1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.frontend 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import xiangshan._ 23import utils._ 24import utility._ 25import xiangshan.ExceptionNO._ 26 27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr]( 28 p => p(XSCoreParamsKey).IBufSize 29) { 30} 31 32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr]( 33 p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank 34) { 35} 36 37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr]( 38 p => p(XSCoreParamsKey).IBufNBank 39) { 40} 41 42class IBufferIO(implicit p: Parameters) extends XSBundle { 43 val flush = Input(Bool()) 44 val ControlRedirect = Input(Bool()) 45 val ControlBTBMissBubble = Input(Bool()) 46 val TAGEMissBubble = Input(Bool()) 47 val SCMissBubble = Input(Bool()) 48 val ITTAGEMissBubble = Input(Bool()) 49 val RASMissBubble = Input(Bool()) 50 val MemVioRedirect = Input(Bool()) 51 val in = Flipped(DecoupledIO(new FetchToIBuffer)) 52 val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow)) 53 val full = Output(Bool()) 54 val decodeCanAccept = Input(Bool()) 55 val stallReason = new StallReasonIO(DecodeWidth) 56} 57 58class IBufEntry(implicit p: Parameters) extends XSBundle { 59 val inst = UInt(32.W) 60 val pc = UInt(VAddrBits.W) 61 val foldpc = UInt(MemPredPCWidth.W) 62 val pd = new PreDecodeInfo 63 val pred_taken = Bool() 64 val ftqPtr = new FtqPtr 65 val ftqOffset = UInt(log2Ceil(PredictWidth).W) 66 val exceptionType = UInt(ExceptionType.width.W) 67 val crossPageIPFFix = Bool() 68 val triggered = new TriggerCf 69 70 def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = { 71 inst := fetch.instrs(i) 72 pc := fetch.pc(i) 73 foldpc := fetch.foldpc(i) 74 pd := fetch.pd(i) 75 pred_taken := fetch.ftqOffset(i).valid 76 ftqPtr := fetch.ftqPtr 77 ftqOffset := fetch.ftqOffset(i).bits 78 exceptionType := fetch.exceptionType(i) 79 crossPageIPFFix := fetch.crossPageIPFFix(i) 80 triggered := fetch.triggered(i) 81 this 82 } 83 84 def toCtrlFlow: CtrlFlow = { 85 val cf = Wire(new CtrlFlow) 86 cf.instr := inst 87 cf.pc := pc 88 cf.foldpc := foldpc 89 cf.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 90 cf.exceptionVec(instrPageFault) := exceptionType === ExceptionType.ipf 91 cf.exceptionVec(instrGuestPageFault) := exceptionType === ExceptionType.igpf 92 cf.exceptionVec(instrAccessFault) := exceptionType === ExceptionType.acf 93 cf.trigger := triggered 94 cf.pd := pd 95 cf.pred_taken := pred_taken 96 cf.crossPageIPFFix := crossPageIPFFix 97 cf.storeSetHit := DontCare 98 cf.waitForRobIdx := DontCare 99 cf.loadWaitBit := DontCare 100 cf.loadWaitStrict := DontCare 101 cf.ssid := DontCare 102 cf.ftqPtr := ftqPtr 103 cf.ftqOffset := ftqOffset 104 cf 105 } 106} 107 108class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents { 109 val io = IO(new IBufferIO) 110 111 // io alias 112 private val decodeCanAccept = io.decodeCanAccept 113 114 // Parameter Check 115 private val bankSize = IBufSize / IBufNBank 116 require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize") 117 require(IBufNBank >= DecodeWidth, 118 s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth") 119 120 // IBuffer is organized as raw registers 121 // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled 122 // . + + E E E - . 123 // . + + E E E - . 124 // . . + E E E - . 125 // . . + E E E E - 126 // As shown above, + means enqueue, - means dequeue, E is current content 127 // When dequeue, read port is organized like a banked FIFO 128 // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area 129 // Enqueue writes cannot benefit from this characteristic unless use a SRAM 130 // For detail see Enqueue and Dequeue below 131 private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry))) 132 private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)( 133 bankID => VecInit.tabulate(bankSize)( 134 inBankOffset => ibuf(bankID + inBankOffset * IBufNBank) 135 ) 136 ) 137 138 139 // Bypass wire 140 private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 141 // Normal read wire 142 