1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.frontend 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import xiangshan._ 23import utils._ 24import utility._ 25import xiangshan.ExceptionNO._ 26 27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr]( 28 p => p(XSCoreParamsKey).IBufSize 29) { 30} 31 32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr]( 33 p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank 34) { 35} 36 37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr]( 38 p => p(XSCoreParamsKey).IBufNBank 39) { 40} 41 42class IBufferIO(implicit p: Parameters) extends XSBundle { 43 val flush = Input(Bool()) 44 val ControlRedirect = Input(Bool()) 45 val ControlBTBMissBubble = Input(Bool()) 46 val TAGEMissBubble = Input(Bool()) 47 val SCMissBubble = Input(Bool()) 48 val ITTAGEMissBubble = Input(Bool()) 49 val RASMissBubble = Input(Bool()) 50 val MemVioRedirect = Input(Bool()) 51 val in = Flipped(DecoupledIO(new FetchToIBuffer)) 52 val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow)) 53 val full = Output(Bool()) 54 val decodeCanAccept = Input(Bool()) 55 val stallReason = new StallReasonIO(DecodeWidth) 56} 57 58class IBufEntry(implicit p: Parameters) extends XSBundle { 59 val inst = UInt(32.W) 60 val pc = UInt(VAddrBits.W) 61 val foldpc = UInt(MemPredPCWidth.W) 62 val pd = new PreDecodeInfo 63 val pred_taken = Bool() 64 val ftqPtr = new FtqPtr 65 val ftqOffset = UInt(log2Ceil(PredictWidth).W) 66 val ipf = Bool() 67 val acf = Bool() 68 val crossPageIPFFix = Bool() 69 val triggered = new TriggerCf 70 71 def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = { 72 inst := fetch.instrs(i) 73 pc := fetch.pc(i) 74 foldpc := fetch.foldpc(i) 75 pd := fetch.pd(i) 76 pred_taken := fetch.ftqOffset(i).valid 77 ftqPtr := fetch.ftqPtr 78 ftqOffset := fetch.ftqOffset(i).bits 79 ipf := fetch.ipf(i) 80 acf := fetch.acf(i) 81 crossPageIPFFix := fetch.crossPageIPFFix(i) 82 triggered := fetch.triggered(i) 83 this 84 } 85 86 def toCtrlFlow: CtrlFlow = { 87 val cf = Wire(new CtrlFlow) 88 cf.instr := inst 89 cf.pc := pc 90 cf.foldpc := foldpc 91 cf.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 92 cf.exceptionVec(instrPageFault) := ipf 93 cf.exceptionVec(instrAccessFault) := acf 94 cf.trigger := triggered 95 cf.pd := pd 96 cf.pred_taken := pred_taken 97 cf.crossPageIPFFix := crossPageIPFFix 98 cf.storeSetHit := DontCare 99 cf.waitForRobIdx := DontCare 100 cf.loadWaitBit := DontCare 101 cf.loadWaitStrict := DontCare 102 cf.ssid := DontCare 103 cf.ftqPtr := ftqPtr 104 cf.ftqOffset := ftqOffset 105 cf 106 } 107} 108 109class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents { 110 val io = IO(new IBufferIO) 111 112 // io alias 113 private val decodeCanAccept = io.decodeCanAccept 114 115 // Parameter Check 116 private val bankSize = IBufSize / IBufNBank 117 require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize") 118 require(IBufNBank >= DecodeWidth, 119 s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth") 120 121 // IBuffer is organized as raw registers 122 // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled 123 // . + + E E E - . 124 // . + + E E E - . 125 // . . + E E E - . 126 // . . + E E E E - 127 // As shown above, + means enqueue, - means dequeue, E is current content 128 // When dequeue, read port is organized like a banked FIFO 129 // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area 130 // Enqueue writes cannot benefit from this characteristic unless use a SRAM 131 // For detail see Enqueue and Dequeue below 132 private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry))) 133 private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)( 134 bankID => VecInit.tabulate(bankSize)( 135 inBankOffset => ibuf(bankID + inBankOffset * IBufNBank) 136 ) 137 ) 138 139 140 // Bypass wire 141 private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 142 // Normal read wire 143 private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 144 // Output register 145 private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry)))) 