankAdvance = numOut > validIdx
359      ptrNext := Mux(bankAdvance , ptr + 1.U, ptr)
360    }
361  }
362
363  // Flush
364  when (io.flush) {
365    allowEnq := true.B
366    enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr))
367    deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr))
368    deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))
369    deqPtr := 0.U.asTypeOf(new IBufPtr())
370    outputEntries.foreach(_.valid := false.B)
371  }.otherwise {
372    deqPtr := deqPtrNext
373    deqInBankPtr := deqInBankPtrNext
374    deqBankPtrVec := deqBankPtrVecNext
375  }
376  io.full := !allowEnq
377
378  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
379  // TopDown
380  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
381  val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle))
382  topdown_stage := io.in.bits.topdown_info
383  when(io.flush) {
384    when(io.ControlRedirect) {
385      when(io.ControlBTBMissBubble) {
386        topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B
387      }.elsewhen(io.TAGEMissBubble) {
388        topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
389      }.elsewhen(io.SCMissBubble) {
390        topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B
391      }.elsewhen(io.ITTAGEMissBubble) {
392        topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
393      }.elsewhen(io.RASMissBubble) {
394        topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B
395      }
396    }.elsewhen(io.MemVioRedirect) {
397      topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
398    }.otherwise {
399      topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
400    }
401  }
402
403
404  val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W))
405  val deqValidCount = PopCount(validVec.asBools)
406  val deqWasteCount = DecodeWidth.U - deqValidCount
407  matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse)
408
409  io.stallReason.reason.map(_ := 0.U)
410  for (i <- 0 until DecodeWidth) {
411    when(i.U < deqWasteCount) {
412      io.stallReason.reason(DecodeWidth - i - 1) := matchBubble
413    }
414  }
415
416  when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) {
417    // should set reason for FetchFragmentationStall
418    // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B
419    for (i <- 0 until DecodeWidth) {
420      when(i.U < deqWasteCount) {
421        io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U
422      }
423    }
424  }
425
426  when(io.stallReason.backReason.valid) {
427    io.stallReason.reason.map(_ := io.stallReason.backReason.bits)
428  }
429
430  // Debug info
431  XSError(
432    deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt,
433    "Dequeue PTR mismatch"
434  )
435  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
436
437  XSDebug(io.flush, "IBuffer Flushed\n")
438
439  when(io.in.fire) {
440    XSDebug("Enque:\n")
441    XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n")
442    for(i <- 0 until PredictWidth){
443      XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n")
444    }
445  }
446
447  for (i <- 0 until DecodeWidth) {
448    XSDebug(io.out(i).fire,
449      p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" +
450      p"v=${io.out(i).valid} r=${io.out(i).ready} " +
451      p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n")
452  }
453
454  XSDebug(p"numValid: ${numValid}\n")
455  XSDebug(p"EnqNum: ${numEnq}\n")
456  XSDebug(p"DeqNum: ${numDeq}\n")
457
458  val afterInit = RegInit(false.B)
459  val headBubble = RegInit(false.B)
460  when (io.in.fire) { afterInit := true.B }
461  when (io.flush) {
462    headBubble := true.B
463  } .elsewhen(numValid =/= 0.U) {
464    headBubble := false.B
465  }
466  val instrHungry = afterInit && (numValid === 0.U) && !headBubble
467
468  QueuePerf(IBufSize, numValid, !allowEnq)
469  XSPerfAccumulate("flush", io.flush)
470  XSPerfAccumulate("hungry", instrHungry)
471
472  val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble
473  XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull)
474
475  val FrontBubble = Mux(decodeCanAccept, DecodeWidth.U - numOut, 0.U)
476
477  val perfEvents = Seq(
478    ("IBuffer_Flushed  ", io.flush),
479    ("IBuffer_hungry   ", instrHungry),
480    ("IBuffer_1_4_valid", (numValid > (0 * (IBufSize / 4)).U) & (numValid < (1 * (IBufSize / 4)).U)),
481    ("IBuffer_2_4_valid", (numValid >= (1 * (IBufSize / 4)).U) & (numValid < (2 * (IBufSize / 4)).U)),
482    ("IBuffer_3_4_valid", (numValid >= (2 * (IBufSize / 4)).U) & (numValid < (3 * (IBufSize / 4)).U)),
483    ("IBuffer_4_4_valid", (numValid >= (3 * (IBufSize / 4)).U) & (numValid < (4 * (IBufSize / 4)).U)),
484    ("IBuffer_full     ", numValid.andR),
485    ("Front_Bubble     ", FrontBubble)
486  )
487  generatePerfEvent()
488}
489