1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15* 16* 17* Acknowledgement 18* 19* This implementation is inspired by several key papers: 20* [1] Alex Ramirez, Oliverio J. Santana, Josep L. Larriba-Pey, and Mateo Valero. "[Fetching instruction streams.] 21* (https://doi.org/10.1109/MICRO.2002.1176264)" 35th Annual IEEE/ACM International Symposium on Microarchitecture 22* (MICRO). 2002. 23* [2] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. "[Rebasing instruction prefetching: An industry 24* perspective.](https://doi.org/10.1109/LCA.2020.3035068)" IEEE Computer Architecture Letters 19.2: 147-150. 2020. 25* [3] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. "[Re-establishing fetch-directed instruction 26* prefetching: An industry perspective.](https://doi.org/10.1109/ISPASS51385.2021.00034)" 2021 IEEE International 27* Symposium on Performance Analysis of Systems and Software (ISPASS). 2021. 28***************************************************************************************/ 29 30package xiangshan.frontend 31import chisel3._ 32import chisel3.util._ 33import freechips.rocketchip.diplomacy.LazyModule 34import freechips.rocketchip.diplomacy.LazyModuleImp 35import org.chipsalliance.cde.config.Parameters 36import utility._ 37import xiangshan._ 38import xiangshan.backend.fu.PFEvent 39import xiangshan.backend.fu.PMP 40import xiangshan.backend.fu.PMPChecker 41import xiangshan.backend.fu.PMPReqBundle 42import xiangshan.cache.mmu._ 43import xiangshan.frontend.icache._ 44 45class Frontend()(implicit p: Parameters) extends LazyModule with HasXSParameter { 46 override def shouldBeInlined: Boolean = false 47 val inner = LazyModule(new FrontendInlined) 48 lazy val module = new FrontendImp(this) 49} 50 51class FrontendImp(wrapper: Frontend)(implicit p: Parameters) extends LazyModuleImp(wrapper) { 52 val io = IO(wrapper.inner.module.io.cloneType) 53 val io_perf = IO(wrapper.inner.module.io_perf.cloneType) 54 io <> wrapper.inner.module.io 55 io_perf <> wrapper.inner.module.io_perf 56 if (p(DebugOptionsKey).ResetGen) { 57 ResetGen(ResetGenNode(Seq(ModuleNode(wrapper.inner.module))), reset, sim = false) 58 } 59} 60 61class FrontendInlined()(implicit p: Parameters) extends LazyModule with HasXSParameter { 62 override def shouldBeInlined: Boolean = true 63 64 val instrUncache = LazyModule(new InstrUncache()) 65 val icache = LazyModule(new ICache()) 66 67 lazy val module = new FrontendInlinedImp(this) 68} 69 70class FrontendInlinedImp(outer: FrontendInlined) extends LazyModuleImp(outer) 71 with HasXSParameter 72 with HasPerfEvents { 73 val io = IO(new Bundle() { 74 val hartId = Input(UInt(hartIdLen.W)) 75 val reset_vector = Input(UInt(PAddrBits.W)) 76 val fencei = Input(Bool()) 77 val ptw = new TlbPtwIO() 78 val backend = new FrontendToCtrlIO 79 val softPrefetch = Vec(backendParams.LduCnt, Flipped(Valid(new SoftIfetchPrefetchBundle))) 80 val sfence = Input(new SfenceBundle) 81 val tlbCsr = Input(new TlbCsrBundle) 82 val csrCtrl = Input(new CustomCSRCtrlIO) 83 val error = ValidIO(new L1CacheErrorInfo) 84 val frontendInfo = new Bundle { 85 val ibufFull = Output(Bool()) 86 val bpuInfo = new Bundle { 87 val bpRight = Output(UInt(XLEN.W)) 88 val bpWrong = Output(UInt(XLEN.W)) 