146 147 // Between Bank 148 private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr))) 149 private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0) 150 private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType) 151 // Inside Bank 152 private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))) 153 private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType) 154 155 val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr)) 156 val deqPtrNext = Wire(deqPtr.cloneType) 157 158 val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr))) 159 val enqPtr = enqPtrVec(0) 160 161 val numTryEnq = WireDefault(0.U) 162 val numEnq = Mux(io.in.fire, numTryEnq, 0.U) 163 164 val useBypass = enqPtr === deqPtr && decodeCanAccept // empty and decode can accept insts 165 // Record the insts in output entries are from bypass or deq. 166 // Update deqPtr if they are from deq 167 val currentOutUseBypass = RegInit(false.B) 168 169 // The number of decode accepted insts. 170 // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation. 171 private val numOut: UInt = PriorityMuxDefault(io.out.map(x => !x.ready) zip (0 until DecodeWidth).map(_.U), DecodeWidth.U) 172 private val numDeq = Mux(currentOutUseBypass, 0.U, numOut) 173 174 // counter current number of valid 175 val numValid = distanceBetween(enqPtr, deqPtr) 176 val numValidAfterDeq = numValid - numDeq 177 // counter next number of valid 178 val numValidNext = numValid + numEnq - numDeq 179 val allowEnq = RegInit(true.B) 180 val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U) 181 val numBypass = PopCount(bypassEntries.map(_.valid)) 182 183 allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full 184 185 val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i))) 186 val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i)) 187 188 // when using bypass, bypassed entries do not enqueue 189 when(useBypass) { 190 when(numFromFetch >= DecodeWidth.U) { 191 numTryEnq := numFromFetch - DecodeWidth.U 192 } .otherwise { 193 numTryEnq := 0.U 194 } 195 } .otherwise { 196 numTryEnq := numFromFetch 197 } 198 199 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 200 // Bypass 201 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 202 bypassEntries.zipWithIndex.foreach { 203 case (entry, idx) => 204 // Select 205 val validOH = Range(0, PredictWidth).map { 206 i => 207 io.in.bits.valid(i) && 208 io.in.bits.enqEnable(i) && 209 enqOffset(i) === idx.asUInt 210 } // Should be OneHot 211 entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush 212 entry.bits := Mux1H(validOH, enqData) 213 214 // Debug Assertion 215 XSError(PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 216 } 217 218 // => Decode Output 219 // clean register output 220 io.out zip outputEntries foreach { 221 case (io, reg) => 222 io.valid := reg.valid 223 io.bits := reg.bits.toCtrlFlow 224 } 225 outputEntries zip bypassEntries zip deqEntries foreach { 226 case ((out, bypass), deq) => 227 when(decodeCanAccept) { 228 out := deq 229 currentOutUseBypass := false.B 230 when(useBypass && io.in.valid) { 231 out := bypass 232 currentOutUseBypass := true.B 233 } 234 } 235 } 236 237 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 238 // Enqueue 239 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 240 io.in.ready := allowEnq 241 // Data 242 ibuf.zipWithIndex.foreach { 243 case (entry, idx) => { 244 // Select 245 val validOH = Range(0, PredictWidth).map { 246 i => 247 val useBypassMatch = enqOffset(i) >= DecodeWidth.U && 248 enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt 249 val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt 250 val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue 251 252 io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m 253 } // Should be OneHot 254 val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush 255 256 // Write port 257 // Each IBuffer entry has a PredictWidth -> 1 Mux 258 val writeEntry = Mux1H(validOH, enqData) 259 entry := Mux(wen, writeEntry, entry) 260 261 // Debug Assertion 262 