private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 143 // Output register 144 private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 145 146 // Between Bank 147 private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr))) 148 private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0) 149 private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType) 150 // Inside Bank 151 private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))) 152 private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType) 153 154 val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr)) 155 val deqPtrNext = Wire(deqPtr.cloneType) 156 157 val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr))) 158 val enqPtr = enqPtrVec(0) 159 160 val numTryEnq = WireDefault(0.U) 161 val numEnq = Mux(io.in.fire, numTryEnq, 0.U) 162 163 // empty and decode can accept insts 164 val useBypass = enqPtr === deqPtr && decodeCanAccept 165 val currentOutUseBypass = RegInit(false.B) 166 167 // The number of decode accepted insts. 168 // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation. 169 private val numOut: UInt = PriorityMuxDefault(io.out.map(x => !x.ready) zip (0 until DecodeWidth).map(_.U), DecodeWidth.U) 170 private val numDeq = Mux(useBypass || currentOutUseBypass, 0.U, numOut) 171 172 // counter current number of valid 173 val numValid = distanceBetween(enqPtr, deqPtr) 174 val numValidAfterDeq = numValid - numDeq 175 // counter next number of valid 176 val numValidNext = numValid + numEnq - numDeq 177 val allowEnq = RegInit(true.B) 178 val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U) 179 val numBypass = PopCount(bypassEntries.map(_.valid)) 180 181 allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full 182 183 val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i))) 184 val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i)) 185 186 // when using bypass, bypassed entries do not enqueue 187 when(useBypass) { 188 when(numFromFetch >= DecodeWidth.U) { 189 numTryEnq := numFromFetch - DecodeWidth.U 190 } .otherwise { 191 numTryEnq := 0.U 192 } 193 } .otherwise { 194 numTryEnq := numFromFetch 195 } 196 197 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 198 // Bypass 199 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 200 bypassEntries.zipWithIndex.foreach { 201 case (entry, idx) => 202 // Select 203 val validOH = Range(0, PredictWidth).map { 204 i => 205 io.in.bits.valid(i) && 206 io.in.bits.enqEnable(i) && 207 enqOffset(i) === idx.asUInt 208 } // Should be OneHot 209 entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush 210 entry.bits := Mux1H(validOH, enqData) 211 212 // Debug Assertion 213 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 214 } 215 216 // => Decode Output 217 // clean register output 218 io.out zip outputEntries foreach { 219 case (io, reg) => 220 io.valid := reg.valid 221 io.bits := reg.bits.toCtrlFlow 222 } 223 (outputEntries zip bypassEntries zip deqEntries).zipWithIndex.foreach { 224 case (((out, bypass), deq), i) => 225 when(decodeCanAccept) { 226 when(useBypass && io.in.valid) { 227 out := bypass 228 currentOutUseBypass := true.B 229 }.elsewhen(currentOutUseBypass && !io.out(0).ready) { 230 currentOutUseBypass := true.B 231 }.otherwise { 232 out := deq 233 currentOutUseBypass := false.B 234 } 235 } 236 } 237 238 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 239 // Enqueue 240 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 241 io.in.ready := allowEnq 242 // Data 243 ibuf.zipWithIndex.foreach { 244 case (entry, idx) => { 245 // Select 246 val validOH = Range(0, PredictWidth).map { 247 i => 248 val useBypassMatch = enqOffset(i) >= DecodeWidth.U && 249 enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt 250 val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt 251 val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue 252 253 io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m 254 } // Should be OneHot 255 val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush 256 257 // Write port 258 // Each