89 } 90 } 91 val resetInFrontend = Output(Bool()) 92 val debugTopDown = new Bundle { 93 val robHeadVaddr = Flipped(Valid(UInt(VAddrBits.W))) 94 } 95 }) 96 97 // decouped-frontend modules 98 val instrUncache = outer.instrUncache.module 99 val icache = outer.icache.module 100 val bpu = Module(new Predictor) 101 val ifu = Module(new NewIFU) 102 val ibuffer = Module(new IBuffer) 103 val ftq = Module(new Ftq) 104 105 val needFlush = RegNext(io.backend.toFtq.redirect.valid) 106 val FlushControlRedirect = RegNext(io.backend.toFtq.redirect.bits.debugIsCtrl) 107 val FlushMemVioRedirect = RegNext(io.backend.toFtq.redirect.bits.debugIsMemVio) 108 val FlushControlBTBMiss = Wire(Bool()) 109 val FlushTAGEMiss = Wire(Bool()) 110 val FlushSCMiss = Wire(Bool()) 111 val FlushITTAGEMiss = Wire(Bool()) 112 val FlushRASMiss = Wire(Bool()) 113 114 val tlbCsr = DelayN(io.tlbCsr, 2) 115 val csrCtrl = DelayN(io.csrCtrl, 2) 116 val sfence = RegNext(RegNext(io.sfence)) 117 118 // trigger 119 ifu.io.frontendTrigger := csrCtrl.frontend_trigger 120 121 // RVCDecoder fsIsOff 122 ifu.io.csr_fsIsOff := csrCtrl.fsIsOff 123 124 // bpu ctrl 125 bpu.io.ctrl := csrCtrl.bp_ctrl 126 bpu.io.reset_vector := io.reset_vector 127 128 // pmp 129 val PortNumber = ICacheParameters().PortNumber 130 val pmp = Module(new PMP()) 131 val pmp_check = VecInit(Seq.fill(coreParams.ipmpPortNum)(Module(new PMPChecker(3, sameCycle = true)).io)) 132 pmp.io.distribute_csr := csrCtrl.distribute_csr 133 val pmp_req_vec = Wire(Vec(coreParams.ipmpPortNum, Valid(new PMPReqBundle()))) 134 (0 until 2 * PortNumber).foreach(i => pmp_req_vec(i) <> icache.io.pmp(i).req) 135 pmp_req_vec.last <> ifu.io.pmp.req 136 137 for (i <- pmp_check.indices) { 138 pmp_check(i).apply(tlbCsr.priv.imode, pmp.io.pmp, pmp.io.pma, pmp_req_vec(i)) 139 } 140 (0 until 2 * PortNumber).foreach(i => icache.io.pmp(i).resp <> pmp_check(i).resp) 141 ifu.io.pmp.resp <> pmp_check.last.resp 142 143 val itlb = 144 Module(new TLB(coreParams.itlbPortNum, nRespDups = 1, Seq.fill(PortNumber)(false) ++ Seq(true), itlbParams)) 145 itlb.io.requestor.take(PortNumber) zip icache.io.itlb foreach { case (a, b) => a <> b } 146 itlb.io.requestor.last <> ifu.io.iTLBInter // mmio may need re-tlb, blocked 147 itlb.io.hartId := io.hartId 148 itlb.io.base_connect(sfence, tlbCsr) 149 itlb.io.flushPipe.foreach(_ := icache.io.itlbFlushPipe) 150 itlb.io.redirect := DontCare // itlb has flushpipe, don't need redirect signal 151 152 val itlb_ptw = Wire(new VectorTlbPtwIO(coreParams.itlbPortNum)) 153 itlb_ptw.connect(itlb.io.ptw) 154 val itlbRepeater1 = PTWFilter(itlbParams.fenceDelay, itlb_ptw, sfence, tlbCsr, l2tlbParams.ifilterSize) 155 val itlbRepeater2 = 156 PTWRepeaterNB(passReady = false, itlbParams.fenceDelay, itlbRepeater1.io.ptw, io.ptw, sfence, tlbCsr) 157 158 icache.io.ftqPrefetch <> ftq.io.toPrefetch 159 icache.io.softPrefetch <> io.softPrefetch 160 161 // IFU-Ftq 162 ifu.io.ftqInter.fromFtq <> ftq.io.toIfu 163 ftq.io.toIfu.req.ready := ifu.io.ftqInter.fromFtq.req.ready && icache.io.fetch.req.ready 164 165 ftq.io.fromIfu <> ifu.io.ftqInter.toFtq 166 bpu.io.ftq_to_bpu <> ftq.io.toBpu 167 ftq.io.fromBpu <> bpu.io.bpu_to_ftq 168 169 ftq.io.mmioCommitRead <> ifu.io.mmioCommitRead 170 171 // IFU-ICache 172 icache.io.fetch.req <> ftq.io.toICache.req 173 ftq.io.toICache.req.ready := ifu.io.ftqInter.fromFtq.req.ready && icache.io.fetch.req.ready 174 175 ifu.io.icacheInter.resp <> icache.io.fetch.resp 176 ifu.io.icacheInter.icacheReady := icache.io.toIFU 177 ifu.io.icacheInter.topdownIcacheMiss := icache.io.fetch.topdownIcacheMiss 178 ifu.io.icacheInter.topdownItlbMiss := icache.io.fetch.topdownItlbMiss 179 icache.io.stop := ifu.io.icacheStop 180 icache.io.flush := ftq.io.icacheFlush 181 182 ifu.io.icachePerfInfo := icache.io.perfInfo 183 184 icache.io.csr_pf_enable := RegNext(csrCtrl.l1I_pf_enable) 185 186 icache.io.fencei := RegNext(io.fencei) 187 188 // IFU-Ibuffer 189 ifu.io.toIbuffer <> ibuffer.io.in 190 191 ftq.io.fromBackend <> io.backend.toFtq 192 io.backend.fromFtq := ftq.io.toBackend 193 io.backend.fromIfu := ifu.io.toBackend 194 io.frontendInfo.bpuInfo <> ftq.io.bpuInfo 195 196 val checkPcMem = Reg(Vec(FtqSize, new Ftq_RF_Components)) 197 when(ftq.io.toBackend.pc_mem_wen) { 198 checkPcMem(ftq.io.toBackend.pc_mem_waddr) := ftq.io.toBackend.pc_mem_wdata 199 } 200 201 val checkTargetPtr = Wire(Vec(DecodeWidth, new FtqPtr)) 202 val checkTarget = Wire(Vec(DecodeWidth, UInt(VAddrBits.W))) 203 204 for (i <- 0 until DecodeWidth) { 205 checkTargetPtr(i) := ibuffer.io.out(i).bits.ftqPtr 206 checkTarget(i) := Mux( 207 ftq.io.toBackend.newest_entry_ptr.value === checkTargetPtr(i).value, 208 ftq.io.toBackend.newest_entry_target, 209 checkPcMem((checkTargetPtr(i) + 1.U).value).startAddr 210 ) 211 } 212 213 // commented out for this br could be the last instruction in the fetch block 214 def checkNotTakenConsecutive = { 215 val prevNotTakenValid = RegInit(0.B) 216 val prevNotTakenFtqPtr = Reg(new FtqPtr) 217 for (i <- 0 until DecodeWidth - 1) { 218 // for instrs that is not the last, if a not-taken br, the next instr should have the same ftqPtr 219 // for instrs that is the last, record and check next request 220 when(ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr) { 221 when(ibuffer.io.out(i + 1).fire) { 222 // not last br, check now 223 }.otherwise { 224 // last br, record its info 225 prevNotTakenValid := true.B 226 prevNotTakenFtqPtr := checkTargetPtr(i) 227 } 228 } 229 XSError( 230 ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr && 231 ibuffer.io.out(i + 1).fire && 232 checkTargetPtr(i).value =/= checkTargetPtr(i + 1).value, 233 "not-taken br should have same ftqPtr\n" 234 ) 235 } 236 when(ibuffer.io.out(DecodeWidth - 1).fire && ibuffer.io.out(DecodeWidth - 1).bits.pd.isBr) { 237 // last instr is a br, record its info 238 prevNotTakenValid := true.B 239 prevNotTakenFtqPtr := checkTargetPtr(DecodeWidth - 1) 240 } 241 when(prevNotTakenValid && ibuffer.io.out(0).fire) { 242 prevNotTakenValid := false.B 243 } 244 XSError( 245 prevNotTakenValid && ibuffer.io.out(0).fire && 246 prevNotTakenFtqPtr.value =/= checkTargetPtr(0).value, 247 "not-taken br should have same ftqPtr\n" 248 ) 249 250 when(needFlush) { 251 prevNotTakenValid := false.B 252 } 253 } 254 255 def checkTakenNotConsecutive = { 256 val prevTakenValid = RegInit(0.B) 257 val prevTakenFtqPtr = Reg(new FtqPtr) 258 for (i <- 0 until DecodeWidth - 1) { 259 // for instrs that is not the last, if a taken