XSError(PopCount(validOH) > 1.asUInt, "validOH is not OneHot") 263 } 264 } 265 // Pointer maintenance 266 when (io.in.fire && !io.flush) { 267 enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq)) 268 } 269 270 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 271 // Dequeue 272 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 273 val validVec = Mux(numValidAfterDeq >= DecodeWidth.U, 274 ((1 << DecodeWidth) - 1).U, 275 UIntToMask(numValidAfterDeq(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth) 276 ) 277 // Data 278 // Read port 279 // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1 280 // Should be better than IBufSize -> 1 in area, with no significant latency increase 281 private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)( 282 bankID => Mux1H(UIntToOH(deqInBankPtrNext(bankID).value), bankedIBufView(bankID)) 283 ) 284 for (i <- 0 until DecodeWidth) { 285 deqEntries(i).valid := validVec(i) 286 deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVecNext(i).value), readStage1) 287 } 288 // Pointer maintenance 289 deqBankPtrVecNext := Mux(decodeCanAccept, VecInit(deqBankPtrVec.map(_ + numDeq)), deqBankPtrVec) 290 deqPtrNext := Mux(decodeCanAccept, deqPtr + numDeq, deqPtr) 291 deqPtr := Mux(decodeCanAccept, deqPtr + numDeq, deqPtr) 292 deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach { 293 case ((ptrNext, ptr), idx) => { 294 // validVec[k] == bankValid[deqBankPtr + k] 295 // So bankValid[n] == validVec[n - deqBankPtr] 296 val validIdx = Mux(idx.asUInt >= deqBankPtr.value, 297 idx.asUInt - deqBankPtr.value, 298 ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0) 299 )(log2Ceil(DecodeWidth) - 1, 0) 300 val bankAdvance = Mux(validIdx >= DecodeWidth.U, 301 false.B, 302 io.out(validIdx).ready // `ready` depends on `valid`, so we need only `ready`, not fire 303 ) && !currentOutUseBypass 304 ptrNext := Mux(bankAdvance , ptr + 1.U, ptr) 305 } 306 } 307 308 // Flush 309 when (io.flush) { 310 allowEnq := true.B 311 enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr)) 312 deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr)) 313 deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)) 314 deqPtr := 0.U.asTypeOf(new IBufPtr()) 315 outputEntries.foreach(_.valid := false.B) 316 }.otherwise { 317 deqPtr := deqPtrNext 318 deqInBankPtr := deqInBankPtrNext 319 deqBankPtrVec := deqBankPtrVecNext 320 } 321 io.full := !allowEnq 322 323 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 324 // TopDown 325 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 326 val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle)) 327 topdown_stage := io.in.bits.topdown_info 328 when(io.flush) { 329 when(io.ControlRedirect) { 330 when(io.ControlBTBMissBubble) { 331 topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B 332 }.elsewhen(io.TAGEMissBubble) { 333 topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 334 }.elsewhen(io.SCMissBubble) { 335 topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B 336 }.elsewhen(io.ITTAGEMissBubble) { 337 topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 338 }.elsewhen(io.RASMissBubble) { 339 topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B 340 } 341 }.elsewhen(io.MemVioRedirect) { 342 topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 343 }.otherwise { 344 topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 345 } 346 } 347 348 349 val dequeueInsufficient = Wire(Bool()) 350 val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W)) 351 val deqValidCount = PopCount(validVec.asBools) 352 val deqWasteCount = DecodeWidth.U - deqValidCount 353 dequeueInsufficient := deqValidCount < DecodeWidth.U 354 matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse) 355 356 io.stallReason.reason.map(_ := 0.U) 357 for (i <- 0 until DecodeWidth) { 358 when(i.U < deqWasteCount) { 359 io.stallReason.reason(DecodeWidth - i - 1) := matchBubble 360 } 361 } 362 363 when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) { 364 // should set reason for FetchFragmentationStall 365 // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B 366 for (i <- 0 until DecodeWidth) { 367 when(i.U < deqWasteCount) { 368 io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U 369 } 370 } 371 } 372 373 when(io.stallReason.backReason.valid) { 374 io.stallReason.reason.map(_ := io.stallReason.backReason.bits) 375 } 376 377 // Debug info 378 XSError( 379 deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt, 380 "Dequeue PTR mismatch" 381 ) 382 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 383 384 XSDebug(io.flush, "IBuffer Flushed\n") 385 386 when(io.in.fire) { 387 XSDebug("Enque:\n") 388 XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n") 389 for(i <- 0 until PredictWidth){ 390 XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n") 391 } 392 } 393 394 for (i <- 0 until DecodeWidth) { 395 XSDebug(io.out(i).fire, 396 p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" + 397 p"v=${io.out(i).valid} r=${io.out(i).ready} " + 398 p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n") 399 } 400 401 XSDebug(p"numValid: ${numValid}\n") 402 XSDebug(p"EnqNum: ${numEnq}\n") 403 XSDebug(p"DeqNum: ${numDeq}\n") 404 405 val afterInit = RegInit(false.B) 406 val headBubble = RegInit(false.B) 407 when (io.in.fire) { afterInit := true.B } 408 when (io.flush) { 409 headBubble := true.B 410 } .elsewhen(numValid =/= 0.U) { 411 headBubble := false.B 412 } 413 val instrHungry = afterInit && (numValid === 0.U) && !headBubble 414 415 QueuePerf(IBufSize, numValid, !allowEnq) 416 XSPerfAccumulate("flush", io.flush) 417 XSPerfAccumulate("hungry", instrHungry) 418 419 val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble 420 XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull) 421 /* 422 XSPerfAccumulate("ICacheMissBubble", Mux(matchBubbleVec(TopDownCounters.ICacheMissBubble.id), deqWasteCount, 0.U)) 423 XSPerfAccumulate("ITLBMissBubble", Mux(matchBubbleVec(TopDownCounters.ITLBMissBubble.id), deqWasteCount, 0.U)) 424 XSPerfAccumulate("ControlRedirectBubble", Mux(matchBubbleVec(TopDownCounters.ControlRedirectBubble.id), deqWasteCount, 0.U)) 425 XSPerfAccumulate("MemVioRedirectBubble", Mux(matchBubbleVec(TopDownCounters.MemVioRedirectBubble.id), deqWasteCount, 0.U)) 426 XSPerfAccumulate("OtherRedirectBubble", Mux(matchBubbleVec(TopDownCounters.OtherRedirectBubble.id), deqWasteCount, 0.U)) 427 XSPerfAccumulate("BTBMissBubble", Mux(matchBubbleVec(TopDownCounters.BTBMissBubble.id), deqWasteCount, 0.U)) 428 XSPerfAccumulate("OverrideBubble", Mux(matchBubbleVec(TopDownCounters.OverrideBubble.id), deqWasteCount, 0.U)) 429 XSPerfAccumulate("FtqUpdateBubble", Mux(matchBubbleVec(TopDownCounters.FtqUpdateBubble.id), deqWasteCount, 0.U)) 430 XSPerfAccumulate("FtqFullStall", Mux(matchBubbleVec(TopDownCounters.FtqFullStall.id), deqWasteCount, 0.U)) 431 XSPerfAccumulate("FetchFragmentBubble", 432 Mux(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR, 0.U, deqWasteCount)) 433 XSPerfAccumulate("TAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.TAGEMissBubble.id), deqWasteCount, 0.U)) 434 XSPerfAccumulate("SCMissBubble", Mux(matchBubbleVec(TopDownCounters.SCMissBubble.id), deqWasteCount, 0.U)) 435 XSPerfAccumulate("ITTAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.ITTAGEMissBubble.id), deqWasteCount, 0.U)) 436 XSPerfAccumulate("RASMissBubble", Mux(matchBubbleVec(TopDownCounters.RASMissBubble.id), deqWasteCount, 0.U)) 437 */ 438 439 val perfEvents = Seq( 440 ("IBuffer_Flushed ", io.flush ), 441 ("IBuffer_hungry ", instrHungry ), 442 ("IBuffer_1_4_valid", (numValid > (0*(IBufSize/4)).U) & (numValid < (1*(IBufSize/4)).U) ), 443 ("IBuffer_2_4_valid", (numValid >= (1*(IBufSize/4)).U) & (numValid < (2*(IBufSize/4)).U) ), 444 ("IBuffer_3_4_valid", (numValid >= (2*(IBufSize/4)).U) & (numValid < (3*(IBufSize/4)).U) ), 445 ("IBuffer_4_4_valid", (numValid >= (3*(IBufSize/4)).U) & (numValid < (4*(IBufSize/4)).U) ), 446 ("IBuffer_full ", numValid.andR ), 447 ("Front_Bubble ", PopCount((0 until DecodeWidth).map(i => io.out(i).ready && !io.out(i).valid))) 448 ) 449 generatePerfEvent() 450} 451