IBuffer entry has a PredictWidth -> 1 Mux 259 val writeEntry = Mux1H(validOH, enqData) 260 entry := Mux(wen, writeEntry, entry) 261 262 // Debug Assertion 263 XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 264 } 265 } 266 // Pointer maintenance 267 when (io.in.fire && !io.flush) { 268 enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq)) 269 } 270 271 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 272 // Dequeue 273 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 274 val validVec = Mux(numValidAfterDeq >= DecodeWidth.U, 275 ((1 << DecodeWidth) - 1).U, 276 UIntToMask(numValidAfterDeq(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth) 277 ) 278 // Data 279 // Read port 280 // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1 281 // Should be better than IBufSize -> 1 in area, with no significant latency increase 282 private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)( 283 bankID => Mux1H(UIntToOH(deqInBankPtrNext(bankID).value), bankedIBufView(bankID)) 284 ) 285 for (i <- 0 until DecodeWidth) { 286 deqEntries(i).valid := validVec(i) 287 deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVecNext(i).value), readStage1) 288 } 289 // Pointer maintenance 290 deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq)) 291 deqPtrNext := deqPtr + numDeq 292 deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach { 293 case ((ptrNext, ptr), idx) => { 294 // validVec[k] == bankValid[deqBankPtr + k] 295 // So bankValid[n] == validVec[n - deqBankPtr] 296 val validIdx = Mux(idx.asUInt >= deqBankPtr.value, 297 idx.asUInt - deqBankPtr.value, 298 ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0) 299 )(log2Ceil(DecodeWidth) - 1, 0) 300 val bankAdvance = Mux(validIdx >= DecodeWidth.U, 301 false.B, 302 io.out(validIdx).ready // `ready` depends on `valid`, so we need only `ready`, not fire 303 ) && !currentOutUseBypass 304 ptrNext := Mux(bankAdvance , ptr + 1.U, ptr) 305 } 306 } 307 308 // Flush 309 when (io.flush) { 310 allowEnq := true.B 311 enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr)) 312 deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr)) 313 deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)) 314 deqPtr := 0.U.asTypeOf(new IBufPtr()) 315 outputEntries.foreach(_.valid := false.B) 316 }.otherwise { 317 deqPtr := deqPtrNext 318 deqInBankPtr := deqInBankPtrNext 319 deqBankPtrVec := deqBankPtrVecNext 320 } 321 io.full := !allowEnq 322 323 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 324 // TopDown 325 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 326 val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle)) 327 topdown_stage := io.in.bits.topdown_info 328 when(io.flush) { 329 when(io.ControlRedirect) { 330 when(io.ControlBTBMissBubble) { 331 topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B 332 }.elsewhen(io.TAGEMissBubble) { 333 topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 334 }.elsewhen(io.SCMissBubble) { 335 topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B 336 }.elsewhen(io.ITTAGEMissBubble) { 337 topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 338 }.elsewhen(io.RASMissBubble) { 339 topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B 340 } 341 }.elsewhen(io.MemVioRedirect) { 342 topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 343 }.otherwise { 344 topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 345 } 346 } 347 348 349 val dequeueInsufficient = Wire(Bool()) 350 val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W)) 351 val deqValidCount = PopCount(validVec.asBools) 352 val deqWasteCount = DecodeWidth.U - deqValidCount 353 dequeueInsufficient := deqValidCount < DecodeWidth.U 354 matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse) 355 356 io.stallReason.reason.map(_ := 0.U) 357 for (i <- 0 until DecodeWidth) { 358 when(i.U < deqWasteCount) { 359 io.stallReason.reason(DecodeWidth - i - 1) := matchBubble 360 } 361 } 362 363 when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) { 364 // should set reason for FetchFragmentationStall 365 // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B 366 for (i <- 0 until DecodeWidth) { 367 when(i.U < deqWasteCount) { 368 io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U 369 } 370 } 371 } 372 373 when(io.stallReason.backReason.valid) { 374 io.stallReason.reason.map(_ := io.stallReason.backReason.bits) 375 } 376 377 // Debug info 378 XSError( 379 deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt, 380 "Dequeue PTR mismatch" 381 ) 382 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 383 384 XSDebug(io.flush, "IBuffer Flushed\n") 385 386 when(io.in.fire) { 387 XSDebug("Enque:\n") 388 XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n") 389 for(i <- 0 until PredictWidth){ 390 XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n") 391 } 392 } 393 394 for (i <- 0 until DecodeWidth) { 395 XSDebug(io.out(i).fire, 396 p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" + 397 p"v=${io.out(i).valid} r=${io.out(i).ready} " + 398 p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n") 399 } 400 401 XSDebug(p"numValid: ${numValid}\n") 402 XSDebug(p"EnqNum: ${numEnq}\n") 403 XSDebug(p"DeqNum: ${numDeq}\n") 404 405 val afterInit = RegInit(false.B) 406 val headBubble = RegInit(false.B) 407 when (io.in.fire) { afterInit := true.B } 408 when (io.flush) { 409 headBubble := true.B 410 } .elsewhen(numValid =/= 0.U) { 411 headBubble := false.B 412 } 413 val instrHungry = afterInit && (numValid === 0.U) && !headBubble 414 415 QueuePerf(IBufSize, numValid, !allowEnq) 416 XSPerfAccumulate("flush", io.flush) 417 XSPerfAccumulate("hungry", instrHungry) 418 419 val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble 420 XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull) 421 /* 422 XSPerfAccumulate("ICacheMissBubble", Mux(matchBubbleVec(TopDownCounters.ICacheMissBubble.id), deqWasteCount, 0.U)) 423 XSPerfAccumulate("ITLBMissBubble", Mux(matchBubbleVec(TopDownCounters.ITLBMissBubble.id), deqWasteCount, 0.U)) 424 XSPerfAccumulate("ControlRedirectBubble", Mux(matchBubbleVec(TopDownCounters.ControlRedirectBubble.id), deqWasteCount, 0.U)) 425 XSPerfAccumulate("MemVioRedirectBubble", Mux(matchBubbleVec(TopDownCounters.MemVioRedirectBubble.id), deqWasteCount, 0.U)) 426 XSPerfAccumulate("OtherRedirectBubble", Mux(matchBubbleVec(TopDownCounters.OtherRedirectBubble.id), deqWasteCount, 0.U)) 427 XSPerfAccumulate("BTBMissBubble", Mux(matchBubbleVec(TopDownCounters.BTBMissBubble.id), deqWasteCount, 0.U)) 428 XSPerfAccumulate("OverrideBubble", Mux(matchBubbleVec(TopDownCounters.OverrideBubble.id), deqWasteCount, 0.U)) 429 XSPerfAccumulate("FtqUpdateBubble", Mux(matchBubbleVec(TopDownCounters.FtqUpdateBubble.id), deqWasteCount, 0.U)) 430 XSPerfAccumulate("FtqFullStall", Mux(matchBubbleVec(TopDownCounters.FtqFullStall.id), deqWasteCount, 0.U)) 431 XSPerfAccumulate("FetchFragmentBubble", 432 Mux(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR, 0.U, deqWasteCount)) 433 XSPerfAccumulate("TAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.TAGEMissBubble.id), deqWasteCount, 0.U)) 434 XSPerfAccumulate("SCMissBubble", Mux(matchBubbleVec(TopDownCounters.SCMissBubble.id), deqWasteCount, 0.U)) 435 XSPerfAccumulate("ITTAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.ITTAGEMissBubble.id), deqWasteCount, 0.U)) 436 XSPerfAccumulate("RASMissBubble", Mux(matchBubbleVec(TopDownCounters.RASMissBubble.id), deqWasteCount, 0.U)) 437 */ 438 439 val perfEvents = Seq( 440 ("IBuffer_Flushed ", io.flush ), 441 ("IBuffer_hungry ", instrHungry ), 442 ("IBuffer_1_4_valid", (numValid > (0*(IBufSize/4)).U) & (numValid < (1*(IBufSize/4)).U) ), 443 ("IBuffer_2_4_valid", (numValid >= (1*(IBufSize/4)).U) & (numValid < (2*(IBufSize/4)).U) ), 444 ("IBuffer_3_4_valid", (numValid >= (2*(IBufSize/4)).U) & (numValid < (3*(IBufSize/4)).U) ), 445 ("IBuffer_4_4_valid", (numValid >= (3*(IBufSize/4)).U) & (numValid < (4*(IBufSize/4)).U) ), 446 ("IBuffer_full ", numValid.andR ), 447 ("Front_Bubble ", PopCount((0 until DecodeWidth).map(i => io.out(i).ready && !io.out(i).valid))) 448 ) 449 generatePerfEvent() 450} 451