br, the next instr should not have the same ftqPtr 260 // for instrs that is the last, record and check next request 261 when(ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr && ibuffer.io.out(i).bits.pred_taken) { 262 when(ibuffer.io.out(i + 1).fire) { 263 // not last br, check now 264 }.otherwise { 265 // last br, record its info 266 prevTakenValid := true.B 267 prevTakenFtqPtr := checkTargetPtr(i) 268 } 269 } 270 XSError( 271 ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr && ibuffer.io.out(i).bits.pred_taken && 272 ibuffer.io.out(i + 1).fire && 273 (checkTargetPtr(i) + 1.U).value =/= checkTargetPtr(i + 1).value, 274 "taken br should have consecutive ftqPtr\n" 275 ) 276 } 277 when(ibuffer.io.out(DecodeWidth - 1).fire && ibuffer.io.out(DecodeWidth - 1).bits.pd.isBr && ibuffer.io.out( 278 DecodeWidth - 1 279 ).bits.pred_taken) { 280 // last instr is a br, record its info 281 prevTakenValid := true.B 282 prevTakenFtqPtr := checkTargetPtr(DecodeWidth - 1) 283 } 284 when(prevTakenValid && ibuffer.io.out(0).fire) { 285 prevTakenValid := false.B 286 } 287 XSError( 288 prevTakenValid && ibuffer.io.out(0).fire && 289 (prevTakenFtqPtr + 1.U).value =/= checkTargetPtr(0).value, 290 "taken br should have consecutive ftqPtr\n" 291 ) 292 when(needFlush) { 293 prevTakenValid := false.B 294 } 295 } 296 297 def checkNotTakenPC = { 298 val prevNotTakenPC = Reg(UInt(VAddrBits.W)) 299 val prevIsRVC = Reg(Bool()) 300 val prevNotTakenValid = RegInit(0.B) 301 302 for (i <- 0 until DecodeWidth - 1) { 303 when(ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr && !ibuffer.io.out(i).bits.pred_taken) { 304 when(ibuffer.io.out(i + 1).fire) {}.otherwise { 305 prevNotTakenValid := true.B 306 prevIsRVC := ibuffer.io.out(i).bits.pd.isRVC 307 prevNotTakenPC := ibuffer.io.out(i).bits.pc 308 } 309 } 310 XSError( 311 ibuffer.io.out(i).fire && ibuffer.io.out(i).bits.pd.isBr && !ibuffer.io.out(i).bits.pred_taken && 312 ibuffer.io.out(i + 1).fire && 313 ibuffer.io.out(i).bits.pc + Mux(ibuffer.io.out(i).bits.pd.isRVC, 2.U, 4.U) =/= ibuffer.io.out( 314 i + 1 315 ).bits.pc, 316 "not-taken br should have consecutive pc\n" 317 ) 318 } 319 when(ibuffer.io.out(DecodeWidth - 1).fire && ibuffer.io.out(DecodeWidth - 1).bits.pd.isBr && !ibuffer.io.out( 320 DecodeWidth - 1 321 ).bits.pred_taken) { 322 prevNotTakenValid := true.B 323 prevIsRVC := ibuffer.io.out(DecodeWidth - 1).bits.pd.isRVC 324 prevNotTakenPC := ibuffer.io.out(DecodeWidth - 1).bits.pc 325 } 326 when(prevNotTakenValid && ibuffer.io.out(0).fire) { 327 prevNotTakenValid := false.B 328 } 329 XSError( 330 prevNotTakenValid && ibuffer.io.out(0).fire && 331 prevNotTakenPC + Mux(prevIsRVC, 2.U, 4.U) =/= ibuffer.io.out(0).bits.pc, 332 "not-taken br should have same pc\n" 333 ) 334 when(needFlush) { 335 prevNotTakenValid := false.B 336 } 337 } 338 339 def checkTakenPC = { 340 val prevTakenFtqPtr = Reg(new FtqPtr) 341 val prevTakenValid = RegInit(0.B) 342 val prevTakenTarget = Wire(UInt(VAddrBits.W)) 343 prevTakenTarget := checkPcMem((prevTakenFtqPtr + 1.U).value).startAddr 344 345 for (i <- 0 until DecodeWidth - 1) { 346 when(ibuffer.io.out(i).fire && !ibuffer.io.out(i).bits.pd.notCFI && ibuffer.io.out(i).bits.pred_taken) { 347 when(ibuffer.io.out(i + 1).fire) {}.otherwise { 348 prevTakenValid := true.B 349 prevTakenFtqPtr := checkTargetPtr(i) 350 } 351 } 352 XSError( 353 ibuffer.io.out(i).fire && !ibuffer.io.out(i).bits.pd.notCFI && ibuffer.io.out(i).bits.pred_taken && 354 ibuffer.io.out(i + 1).fire && 355 checkTarget(i) =/= ibuffer.io.out(i + 1).bits.pc, 356 "taken instr should follow target pc\n" 357 ) 358 } 359 when(ibuffer.io.out(DecodeWidth - 1).fire && !ibuffer.io.out(DecodeWidth - 1).bits.pd.notCFI && ibuffer.io.out( 360 DecodeWidth - 1 361 ).bits.pred_taken) { 362 prevTakenValid := true.B 363 prevTakenFtqPtr := checkTargetPtr(DecodeWidth - 1) 364 } 365 when(prevTakenValid && ibuffer.io.out(0).fire) { 366 prevTakenValid := false.B 367 } 368 XSError( 369 prevTakenValid && ibuffer.io.out(0).fire && 370 prevTakenTarget =/= ibuffer.io.out(0).bits.pc, 371 "taken instr should follow target pc\n" 372 ) 373 when(needFlush) { 374 prevTakenValid := false.B 375 } 376 } 377 378 // checkNotTakenConsecutive 379 checkTakenNotConsecutive 380 checkTakenPC 381 checkNotTakenPC 382 383 ifu.io.rob_commits <> io.backend.toFtq.rob_commits 384 385 ibuffer.io.flush := needFlush 386 ibuffer.io.ControlRedirect := FlushControlRedirect 387 ibuffer.io.MemVioRedirect := FlushMemVioRedirect 388 ibuffer.io.ControlBTBMissBubble := FlushControlBTBMiss 389 ibuffer.io.TAGEMissBubble := FlushTAGEMiss 390 ibuffer.io.SCMissBubble := FlushSCMiss 391 ibuffer.io.ITTAGEMissBubble := FlushITTAGEMiss 392 ibuffer.io.RASMissBubble := FlushRASMiss 393 ibuffer.io.decodeCanAccept := io.backend.canAccept 394 395 FlushControlBTBMiss := ftq.io.ControlBTBMissBubble 396 FlushTAGEMiss := ftq.io.TAGEMissBubble 397 FlushSCMiss := ftq.io.SCMissBubble 398 FlushITTAGEMiss := ftq.io.ITTAGEMissBubble 399 FlushRASMiss := ftq.io.RASMissBubble 400 401 io.backend.cfVec <> ibuffer.io.out 402 io.backend.stallReason <> ibuffer.io.stallReason 403 404 instrUncache.io.req <> ifu.io.uncacheInter.toUncache 405 ifu.io.uncacheInter.fromUncache <> instrUncache.io.resp 406 instrUncache.io.flush := false.B 407 io.error <> RegNext(RegNext(icache.io.error)) 408 409 icache.io.hartId := io.hartId 410 411 itlbRepeater1.io.debugTopDown.robHeadVaddr := io.debugTopDown.robHeadVaddr 412 413 val frontendBubble = Mux(io.backend.canAccept, DecodeWidth.U - PopCount(ibuffer.io.out.map(_.valid)), 0.U) 414 XSPerfAccumulate("FrontendBubble", frontendBubble) 415 io.frontendInfo.ibufFull := RegNext(ibuffer.io.full) 416 io.resetInFrontend := reset.asBool 417 418 // PFEvent 419 val pfevent = Module(new PFEvent) 420 pfevent.io.distribute_csr := io.csrCtrl.distribute_csr 421 val csrevents = pfevent.io.hpmevent.take(8) 422 423 val perfFromUnits = Seq(ifu, ibuffer, icache, ftq, bpu).flatMap(_.getPerfEvents) 424 val perfFromIO = Seq() 425 val perfBlock = Seq() 426 // let index = 0 be no event 427 val allPerfEvents = Seq(("noEvent", 0.U)) ++ perfFromUnits ++ perfFromIO ++ perfBlock 428 429 if (printEventCoding) { 430 for (((name, inc), i) <- allPerfEvents.zipWithIndex) { 431 println("Frontend perfEvents Set", name, inc, i) 432 } 433 } 434 435 val allPerfInc = allPerfEvents.map(_._2.asTypeOf(new PerfEvent)) 436 override val perfEvents = HPerfMonitor(csrevents, allPerfInc).getPerfEvents 437 generatePerfEvent() 438} 439